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Abstract

This paper proposes a novel model-guided segmentation
framework utilizing a statistical surface wavelet model as a
shape prior. In the model building process, a set of train-
ing shapes are decomposed through the subdivision surface
wavelet scheme. By interpreting the resultant wavelet coef-
ficients as random variables, we compute prior probability
distributions of the wavelet coefficients to model the shape
variations of the training set at different scales and spatial
locations. With this statistical shape model, the segmenta-
tion task is formulated as an optimization problem to best
fit the statistical shape model with an input image. Due to
the localization property of the wavelet shape representa-
tion both in scale and space, this multi-dimensional opti-
mization problem can be efficiently solved in a multiscale
and spatial-localized manner. We have applied our method
to segment cerebral caudate nuclei from MRI images. The
experimental results have been validated with segmenta-
tions obtained through human expert. These show that our
method is robust, computationally efficient and achieves a
high degree of segmentation accuracy.

1. Introduction

Segmentation of anatomical structures from magnetic
resonance imaging (MRI) or computed tomography (CT)
data sets is the first and basic step in many medical image
applications, such as diagnosis, therapy evaluation, surgical
planning and navigation. Because manual segmentation is
time-consuming and lacks reproducibility, the development
of automated or semi-automated techniques is highly desir-
able. In general, the development of computer-assisted seg-
mentation methods is challenging due to many difficulties.
For example, the intensity based methods are likely to fail if
the distribution of intensity values of the structure of interest
overlaps with those of the surrounding structures. More-
over, in medical images, the object boundaries are often
smeared due to low image contrast or even missing when
blended with other surrounding structures with similar in-

tensity values. Therefore, boundary-based methods such as
“snake” [6] may “leak” and result in a poor segmentation.
To overcome these difficulties, a model with a prior knowl-
edge of the target object can be very helpful. However, un-
der a model-guided framework of segmentation, the exis-
tence of variability of object shape requires that the shape
model used should be in a statistical form. A number of sta-
tistical shape models as indicated in the next few paragraphs
have been proposed for this purpose.

In the Active Shape Model (ASM) [4] approach, a shape
is represented by using the point distribution model (PDM).
From a training set, a mean shape is formed from the mean
points’ coordinates (after normalization to exclude size, ori-
entation and position) over all members in the training set.
Through the principal component analysis on the training
set, eigenvectors which represent the eigen shape variation
modes are computed and new shapes are modeled by the
mean shape plus a linear combination of these eigenvec-
tors. As the training set is usually small in size, relative to
the dimensionality of the shape space, the possible ways to
deform a shape are limited to a linear subspace of the com-
plete shape space. Moreover, the representation of shape is
composed of a set of discrete points. Thus, we know the
geometry of a shape only at a finite set of points. When a
high degree of precision is required on the shape, a corre-
sponding dense sampling is needed. This shape model can
be verbose and thus not efficient for computation.

On the other hand, parametric modal decomposition
model provides continuous and concise representation of a
shape. The decomposition basis is usually a set of different
frequency harmonics. The modal decomposition produces
a small number of coefficients which capture the overall
shape of the objects. The commonly used decomposition
basis functions are Fourier [10] [11] and spherical harmon-
ics [7]. In another perspective, these functions are periodic
and globally supported (rather than localized in space), so
a small perturbation in one parameter can affect the entire
outline of a shape. They are thus not easy to be manipu-
lated efficiently and effectively to describe local deforma-
tions. Moreover, when solving an optimization problem to



best fit a prior model with an input image, the basis func-
tions are not spatial-localized, thus the coefficients in one
scale (which are correlated) have to be optimized at the
same time. This means that the optimization problem is
complex and computationally expensive.

In contrast to the Fourier and spherical harmonics,
wavelet basis functions are compactly supported and have
the localization property both in frequency and space. Sta-
tistical shape models based on wavelets for 2D shape were
presented [3][5], where shape boundaries are explicitly pa-
rameterized into two coordinate functions and then decom-
posed with the first-generation wavelets that work with
manifolds defined on regular grids. The rigorous require-
ments in this explicit parametrization are the major obsta-
cles to extending this wavelet basis onto the work here on
3D surfaces. We need, firstly, a surface parametrization
that provides the correspondences between objects in the
training set. Secondly, the first-generation wavelets require
the surface to be parameterized by regular grids. Since the
topology of anatomical structures is usually a sphere, we
need two parameters, longitude and latitude to characterize
such a surface. However, in doing so, distortions are in-
evitably at the south and north poles.

In our proposed model-guided segmentation framework,
we introduce a new statistical surface wavelet model.
We adopt a newly developed surface wavelet scheme [1]
which can perform wavelet analysis directly on a sur-
face mesh with subdivision mesh connectivity. This
second-generation wavelet scheme can work with mani-
folds defined on non-regular grids, more specifically, on the
Catmull-Clark subdivision mesh. Based on the shape repre-
sentation using this wavelet scheme, our model represents
the statistical shape information in a multiscale and spatial-
localized way. This feature is very valuable to the optimiza-
tion problem to best fit a prior model with an input image
as the problem can now be solved in a divide-and-conquer
manner. This thus results in a more robust and efficient seg-
mentation method.

Our work here differs from the recent work on shape-
driven segmentation using spherical wavelet [8]. Their
work uses wavelets [9] defined on a triangulated subdivision
mesh, and a different objective function (and multiscale gra-
dient descent algorithm) in performing model-guided seg-
mentation. Unlike theirs, our model integrates the shape
variations with the variations in similarity transform (trans-
lation, rotation and scaling). Such a prior model integrating
both the two kinds biological variations can be more robust
than a pure shape model with separated parameters describ-
ing the similarity transform [12] [7].

The remaining part of the paper is organized as follows.
Section 2 discusses the construction of a prior statistical
model from a set of MRI scan data. Section 3 presents the
model-guided segmentation method using our proposed sta-

tistical surface wavelets model. Next, Section 4 applies our
method to segment the cerebral caudate nuclei and presents
the experiment results. Lastly, Section 5 concludes the pa-
per with possible future research directions.

2. The statistical surface wavelet model

For the discussion of the proposed framework, we use
the 18 MRI scans from the Internet Brain Segmentation
Repository (IBSR) [14] as an example of a training set. For
these MRI scans, the principal gray and white matter struc-
tures of the brain, including the right and left caudate nu-
clei, have been segmented. To compute a statistical surface
wavelet model (Section 2.3), we first need to address the
correspondence finding and re-meshing of the training set
(Section 2.1). We also provide a quick review on the use of
wavelet to decompose shapes (Section 2.2).

2.1. Finding the correspondence and re-meshing

In building a statistical shape model, we first need to
establish correspondence among the shapes in the train-
ing set. In our work, this problem is solved by using the
spherical harmonics (SPHARM) normalization [2]. Fig-
ure 1 gives an example of the SPHARM normalization of
a segmented cerebral lateral ventricle. After binary volu-
metric data is obtained through manual segmentation, the
outermost facets of the voxels are extracted as the surface
mesh of the object (shown in Figure 1(a)). Next, a contin-
uous and uniform mapping from the object surface to the
unit sphere is computed. The result is a bijective mapping
(Figure 1(b)) between each point V(x, y, z) on the surface
and two spherical coordinates θ and φ on a unit sphere. In
other words, the coordinates of the points on the surface are
captured as functions x(θ, φ), y(θ, φ) and z(θ, φ) defined
on the unit sphere. Therefore, they can be expanded into
a set of spherical harmonic basis functions and resulting in
a series of coefficients. With these, translation, rotation,
and scaling in objects are removed subsequently (see [2]
for details) and a set of normalized SPHARM coefficients
is generated. After normalization, points on two surfaces
with the same spherical coordinates θ and φ are defined
as corresponding pairs. To reconstruct the shape from the
normalized coefficients (as shown in Figure 1(d)), we use
a re-sampling grid on the unit sphere with Catmull-Clark
subdivision mesh connectivity (as shown in Figure 1(c)).
This subdivision connectivity is needed in our subsequent
wavelet analysis. Figure 2 shows the 18 reconstructed right
caudate nuclei from the training set.

As mentioned, for each shape, the SPHARM normal-
ization removes its translation, rotation and scaling, or col-
lectively its similarity transform. As such, it also removes
the correlation between the position and the shape of the
anatomical structure (in the original images). It was, how-



(a) (b) (c) (d)

Figure 1. Correspondence finding and re-meshing. (a) The extracted surface net. (b) Unit sphere mapping. (c) The re-sampling grid with
Catmull-Clark subdivision mesh connectivity. (d) The normalized and re-meshed surface.

Figure 2. The 18 samples from the Internet Brain Segmentation
Repository (IBSR).

ever, observed in [12] [7] that a prior model integrating sim-
ilarity transform is much more robust than a pure “shape”
model. Therefore, in our framework, we use a simple prin-
cipal component alignment method to register a shape ob-
tained from the SPHARM normalization with its original
shape in the input image to restore its similarity transform
information in the Talairach coordinate system [13].

2.2. Shape representation using wavelet

Having solved the correspondence issue and obtained the
required subdivision mesh by re-sampling, we can now per-
form wavelet analysis on the surface mesh directly with
the scheme introduced in [1]. It is a second-generation
wavelet based on the hierarchical mesh connectivity defined
by Catmull-Clark subdivision. In this subdivision scheme, a
mesh is subdivided from sub-mesh to super-mesh by insert-
ing new vertices (see Figure 3 for an example). The vertices,
denoted by f, e, and v, respectively in a super-mesh corre-
spond to a face, an edge, or a vertex, respectively in the sub-
mesh. A wavelet decomposition step can be considered as
an operation applied to a super-mesh, in which a sub-mesh
is computed to approximate the super-mesh. The vertices,
denoted by v’, on this sub-mesh represent the coefficients

Figure 3. Wavelet transformation on Catmull-Clark subdivision
mesh.

of the scaling function. The shape details which are miss-
ing in the sub-mesh can also be computed and are denoted
by vectors e’ and f’ which describe the differences between
the approximating mesh and the super-mesh. These vectors
represent, in fact, the coefficients of wavelet functions.

We denote the set of all vertices contained in the mesh
after j subdivisions as V (j). When we obtain a finer reso-
lution mesh V (j + 1) through subdivision, we denote the e

vertices and f vertices added to the subdivision as the vertex
set W (j). The complete set of vertices in the finer resolu-
tion j+1 is V (j+1) = V (j)∪W (j). Let S be a surface and
x ∈ R

3 a vertex on S. Using wavelet transform described
above, S can be represented by a weighted summation of a
set of scaling and wavelet functions (Figure 4) defined on
the surface with different scales and locations:

S(x) =
∑
j≥0

∑
m∈W (j)

wj
mψ

j
m(x) +

∑
n∈V (0)

v0
nφ

0
n(x) (1)

where, φ0
n is the scaling function of the coarsest scale at

vertex n, ψj
m is the wavelet function of scale j at vertex m,

and v0
n and wj

m are the corresponding coefficients of these
functions. In 3D, v0

n and wj
m are vectors with 3 elements

and each element represents one of the coordinates x, y, z.
For our training set from IBSR, after decomposing the

prepared surface meshes in the training set with this wavelet
scheme, we found that |wj

m| < 0.5mm for j ≥ 3. However,
the minimum voxel size in IBSR is 0.8371mm, and we can
thus omit |wj

m| for j ≥ 3. Hence, we only use the first
4 scale levels, for a total of |V (0)| + |W (0)| + |W (1)| +
|W (2)| = 8 + 18 + 72 + 288 = 386 coefficient vectors
to describe each shape. Suppose we have N shapes in the
training set. With the wavelet decomposition method de-
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Figure 4. Basis functions on a sphere. (a) Scaling function. (b)
Wavelet function corresponding to an edge. (c) Wavelet function
corresponding to a face.
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Figure 5. (a) Mean shape. (b) Color coded shape variation distri-
bution.

scribed above, the ith shape of the training set can be repre-
sented as: ci = [c1i , · · · , cMi ]T . Here, cji , i = 1, ..., N , and
j = 1, ...,M stands for the jth coefficient of the ith shape.
In our case, N = 18 and M = 386.

2.3. Computing statistical shape model

After decomposing the training set and using ci, i =
1, ..., N to represent the ith shape, we can first compute
the mean shape as: c = 1

N

∑N
i=1 ci. Figure 5(a) shows

the mean shape c of our training set. The mean shape is
used as the initial guess when performing segmentation of
an unknown input shape. Also, the spatial distribution of
the shape deviations from the mean shape can be computed.
This is shown in Figure 5(b) with different colors represent-
ing the different extent of deviations. From this figure, we
can see that the tail of the caudate nucleus is the most vari-
able part, while the middle body part is relatively stable.

Because of the multiscale and spatial-localization prop-
erty of wavelet basis, every wavelet coefficient vector only
defines the shape at a specified scale and spatial location.
Therefore, statistical analysis can be applied on every coef-
ficient vector separately to obtain the multiscale and spatial-
localized statistical information. The 3 elements in the co-
efficient vector cji represent the shape variations in the di-
rections of the coordinate axes x, y, and z. However, the
directions x, y and z do not necessarily indicate the most
significant modes of the shape variation. Therefore, we use
principal component analysis (as discussed in the next para-
graph) to find the principal shape variation mode defined by
each coefficient vector.

Let cj = [cj1, · · · , cjN ]T be the corresponding jth

wavelet coefficients from the N samples in the training set.
cj = 1

N

∑N
i=1 c

j
i is the mean of the jth coefficient vector.

Then the covariance matrix of the jth coefficient vector is:

Σj =
1

N − 1

N∑
i=1

(cji − cj) · (cji − cj)T (2)

Eigenanalysis of this covariance matrix produces the eigen-
values and eigenvectors. These eigenvectors define a new
orthogonal basis. Using this basis, the jth coefficient vector
of the ith shape can be expressed as:

cji = cj + U jbji (3)

where U j is a 3 × 3 matrix in which the columns are the
eigenvectors which denote the eigenmodes of the jth coef-
ficient vector’s variation (that is the eigenmodes of shape
variation at the location and scale defined by cj); vec-
tor bji = [bji (1), bji (2), bji (3)]T is the coordinate of cji in
the new orthogonal basis. It describes the deviation of
cji from the mean value cj . Without loss of generality,
bji (1), bji (2), bji (3) correspond to eigenvalues λj

1, λ
j
2, λ

j
3 re-

spectively in decreasing significance of the variation. We
define:

bi = [b1i , ..., b
M
i ] (4)

Then, bi are parameters which describe the ith shape and
are, in fact, the parameters to be optimized later in the seg-
mentation process.

Because of the randomness of the shape variation, bi

can be interpreted as random variables. However, there
is no particular distribution to describe these parameters.
Hence, an independent multivariate Gaussian is assumed,
since only mean and standard deviation are known about
the distribution. Here, the independence assumption comes
from the orthogonality of wavelet basis function and the or-
thogonal basis in the principal component analysis. (Such
an independence assumption is a common relaxation in the
parametric models; see, for example, [10] [11].) Due to the
fact that bji actually indicates the deviation of the coefficient
from the mean value, we know that the mean of this Gaus-
sian distribution is 0. The standard deviation can be esti-
mated and denoted by: σj(k), k = 1, 2, 3 and j = 1, ...,M .
Thus, the assumed independent multivariate Gaussian is de-
fined as:

Pr(b) =
M∏

j=1

3∏
k=1

1
σj(k)

√
2π
e
− (bj(k))2

2σj(k) (5)

Till here, cj , U j , σj(k), j = 1, ...,M and k = 1, 2, 3 to-
gether constitute a statistical shape model which bias the
object shape to a particular range of variation.

In order to illustrate the spatial localization property of
this wavelet statistical shape model, in every scale level, we
can choose one coefficient vector and show the most sig-
nificant variation (corresponding to bji (1)) of this chosen
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Figure 6. The most significant variation mode of one chosen
wavelet coefficient in different scale levels. (a) Level 0. (b) Level
1. (c) Level 2. (d) Level 3. The red dashed line denotes the re-
gion where the shape is defined by the chosen coefficient. Up-
per row from left to right: bj

i = [σj(1), 0, 0]T , [2σj(1), 0, 0]T ,
[3σj(1), 0, 0]T , respectively. Lower row from left to right:
bj
i = [−σj(1), 0, 0]T , [−2σj(1), 0, 0]T , [−3σj(1), 0, 0]T , re-

spectively.

coefficient by changing bji in Equation 3. The results are
shown in Figure 6. It is very clear that when one coefficient
is changed, the shape only varies locally at the specified
scale, while the other parts of the shape remain unchanged.
Such a multiscale and spatial localized shape representa-
tion can be very useful in the segmentation process, because
the model parameters can be optimized one by one instead
of altogether at the same time. This divides the complex
multi-dimensional optimization problem into many small
and simple one-dimension optimization problems.

3. The model-guided segmentation

Having built the statistical shape model, we perform seg-
mentation by deforming the model to fit with the input im-

age. This deformation process is driven by the optimization
(Section 3.2) of an objective function (Section 3.1).

3.1. The objective function

Let b = [b1, ..., bM ] be a shape template in the form of
Equation 4 and G(x, y, z) be an input image. In order to
segment the object from the image, some preprocessing of
the image is needed. We calculate a Canny gradient mag-
nitude image after applying a Gaussian smoothing (σ = 3
voxels). The reason of performing the smoothing is to sup-
press the noise and to increase the capturing range. Next,
this gradient magnitude image is also normalized to an in-
tensity value range of [0, 1]. Let I(x, y, z) denote the pre-
processed image (such as the one shown in Figure 7(a)) in
which a bigger intensity value indicates a stronger edge fea-
ture in the original image G(x, y, z).

The model-guided segmentation problem can be formu-
lated as an optimization problem:

max
b

E(b, I) = max
b

[EI(b, I) + αEp(b)] (6)

The first term EI(b, I) is the image-driven term that mea-
sures the fitness between the shape template b and image
I . It drives the deformation of the shape template to match
better with the edge information in I . It is computed as:

EI(b, I) =
∑
x∈A

I(x)Δx (7)

where A is the surface defined by b; x is a point on the
surface A; Δx is the surface element; and I(x) is the edge
map intensity at point x. The second termEp(b) is the prior
information term which drives the template deformation to
the most probable shape according to the prior knowledge.
Since b is independent multivariate Gaussian, the second
term can be defined as:

Ep(b) = lnPr(b)

= ln

⎛
⎝ M∏

j=1

3∏
k=1

1
σj(k)

√
2π
e
− (bj(k))2

2σj(k)

⎞
⎠

=
M∑

j=1

3∑
k=1

[
ln

(
1

σj(k)
√

2π

)
− (bj(k))2

2σj(k)

]
(8)

Note that α in the objective function is a weighting fac-
tor to balance the importance between EI(b, I) and Ep(b).
For input image of low contrast, a large α is preferred to
bias segmentation towards prior model, while for input im-
age of good contrast, a small α is suffice to rely more on
the image information. In practice, α is to be calibrated first
through experimentation on images obtained from a same
source.



3.2. Optimization of the objective function

In general, the optimization problem in model-guided
segmentation is a global optimization problem. Due to the
existence of edge features of surrounding objects, the ob-
jective function has many local maximals. One needs to en-
sure that the global maximum is close to the initial guess of
the solution in order to use local optimization algorithms,
such as gradient descent, direction set and conjugate gra-
dient [8][10][11][3]. On the other hand, with our wavelet
model, this is not much of an issue. Because of the lo-
calization property of the wavelet model both in frequency
and spatial location, the objective function can be optimized
in a serial fashion—every time only one parameter from
{bj(k)|j = 1, ...,M ; k = 1, 2, 3} needs to be optimized.
This means that there is only one 1-dimensional optimiza-
tion problem to be solved each time. Therefore, we adopt
the equal sampling method to solve this relatively simple
1-dimensional optimization problem. For every parameter
bj(k), within the ±3 standard deviation, the objective func-
tion is evaluated at equidistant sampling points to find the
maximum. The larger the number of sampling of points,
the more accurate the maximum can be found. The number
of sampling points is decided proportionally by the width of
the searching scope defined by ±3 standard deviation.

When there are p parameters to be optimized in one
scale level, and for every parameter there are l number of
sampling points, the computational complexity of our op-
timization in this scale level is then O(pl). In contrast to
other shape models with only frequency localization (such
as [11][7]), an equal sampling optimization method has, in
general, computational complexity of O(lp). This is be-
cause in these cases, all the parameters (which are corre-
lated to each other) in a scale level have to be optimized
altogether. Here, the number of parameters p in one scale
level is usually tens or hundreds, and such an optimization
method is thus computationally expensive and may be un-
affordable at times.

4. Experiments and results

We have applied our method to the segmentation of right
cerebral caudate nuclei. The 18 samples in IBSR [14] are
used as the training set to obtain a statistical surface wavelet
model with 4 scale levels. To segment an input image, we
first locate the Talairach landmarks manually to define the
Talairach coordinate system for the input image. Next,the
model to segment the input image is initialized to the mean
shape (Figure 5(a)) at the start of the optimization (as shown
in Figure 7(b)). Note that in this example of Figure 7, the
initial position is quite far away from the target, but close
to the “misleading” edge of lateral ventricle. Each succes-
sive parameter optimization is done in a multiscale manner
starting from the coarsest level to the finest level. Within

(a) (b)

(c) (d)

(e) (f)
Figure 7. The model deformation process shown in axial 2D in-
tersections at the coarsest level. (a) The preprocessed image. (b)
The model initialization. (c)-(e) 3 interim steps of optimization at
scale level 0. (f) Final result after optimization up to scale level 3.

(a) View 1

(b) View 2

Figure 8. The model deformation process shown in 3D. From left
to right: the starting shape of the model and optimization results in
scale level 0, 1, 2 and 3, respectively. The manually segmentation
is shown in light grey and the model is shown in dark grey.

every level, the parameters in this level are optimized se-
quentially one by one. Because of the spatial localization of
the wavelet model, optimization of one parameter only re-
sults in the deformation of a subpart of the surface, without
affecting previously fitted parts. So, a sequential approach
can fit the whole model to the input image, scale by scale
and part by part. This is clearly visible in Figure 7(b)-7(e).
Figure 7(f) shows the final segmentation result in an axial
2D slice, where more detailed shape information is found.
Figure 8 shows in two 3D views of an example of the de-
formation process during the multiscale optimization.



putamen

accumbens area

Figure 9. The separation between caudate, putamen and accum-
bens area using the prior knowledge.

Measure Overlap ratio (%) Hausdorff distance (mm)
mean± std 95.5± 2.8 2.90± 1.34

min 91.8 1.27
max 97.7 5.32

Table 1. Segmentation results validation using overlap ratio and
Hausdorff distance.

In our experiment, we also observe the usefulness of a
prior model such as our statistical surface wavelet model.
For the coronal slice shown in Figure 9, the caudate blends
with the putamen and accumbens area and there is thus no
reasonable “edges” detected among them. It is highly im-
probable to obtain a good segmentation without the guid-
ance of a statistical model.

In order to test the generality of the model, besides
36 normal cases of MRI scans, 29 additional cases with
schizophrenia are also used to test our method. For all
these 65 MRI scans, our proposed method (implemented
in C++) successfully segmented the right caudate within 3
minutes on a P4 2.4GHz Windows XP system. To vali-
date the segmentation result, we compared the result with
the ground truth obtained manually. The overlap ratio
((A ∩ B)/(A ∪ B)) and the Hausdorff distance are used
to measure the segmentation error. The validation results
are summarized in Table 1.

5. Concluding remarks

This paper investigates the use of wavelets analysis in
model-guided segmentation of 3D objects. A framework
for model-guided segmentation is developed, in which a sta-
tistical surface wavelet shape model is used as a prior. By
using the multiscale and spatial-localized description of the
shape, the segmentation optimization problem is success-
fully converted from one multi-variable global optimization
problem to many single-variable optimization problems. In
this divide-and-conquer manner, the optimization problem
is solved efficiently and this led to a robust segmentation
method. In the future, we plan to increase the size of the
training set and test on more brain tissues. Moreover, since
the proposed wavelet-based shape model is multiscale and
spatial localized, it is selective not only to scale but also to
spatial locations and thus can potentially be useful to the
feature selection problem in machine learning. Therefore,
we also plan to use this shape description to develop a shape

classifier to help the diagnosis of schizophrenia.
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