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� Introduction

A triangulation of a set S of n points in �� is a maximally connected straight line plane graph
whose vertices are the points of S� Maximality implies that all bounded faces are triangles� If the
triangulation is restricted to within a connected polygonal region bounded by pairwise disjoint edges
connecting points of S then it is referred to as a constrained triangulation� A triangulation of S can
be viewed as a particular constrained triangulation where the polygonal region is bounded by the
points and edges on the boundary of the convex hull of S and the other points form holes in the
region� A special case of a constrained triangulation is a polygon triangulation where S is the set of
vertices of a simple polygon and the triangulation is restricted to within the polygon�

Various criteria that can be used to de�ne optimal triangulations arise in areas such as �nite
element analysis �StFi���� computational geometry �PrSh�	�� and surface approximation �DLR
���
Many of these criteria are de�ned as maxmin �short for maximizes the minimum or minmax of
some triangle or edge measure� The �rst quanti�er is over all triangulations of the same point set
and the second is over all triangles or edges of a triangulation� Two example criteria are maxmin
area and maxmin inscribed circle �see �Schu����

The problem of automatically generating optimal triangulations for a given point set has been a
subject for research since the �
���s �see e�g� the discussion in �Geor���� Exhaustive search can be
ruled out since a set of n points has� in general� exponentially many triangulations� In spite of the
attention these optimization problems have received� only very little is known about constructing
optimal triangulations in polynomial time� An important negative result is the NP�completeness
of the following decision problem �Llo���� given a collection of points and edges� decide whether or
not there is a subset of the edges that de�nes a triangulation of the points� Most positive results
are related to the Delaunay triangulation de�ned for �nite point sets �Del���� It has been shown
that among all triangulations of a given point set� the Delaunay triangulation optimizes various
criteria� These include the maxmin angle �Sib���� the minmax circumscribed circle �D�AS�
�� the
minmax smallest enclosing circle �D�AS�
� Raj
��� and the minimum integral of the gradient squared
�Rip
��� E�cient algorithms for constructing Delaunay triangulations are abundant in the literature
and based on such diverse algorithmic paradigms as edge��ipping �Laws��� Laws���� divide�and�
conquer �ShHo�	� GuSt�	�� geometric transformation �Brow�
�� plane�sweep �For���� and randomized
incrementation �GuKS
��� Recently� polynomial time algorithms have also been found for the minmax
angle and the minmax edge length criteria �EdTW
�� EdTa
���

The method of �EdTW
�� is most relevant to this paper� It constructs a minmax angle trian�
gulation by iterative application of the so�called edge�insertion operation� This paper presents an
abstraction of this method� termed the edge�insertion paradigm� and applies it to get polynomial
time algorithms for other optimal triangulation problems� Given a set of n points in ��� the spe�
ci�c results are an O�n� logn time algorithm that constructs a triangulation with maxmin triangle
height� and O�n� time algorithms for triangulations with minmax �three�dimensional slope and
with minmax eccentricity of any triangle� Triangulations with maxmin height have been suggested
for use in surface approximation �GoCR���� and all three criteria have been mentioned in a survey
article on �systematic� triangulations �WaPh����

Section � formulates the most basic version of the edge�insertion paradigm� and section � gives
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two su�cient conditions for criteria it can optimize� The correctness of the paradigm when applied
to such criteria is established in section �� Section 	 discusses re�nements of the paradigm and proves
their correctness for the classes of criteria satisfying each of the two conditions� Sections �� �� and
� demonstrate the application of the method to the three speci�c optimization criteria mentioned
above� Section 
 concludes the paper�

� The Edge�Insertion Paradigm

First some de�nitions� We denote by xy the relatively open line segment that connects the points
x� y � ��� For x� y� z � ��� xyz is the open triangle with corners x� y� z� For a given �nite point set
S � �� and x� y� z � S� we call xyz an empty triangle if all other points of S lie outside the closure
of xyz�

Let � be a function that maps a triangle xyz to a real value ��xyz� called the measure of xyz�
We restrict our attention to maxmin criteria� that is� for each � we consider the construction of a
triangulation that maximizes the minimum ��xyz over all triangles xyz� Minmax criteria can be
simulated by considering ��� The measures of particular interest in this paper are the largest angle�
the height� the slope� and the eccentricity of a triangle� The measure of a triangulation A is de�ned
as ��A � minf��xyz j xyz a triangle of Ag� If A and B are two triangulations of a common point
set then B is called an improvement of A� denoted A � B� if ��A � ��B or ��A � ��B � �� and
the set of triangles xyz in B with ��xyz � �� is a proper subset of the set of such triangles in A� A
triangulation T is optimal for � if there is no improvement of T �

The idea of the edge�insertion paradigm is fairly simple and explained below� Its non�trivial
aspects are the proof of correctness �sections � and � and the improvement of the running time
from O�n� to O�n� and O�n� logn �section 	� Given a triangulation A of a point set S� the
edge�insertion of ab� a� b � S� works as follows�

Function Edge�insertion�A�ab�� triangulation�
�� B �� A�
	� Add ab to B and remove from B all edges that intersect ab�

� Retriangulate the polygonal regions P and R constructed in step 	�
�� return B�

There are many ways to triangulate the polygonal regions� For now we might as well assume
that P and R are triangulated in an optimal fashion �maximizing the minimum �� e�g� by dynamic
programming �Klin���� The basic version of the edge�insertion paradigm can now be formulated as
follows�

Input� A set S of n points in ���
Output� An optimal triangulation T of S�

Algorithm� Construct an arbitrary triangulation A of S�
repeat T �� A�

for all pairs a� b � S do

B �� Edge�insertion�A� ab��
if A � B then A �� B� exit the for�loop endif
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endfor

until T � A�

The correctness of this paradigm hinges on the fact that there is an edge�insertion that improves
A� unless A is already optimal� Section � will present two conditions on criteria that can be optimized
and section � proves that either is su�cient to imply correctness of the edge�insertion paradigm�

Assuming correctness� we argue that the above algorithm runs in time O�n�� an improvement
to O�n� and O�n� log n will be given in section 	� It is reasonable to assume that a single edge�
insertion operation takes time O�n� �for retriangulating by dynamic programming� This is fair as
long as the measures of any two triangles can be compared in constant time� The for�loop thus takes
time O�n� per iteration of the repeat�loop� Finally� the repeat�loop is iterated at most O�n� times
because there are only

�n
�

�
triangles spanned by S� and each iteration permanently discards at least

one of them while �nding an improvement of the current triangulation�

Remark� The edge�insertion paradigm can be extended to constrained triangulations by limiting
the edge�insertion operation to edges ab that lie in the interior of the restricting polygonal region�
As a consequence� a triangulation that lexicographically maximizes the increasing vector of triangle
measures can be constructed in the non�degenerate case� that is� when ��abc �� ��xyz unless
abc � xyz� Details can be found in �EdTW
���

� Two Su�cient Conditions

We are now ready to formulate two su�cient conditions for measures � that are amenable to the
edge�insertion paradigm� Condition �I is strictly weaker than �II� so the correctness of the paradigm
needs to be established only for �I� The greater generality of �I is o��set by a faster implementation
of the edge�insertion paradigm for criteria that satisfy �II�

Let S be a set of n points in ��� let A and T be two triangulations of S� and let xyz be a triangle
in A� We say that T breaks xyz at y if it contains an edge yt with yt�xz �� �� Note that if T breaks
xyz at y then it can neither break it at x nor at z� Conditions �I and �II are based on the de�nition
of an anchor of a triangle xyz� Whether or not a vertex of xyz is an anchor depends solely on xyz

and �� The �rst condition requires that

for every triangle xyz of A� if T neither contains xyz nor breaks it at its anchor�s�
then minf��A� ��T g � ��xyz�

�I

In other words� T can be an improvement of A only if it breaks a worst triangle of A at its unique
anchor� The second condition requires that

for every triangle xyz of A� if T neither contains xyz nor breaks it at its anchor�s�
then ��T  � ��xyz�

�II

The important di�erence between the two conditions is that in �I the triangulation A that contains
xyz plays an important role� while in �II A is insigni�cant� Obviously� if � satis�es �II then it
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also satis�es �I� We will see in sections � and � that the minmax slope and the minmax eccentricity
criteria satisfy �I but not �II� This shows that �I is strictly weaker than �II�

Typically� the anchor of a triangle is unique� but this is not necessarily so� Consider for example
the case where ��xyz is equal to the largest angle of xyz� and ��xyz � ���xyz� Condition �II is
satis�ed if each vertex at which the largest angle occurs is de�ned to be an anchor of xyz� Thus� if S
de�nes an empty triangle xyz with two or three anchors then ��A � ��xyz for every triangulation
A of S� This is because no triangulation can break xyz at more than one vertex� A special case of this
statement is that if xyz is an empty isosceles triangle with two largest angles then no triangulation
of S can have minmax angle less than ��xyz�

We will see in section � that ��xyz equal to the height of xyz satis�es �II� Section � considers
the problem where each point x � ���� �� in S has associated an �elevation� ��� and a triangulation
of S is �lifted� to a piecewise linear surface through the points ���� ��� ��� We will see that ���xyz
equal to the slope of the lifted triangle satis�es �I but not �II� De�ne the eccentricity of a triangle
xyz equal to the in�mum distance between the center of the circumcircle and any point of xyz�
Section � demonstrates that ���xyz equal to the eccentricity of xyz also satis�es �I but not �II�

� The Cake Cutting Lemma Revisited

The cake cutting lemma �below asserts that if A is not yet optimal then there is an edge whose
insertion leads to an improvement� In �EdTW
��� the cake cutting lemma is proved in the context
of the minmax angle criterion using an argument that rotates edges of an optimal triangulation T
of S� While this is appropriate for angles� we need a di�erent argument for the more general class of
measures that satisfy �I� As mentioned before� the correctness of the paradigm for �I implies the
correctness for �II� Before continuing� we remark that the regions P and R �created in step � of an
edge�insertion are not necessarily simple polygons in the usual meaning of the term� Although their
interiors are always simply connected� there can be edges contained in the interiors of their closures�
Nevertheless� each such edge can be treated as if it consisted of two edges� one for each side� which
then allows us to treat P and R as if they were simple polygons�

We need some de�nitions� A diagonal of a simple polygon is a line segment that connects two
vertices and lies inside the polygon� An ear is a triangle bounded by two polygon edges and one
diagonal�

Lemma ��� �Cake Cutting� Let A � T be two triangulations of S� let pqr be a triangle in A
with ��pqr � ��A that is not in T � let q be an anchor of pqr� and let qs be an edge in T that
intersects pr� Let P and R be the polygons generated by adding qs to A and removing all edges that
intersect qs� Then there are triangulations P and R of P and R with ��pqr � minf��P� ��Rg�

Proof� We prove the assertion for P � and by symmetry it follows for R� The plan is to use edges
of T as guides to successively remove ears from P to obtain P � More speci�cally� we use pieces of
edges of T that can be seen through the �window� P � Each connected component of an edge of T
intersected with P is called a clipped edge� As P is not necessarily convex� several clipped edges can
belong to the same edge of T �
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If no clipped edge exists in the window� then P has only three vertices and therefore must be
a triangle of T � We are done because this triangle is not in A which implies that its measure
exceeds ��A� In the following� we thus assume the existence of at least one clipped edge� Denote
by q � p�� p�� � � � � pk� pk�� � s the sequence of vertices of P �

Claim �� For � � j � k� if � pj��pjpj�� � � then pj��pj�� is a diagonal of P �

Proof �of Claim �� By construction of P � it is possible to �nd non�intersecting line segments pj��x
and pj��y� both inside P � so that x and y lie on qs �x � pj�� � q if j � � and y � pj�� � s if j � k�
The �possibly degenerate pentagon xpj��pjpj��y is part of P � and because pi� x� and y are convex
vertices� the edge pj��pj�� is a diagonal of the pentagon and therefore also of P � This completes the
proof of Claim ��

A clipped edge partitions P into two polygons� the near side supported by qs and the far side

not supported by qs�

Claim �� There is at least one clipped edge whose far side is a triangle�

Proof �of Claim �� Let xy be a clipped edge so that its far side� F � contains no further clipped
edge� Let ab be the edge in T that contains xy� and let abc be the triangle in T that lies on the same
side of xy as F � By assumption we have F � abc� All vertices of F � except possibly x and y� are
points in S and therefore equal to a� b� or c� But unless F is also a triangle this contradicts the fact
that� by construction� the angles at x and y inside F are strictly less than �� This proves Claim ��

The clipped edges xy that satisfy Claim � fall into four classes as illustrated in Figure ���� An
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Figure ���� A clipped edge xy that satis�es Claim � has zero� one� or two endpoints on edges of P �

ear pi��pipi�� so that xy is a clipped edge with far side xpiy can now be removed from P � leaving a
polygon P � with one less vertex� Claims � and � remain true for P � because the removed ear is not
supported by qs� So we can iterate and compute a triangulation P of P � Symmetrically� we get a
triangulation R of R� Let B be the thus obtained triangulation of S�

Claim �� ��pqr � ��abc for all triangles abc in P and R�

Proof �of Claim �� Let abc be a triangle in P or R with minimum measure �� Assume without
loss of generality that abc is a triangle of P and that a � pi� b � pj � c � pk with i � j � k� At the
time immediately before abc was removed by adding the edge ac there was a clipped edge xy with
far side xby� Hence� T does not break abc at b� and by construction� A breaks abc at b and therefore
neither at a nor at c�
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If xy � ac then abc is a triangle in T that is not in A� and therefore ��pqr � ��A � ��abc�
If xy �� ac and b is an anchor of abc then �I implies minf��B� ��T g � ��abc because T does not
break abc at b� Finally� if xy �� ac and b is not an anchor of abc then a or c is one� Because A does
not break abc at its anchor we get minf��B� ��Ag � ��abc from �I� This completes the proof of
Claim � because all triangles of B are either in A� P or R� and abc is assumed to minimize � over
all triangles of P and R�

Using the cake cutting lemma we can now show that the algorithm� outlined as the basic version
of the edge�insertion paradigm� makes progress as long as the current triangulation� A� is not yet
optimal� It su�ces to show that the insertion of at least one edge is successful�

Lemma ��� Let A be a non�optimal triangulation of a �nite point set S� Then there is an edge�
insertion operation that improves A�

Proof� Let T be an improvement of A and consider a triangle pqr in A with ��pqr � ��A that
is not in T � Assuming q is an anchor of pqr� condition �I implies that T contains an edge qs with
qs � pr �� �� Let P and R be the polygonal regions generated by adding qs and deleting the edges
that intersect qs� The cake cutting lemma implies that there are polygon triangulations P and R of
P and R with ��pqr � minf��P� ��Rg�

Remark� Lemmas ��� and ��� remain true for constrained triangulations provided the optimization
criterion satis�es �I or �II also in this more general setting� This is indeed the case for all criteria
� considered in this paper�

� Re�nements of the Paradigm

The re�ned versions of the edge�insertion paradigm di�er from the basic one in two major ways�
First� edge�insertions are restricted to edges qs that break a worst triangle pqr at its anchor q� More
speci�cally� a subset of these edges qs is tried in a sequence computed as the edge�insertions fail
to produce an improvement� Second� the two polygonal regions created by adding an edge qs are
retriangulated by repeated ear�cutting �similar to the proof of the cake cutting lemma� rather than
by dynamic programming�

The order of candidate insertion edges is not critical for criteria satisfying �I� but a careful
choice of order can speed up the algorithm for criteria satisfying �II� Let� for example� A be a
triangulation with worst triangle pqr� that is� ��pqr � ��A� and let q be its anchor� We denote by
qs�� qs�� � � � � qsj the sequence of edges inserted with the goal to �nd an improvement of A� We will
consider two re�nements of the algorithm in section �� one for each class of criteria� which di�er in the
sequence of edge�insertions� Both are specializations of the algorithm given below in pseudo�code�
We use the notation si�� � next�si�

Algorithm� Construct an arbitrary triangulation A of S�
repeat T �� A�

�nd a worst triangle pqr in A� let q be its anchor� and set s �� s��
while s is de�ned do
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B �� A� add qs to B� and remove all edges that intersect qs�
�partially� triangulate the thus created two polygonal regions P

and R by cutting o ears xyz with ��xyz� � ��pqr��
if P and R are completely triangulated then

A �� B� exit the while�loop
else s �� next�s�

endif

endwhile

until T � A�

We remark that this algorithm �nds a triangulation with maxmin triangle measure� but not
necessarily an optimal triangulation in the sense that the set of worst triangles is minimal� To
achieve this slightly more ambitious goal all worst triangles need to be subject to edge�insertions
before the algorithm halts�

In an implementation of the algorithm we would of course not copy entire triangulations� The
only reason for assigning A to T is to be able to check whether an iteration of the repeat�loop
in fact produces an improved triangulation� Alternatively� this can be monitored by setting a �ag
whenever the �rst branch of the if�statement is entered� The assignment B �� A can be avoided
by making changes directly in A and undoing them to the extent necessary� The remainder of this
section explains some of the steps in greater detail and assesses the complexity of the two algorithms
obtained�

Triangulating by ear cutting� Suppose an edge qs has been added to B and the edges that
intersect qs have been removed� thus creating two regions P and R� Let q � p�� p�� � � � � pk� pk�� � s

be the sequence of vertices of P and let q � r�� r�� � � � � rm� rm�� � s be the corresponding sequence
for R� as shown in Figure 	��� Mimicking the proof of the cake cutting lemma� the two regions are

	

	

q

pk��� rm��

p�

pk
rm

r�

P

R

	

	

	

	

	

	
	

	
	

	

Figure 	��� The polygons P and R are created by adding qs to B and removing intersecting edges� The dotted

lines indicate ears with better measure than pqr�

�partially triangulated by repeatedly removing ears with measures exceeding ��pqr� As implied by
the proof� the sequence in which the ears are removed is immaterial as long as they are not supported
by qs �only the ear removed last is supported by qs� It is thus fairly straightforward to implement
this method using a stack for the vertices of P �R so that it runs in time linear in the size of P
�R� In the case of P � the stack is initialized by pushing p� and p�� After that� for i �� � to k � �
we push vertex pi� and as long as the topmost three vertices� z � pi� y� x� de�ne a triangle with
��xyz � ��pqr we pop y� the second vertex from the top� The triangulation is complete if� at the
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end of the process� pk�� � s and p� � q are the only two vertices on the stack�

Analysis under �I�� If the insertion of an edge qs is unsuccessful� that is� the triangulation of P or
that of R cannot be completed� then we know by the cake cutting lemma that qs cannot be in any
improvement of the current triangulation� We record this information by setting a �ag in an n�by�n
bit array whose elements correspond to the edges de�ned by S� This way we avoid attempting the
insertion of qs at any later stage of the algorithm� If the insertion of qs is successful then pr is deleted
from the current triangulation� and because of condition �I it cannot be in any later improvement�
We thus set the �ag for pr� The bit array can also be used to compute the sequence of edges qsi�
scan the row corresponding to q and take all edges qs that intersect pr and whose �ag has not yet
been set�

Theorem ��� Let S be a set of n points in �� and let � be a measure that satis�es �I�
�� A constrained or unconstrained triangulation of S that maximizes the minimum triangle measure
can be constructed in time O�n� and storage O�n��
�� In the non�degenerate case �i�e� when ��xyz �� ��abc unless xyz � abc the �unique triangula�
tion that lexicographically maximizes the increasing vector of triangle measures can be constructed
in the same amount of time and storage�

Proof� To achieve the claimed bounds� the above algorithm uses two data structures taking a total
of O�n� storage� First� the quad�edge data structure of Guibas and Stol� �GuSt�	� stores the
triangulation in O�n memory and admits common operations� such as removing an edge� adding
an edge� and walking from one edge to the next in constant time each� The other data structure is
the bit array mentioned above� The quad�edge data structure together with the ear cutting method
explained above allows an edge�insertion to be completed in time O�n as only a linear number of
edges have to be removed and added� Each edge�insertion� whether successful or not� causes a new
�ag set for one of the

�n
�

�
edges de�ned by S� Therefore� at most

�n
�

�
edge�insertions are carried out

taking a total of O�n� time� Part �� of the claim follows because an initial triangulation can be
constructed in time O�n logn� most straightforwardly by plane�sweep �see �Edel��� section �������

To get a triangulation that lexicographically maximizes the entire vector of triangle measures we
solve a sequence of constrained triangulation problems as in �EdTW
��� The �rst constraining region
is de�ned by the points and edges on the boundary of the convex hull of S with the other points
forming holes� After computing an optimal triangulation as in ��� we remove the worst triangle
�which is unique by non�degeneracy assumption from the constraining region and iterate until the
region is empty� The time is still O�n� because each edge needs to be inserted at most once during
the entire process�

Searching for the right edge� For measures � that satisfy �II we can be more clever about the
sequence qs�� qs�� � � � � qsj of edge�insertions� The �rst edge� qs�� has the property that it intersects
pr� but otherwise it intersects as few edges as possible� If s� exists then it is unique� If s� does not
exist then j � �� that is� no edge�insertion is attempted� As discussed below� every qsi�� has the
property that si lies on a particular side of qsi��� and with this constraint the set of edges in B that
intersect qsi�� is the smallest proper superset of the set of edges that intersect qsi� The index j is
the smallest integer for which qsj leads to an improvement or sj�� is unde�ned�
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The retriangulation process either completes its task or it gets stuck because all ears of the
remaining regions that are not supported by qs have measure less than or equal to ��pqr� Combining
the di�erent cases for P and R we get four possible outcomes� If P and R are both completely
triangulated then an improvement of B has been obtained and the algorithm exits the while�loop�
Let us now consider the case where the triangulation of P cannot be completed� In this case� the stack
contains k � � 
 � vertices q � p�� p�� � � � � pk� pk�� � s de�ning the remaining region P � � P � each
ear pi��pipi�� of P � has measure at most ��pqr� The next lemma is crucial for de�ning next�s�

Lemma ��� Let T be an improvement of B� Then all edges of T that intersect P � also intersect qs�
In particular� all edges of T incident to q avoid P ��

Proof� As in the proof of the cake cutting lemma we consider P � as a �window� through which we
see clipped edges of T � Now suppose the claim is not true� that is� there is a clipped edge that does
not have one of its endpoints on qs� As before we thus �nd such a clipped edge xy whose far side
is a triangle xpiy� But now condition �II implies ��T  � ��pi��pipi�� if pi is an anchor of the ear
pi��pipi��� and ��B � ��pi��pipi�� if pi�� or pi�� are anchors� This contradicts the assumption
that P � has no such ear�

It is interesting to observe that the proof of Lemma 	�� breaks down if we only assume that �
satis�es �I but not �II�

Lemma 	�� suggests that we maintain an open wedge W where all points s must lie for which qs

is possibly a successful edge�insertion� Initially� W is the wedge between the half�line �qp �it starts at
q and passes through p and the half�line �qr� If the edge�insertion of qs turns out to be unsuccessful
because the triangulation of P cannot be completed then W can be rede�ned as the part of the old W

on R�s side of �qs� Similarly� if the triangulation of R cannot be completed then W can be narrowed
down to P �s side of �qs� As a consequence� if neither P nor R can be completely triangulated then it
is impossible to improve the current triangulation by breaking pqr at q� For reasons that will become
clear shortly� it is however too costly to check when this is the case� As soon as one polygon has
been found to be non�completable� the wedge is updated and an edge�insertion is attempted with
the next point s�

When we move from qsi to qsi��� most of the work done to triangulate P and R can be saved�
Assume that qsi has been abandoned because P could not be completely triangulated� Because qsi��
intersects rmrm�� �the last edge of R and thus moves away from P � all ears cut o� P are �ne and
do not have to be reconsidered� On the other hand� rm�� is no longer a vertex of R� so all ears cut
o� R that are incident to rm�� must be returned to R�s territory� When we move to qsi�� some
additional edges are removed from B which� in e�ect� expands P and R� The new vertices of P can
just be pushed on P �s stack� one by one� so that the triangulation process can continue where it
stopped� Similar for R�

The only place where time is wasted when we move from qsi to qsi�� is when ears cut o� one
polygon �in the above discussion this is R are returned to this polygon� Since ears are returned
only for one polygon we can limit the waste by strictly alternating between cutting an ear of P and
one of R� This way� for each but possibly one recycled ear there is a permanently removed ear�
Therefore� the total number of operations performed while edge�inserting qs�� qs�� � � � � qsj is linear
in the number of edges in B that intersect qsj �
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Analysis under �II�� As already mentioned� a successful edge�insertion� complete with retriangu�
lation� takes a number of operations that is linear in the number of old edges intersected by the
new edge� We now prove that the old edges removed will never be reinserted in any later successful
edge�insertion�

Lemma ��� Let A be a triangulation of S� with worst triangle pqr� and let B be obtained from A
by the successful insertion of an edge qs� Then no edge xy in A that intersects qs can be an edge of
any improvement of B�

Proof� Lemma 	�� implies that every improvement of B has an edge qw that lies inside the wedge
W computed when qs is inserted into A� Every edge xy in A that intersects qs also intersects every
other edge qt with t � W � In particular� xy � qw �� � which implies that xy is neither in B nor in
any improvement of B�

Now we have all the ingredients to repeat the time�analysis of �EdTW
�� in the context of criteria
that satisfy condition �II�

Theorem ��� Let S be a set of n points in �� and let � be a measure that satis�es �II�
�� A constrained or unconstrained triangulation of S that maximizes the minimum triangle measure
can be constructed in time O�n� logn and storage O�n�
�� In the non�degenerate case �i�e� when ��xyz �� ��abc unless xyz � abc the �unique triangula�
tion that lexicographically maximizes the increasing vector of triangle measures can be constructed
in the same amount of time and storage�

Proof� As before� the algorithm uses the quad�edge data structure of �GuSt�	� to store the triangula�
tion� The second data structure is a priority queue that holds the triangles of A ordered by measure�
It admits inserting and deleting a triangle and �nding a triangle with minimum measure in logarith�
mic time each �CLR
��� Lemma 	�� implies that only O�n� edges and triangles are manipulated
in the main loop of the algorithm� which thus takes time O�n� log n� a logarithmic share per edge
to cover the expenses for the priority queue operations� Lemma 	�� also implies a quadratic upper
bound on the number of iterations of the repeat�loop� which implies that the total time needed to �nd
worst triangles pqr is also O�n� logn� This proves part ��� and �� follows by the same argument
as in Theorem 	���

� Maximizing the Minimum Height

For a ��nite point set S� a maxmin height triangulation of S maximizes the smallest height of its
triangles� over all triangulations of S� For a triangle there are three ways to de�ne a base edge zx and
an apex y� Let h�y� zx be the minimum distance between y and a point on the line through z and x�
Then the height �or width of a triangle xyz is de�ned as 	�xyz � minfh�x� yz� h�y� zx� h�z� xyg�
It is easy to see that h�y� zx � h�z� xy i� � xyz � � yzx� Therefore� 	�xyz � h�y� zx i� the angle
at y is at least as large as the angles at x and z�
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Although the maxmin height� the maxmin angle� and the minmax angle criteria all tend to avoid
thin and elongated triangles in the resulting optimal triangulations� they do not necessarily de�ne
the same optima� Indeed� four�point examples can be constructed to show that the three criteria are
pairwise di�erent�

The edge��ipping strategy �Laws��� Laws��� applied to the maxmin height criterion does not
always succeed in computing an optimal triangulation� For consider a regular pentagon abcde and
the circle through the �ve points� Perturb a slightly to a point outside the circle and c and d slightly
to points inside the circle so that h�c� db � h�d� ec� h�b� ca � h�e� ad � h�a� be �see Figure ����
The optimal triangulation in terms of 	 is de�ned by the diagonals ac and ad� Now� if be and ce are
in the current triangulation no edge��ip can result in a better triangulation�

	

	

		

	

a

b

cd

e

Figure ���� Flipping be or ce of the current triangulation both locally decreases the minimum height� Thus� the

edge��ip method cannot change the shown triangulation into the optimal one�

We now show that 	 satis�es condition �II� It follows that maxmin height triangulations can be
constructed by the O�n� log n time implementation of the edge�insertion paradigm�

Lemma ��� Let xyz be a triangle of a triangulation A of S and let 	�xyz � h�y� zx� Then
	�T  � 	�xyz for any triangulation T of S that neither contains xyz nor breaks xyz at y�

Proof� The height 	�xyz � h�y� zx is the distance between y and a point s � zx� Assume that xyz
is not in T and that T does not break xyz at y� Therefore� there exists a triangle uyv in T so that
either u � x and uv � yz �� � �rename vertices if necessary� or uv intersects both yx and yz� In
both cases� 	�uyv � h�y� uv � 	�xyz because uv � ys �� ��

For 	 it is thus appropriate to call y an anchor of xyz i� 	�xyz � h�y� zx� It should be clear
that Lemma ��� also holds for constrained triangulations of S� Using Theorem 	�� we can therefore
conclude that a maxmin height triangulation� and in the non�degenerate case a maxmin height vector
triangulation� can be computed in time O�n� log n and storage O�n�

	 Minimizing the Maximum Slope

Consider a function f � �� � � de�ning a surface x� � f�x�� x� in ��� The gradient of f is
the vector rf � � �f

�x�

�f
�x�

� each component of which is itself a function from �� to �� De�ne
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r�f � � �f
�x�

� � � �f
�x�

�� and call
p
r�f at a point �x�� x� the slope at this point�

Let S � fpi � ��i�� �i� j � � i � ng be a point set in �� and let �S � f �pi � ��i�� �i�� �i�g be
the corresponding set in �� where each pi has a third coordinate �i�� its elevation� Analogous to
the de�nitions in ��� �x�y denotes the relatively open line segment with endpoints �x and �y� and �x�y�z
denotes the relatively open triangle with corners �x� �y� �z� We can think of �x�y�z as a function f de�ned
within xyz� For each point w � �
�� 
� � xyz the gradient is well de�ned and the same as for any
other point in xyz� We can therefore set ��xyz equal to the slope at w and call it the slope of xyz�
For a triangulation A of S de�ne ��A � maxf��xyz j xyz a triangle of Ag� as usual� A minmax

slope triangulation of S minimizes the maximum � of any triangle�

The �ve point example of Figure ��� can also be used to argue that the edge��ipping strategy does
not always succeed in computing minmax slope triangulations� Just imagine that points a� b� c� d� e
are not perturbed and thus form a regular pentagon� Let the elevations of a� b� c� d� e be 	� ��� �� ��� ��
in this sequence� The optimal triangulation is de�ned by the diagonals ac and ad� and the current
triangulation �with diagonals be and ce as shown cannot be improved by a single edge��ip� The
remainder of this section shows that � � �� satis�es condition �I�

Observe �rst that the direction of steepest descent of a triangle xyz is given by � � �rf at a
point in xyz� We call the vertex y an anchor of xyz unless the line y � ��� � � �� intersects the
closure of xyz only in y� In the non�degenerate case xyz has only one anchor� but if � is parallel
to an edge then there are two anchors� We will see shortly that this de�nition of anchor is exactly
what is needed to prove that � � �� satis�es �I� Call the intersection of the closure of �x�y�z with the
plane parallel to the x��axis through y��� the descent line �xyz of xyz� assuming y is an anchor
of xyz�

For technical reasons it is necessary to assume that no four points of S are coplanar� Indeed� the
strict inequality in Lemma ��� is incorrect without this assumption� This general position assump�
tion� however� does not diminish the generality of our algorithm� because a simulated perturbation
of the points can be used to simulate it �EdM�u
��� This perturbation is in�nitesimal� Consider the
triangulation of the unperturbed points that corresponds to an optimal triangulation of the per�
turbed points� This triangulation must minimize the maximum slope over all triangulations of the
unperturbed points�

Lemma 	�� Let xyz be a triangle of a triangulation A of S and let y be an anchor of xyz� Then
maxf��A� ��T g � ��xyz for every triangulation T of S that neither contains xyz nor breaks xyz
at y�

Proof� The slope of xyz� ��xyz� is also the slope of the descent line � � �xyz� see Figure ����
Assume without loss of generality that � descends from �y down to where it meets the closure of �x�z�
Assume also that T neither contains xyz nor breaks it at y� It follows that T contains an edge uv
so that either u � x and uv� yz �� � �rename vertices if necessary� or uv intersects both yx and yz�
If ��uyv � ��xyz then ��T  � ��xyz and there is nothing to prove�

Otherwise� the edge �u�v must pass above � in �
�� By this we mean that there is a line parallel to

the x��axis that meets �u�v and � and the elevation of its intersection with �u�v exceeds the elevation
of its intersection with �� see Figure ���� Then at least one of �u and �v must lie above the plane
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�u �v

�y

�x �z

�

Figure ���� The triangle xyz with anchor y in A is neither contained in T nor is it broken at y by T � Therefore�

T contains a triangle uyv that intersects xyz as shown� It is possible that u � x or v � z� but not both at the

same time�

h� � h�xyz through points �x� �y� �z� say �v lies above h�� Consider the triangle yvz� and note that it
is not necessarily an empty triangle of S� We have ��yvz � ��xyz because the projection along
x��direction of � onto the plane h� � h�yvz is steeper than � but not steeper than � � �yvz�
We distinguish three cases depending on which vertex is the anchor of yvz�

Case �� v is anchor of yvz� Then � connects �v with a point on the closure of �y�z� Since yz is an edge
in A at least one of the triangles abc in A that intersect the projection of � has ��abc 
 ��yvz �
��xyz� This implies ��A � ��xyz�

Case �� z is anchor of yvz� Then � connects �z with a point on the closure of �y�v� Since yv is
an edge in T at least one of the triangles abc in T that intersect the vertical projection of � has
��abc 
 ��yvz � ��xyz� and therefore ��T  � ��xyz�

Case �� y is anchor of yvz� In this case � connects �y with a point �w on the closure of �v�z�
Furthermore� it is impossible that � descends from �y to �w because �w lies above h�� which contradicts
��yvz � ��xyz� Thus� it must be that � descends from �w down to �y� But then ��uyv � ��yvz
because �u�v passes above �� a contradiction�

Note that Lemma ��� also holds for constrained triangulations of S� We can therefore apply
Theorem 	�� and get an O�n� time and O�n� storage algorithm for constructing a minmax slope
triangulation� and in the non�degenerate case for constructing a minmax slope vector triangulation�

Remark� It is interesting to observe that � does not satisfy �II� so an O�n� log n time algorithm
for minmax slope triangulations seems out of reach at this moment� The example that shows that �
indeed violates �II consists of �ve points with elevations as shown in Figure ����


 Minimizing the Maximum Eccentricity

Consider a triangle xyz and let �c�� �� be its circumcircle� with center c� and radius ��� Recall from
section � that the eccentricity of xyz� ��xyz� is the in�mum over all distances between c� and points
of xyz� Clearly� ��xyz � � i� c� lies in xyz or on one of its edges� Note that eccentricity is related
to the size of the maximum angle� ��xyz� Speci�cally�

��xyz � ��abc i�
��xyz

��
�

��abc

��
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Figure ���� The triangulation T with diagonals vx and vw is an improvement of A with diagonals zx and zy�

Consider xyz with anchor y in A� Although T does not break xyz at y it still has no triangle with slope worse

than xyz�

unless ��xyz � ��abc � �� where �� is the radius of the circumcircle of abc� This suggests we call y
an anchor of xyz if the angle at y is at least as large as the angles at x and z� As usual� we de�ne
��A equal to the maximum ��xyz of any triangle xyz of A� A minmax eccentricity triangulation T
of S minimizes ��A over all triangulations A of S�

The triangulation of the pentagon in Figure ��� can be used to show that edge��ipping does not
always succeed in minimizing the maximum eccentricity� Similarly� we can verify that � � �� does
not satisfy condition �II by looking at Figure ��� and ignoring the elevation of the points� The
maximum angle of xyv can be made almost as small as ��xyz by moving v closer to yz� Still� the
circumcircle of xyv remains signi�cantly smaller than the one of xyz� This implies that ��xyv is
smaller than ��xyz� More generally� ��xyz exceeds the eccentricity of every triangle of T � even
though T does not break xyz at its anchor� y� Nevertheless� � � �� satis�es condition �I�

Lemma 
�� Let xyz be a triangle of a triangulation A of S and let y be an anchor of xyz� Then
maxf��A� ��T g � ��xyz for every triangulation T of S that neither contains xyz nor breaks xyz
at y�

Proof� Assume that T neither contains xyz nor breaks it at y� Therefore� T must contain a triangle
uyv so that u � x and uv � yz �� � �rename vertices if necessary� or uv intersects yx and yz�
as in Figure ���� Let �c�� �� be the circumcircle of xyz� If neither u nor v are enclosed by this
circle then ��xyz � ��uyv � ��T � Otherwise� assume that v is enclosed by �c�� �� and consider
the line segment c�v� It intersects a sequence of edges of A� ordered from c� to v� For an edge
ab in this sequence let abc be the supporting triangle so that c and c� lie on di�erent sides of ab�
Assume that ab is the �rst edge in the sequence so that �c�� �� encloses c but not a and not b� Then
��A 
 ��abc � ��xyz�

Theorem 	�� thus implies that a minmax eccentricity triangulation for n points can be constructed
in time O�n� and storage O�n�� In the non�degenerate case� the same amount of time and storage
su�ce to construct a minmax eccentricity vector triangulation�



Edge Insertion for Optimal Triangulations �	

� Conclusion

The main result of this paper is the formulation of the edge�insertion paradigm as a general method
to compute optimal triangulations� and the identi�cation of classes of criteria for which the paradigm
indeed �nds the optimum� The paradigm is an abstraction of the algorithm introduced in �EdTW
��
for computing minmax angle triangulations�

Though simple to be veri�ed� conditions �I and �II are somewhat restrictive� It would be
interesting to �nd conditions weaker than �I even though the price to pay may be implementations
of the paradigm that take more than cubic time� Listings of optimality criteria can be found in
�Barn��� Lind��� Schu���� Furthermore� implementations for criteria satisfying �I and �II that run
in time o�n� and o�n� logn are sought�

References

�Barn��� R� E� Barnhill� Representation and approximation of surfaces� Math� Software III� J� R�
Rice� ed�� Academic Press� �
��� �
�����

�Brow�
� K� Q� Brown� Voronoi diagrams from convex hulls� Inform� Process� Lett� � ��
�
� ����
����

�CLR
�� T� H� Cormen� C� E� Leiserson and R� L� Rivest� Introduction to Algorithms� The MIT
Press� Cambridge� Mass�� �

��

�D�AS�
� E� F� D�Azevedo and R� B� Simpson� On optimal interpolation triangle incidences� SIAM
J� Sci� Stat� Comput� �� ��
�
� ��������	�

�Del��� B� Delaunay� Sur la sph ere vide� Izv� Akad� Nauk SSSR� Otdelenie Matematicheskii i

Estestvennyka Nauk 	 ��
��� �
������

�DLR
�� N� Dyn� D� Levin and S� Rippa� Data dependent triangulations for piecewise linear
interpolation� IMA J� Numer� Anal� �� ��

�� �����	��

�Edel��� H� Edelsbrunner� Algorithms in Combinatorial Geometry� Springer�Verlag� Heidelberg�
Germany� �
���

�EdM�u
�� H� Edelsbrunner and E� P� M�ucke� Simulation of Simplicity� a technique to cope with
degenerate cases in geometric algorithms� ACM Trans� Graphics � ��

�� �������

�EdTa
�� H� Edelsbrunner and T� S� Tan� A quadratic time algorithm for the minmax length
triangulation� In �Proc� ��nd IEEE Sympos� Found� Comput� Sci� �

��� ��������

�EdTW
�� H� Edelsbrunner� T� S� Tan and R� Waupotitsch� An O�n� logn time algorithm for the
minmax angle triangulation� SIAM J� Stat� Sci� Comput� �� ��

�� 

�������

�For��� S� Fortune� A sweepline algorithm for Voronoi diagrams� Algorithmica � ��
��� �	������



Edge Insertion for Optimal Triangulations ��

�Geor��� J� A� George� Computer implementation of the �nite element method� Techn� Rep�
STAN�CS�������� Ph�D� Thesis� Comput� Sci� Dept�� Stanford Univ�� �
���

�GoCR��� C� M� Gold� T� D� Charters and J� Ramsden� Automated contour mapping using trian�
gular element data structures and an interpolant over each irregular triangular domain�
In �Proc� SIGGRAPH� �
��� �� ��
��� ������	�

�GuKS
�� L� J� Guibas� D� E� Knuth and M� Sharir� Randomized incremental construction of
Delaunay and Voronoi diagrams� In �Proc� Internat� Colloq� Automata� Lang�� Progr�
�

��� ��������

�GuSt�	� L� J� Guibas and J� Stol�� Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams� ACM Trans� Graphics � ��
�	� �������

�Klin��� G� T� Klincsek� Minimal triangulations of polygonal domains� Annals Discrete Math� �

��
��� ��������

�Laws��� C� L� Lawson� Generation of a triangular grid with applications to contour plotting� Jet
Propul� Lab� Techn� Memo� �

� �
���

�Laws��� C� L� Lawson� Software for C� surface interpolation� In Math� Software III� J� R� Rice�
ed�� Academic Press� �
��� �����
��

�Lind��� D� A� Lindholm� Automatic triangular mesh generation on surfaces of polyhedra� IEEE
Trans� Magnetics MAG�� ��
��� �	�
��	���

�Llo��� E� L� Lloyd� On triangulations of a set of points in the plane� In �Proc� ��th Ann� IEEE
Sympos� Found� Comput� Sci�� �
���� ��������

�PrSh�	� F� P� Preparata and M� I� Shamos� Computational Geometry � an Introduction� Springer�
Verlag� New York� �
�	�

�Raj
�� V� T� Rajan� Optimality of the Delaunay triangulation in �d� In �Proc� �th Ann� Sympos�
Comput� Geom�� �

��� �	������

�Rip
�� S� Rippa� Minimal roughness property of the Delaunay triangulation� Computer Aided

Geometric Design 	 ��

�� ��
��
��

�Schu��� L� L� Schumaker� Triangulation methods� Topics in Multivariate Approximation� C� K�
Chui� L� L� Schumaker and F� I� Utreras� eds�� Academic Press� �
��� ��
�����

�ShHo�	� M� I� Shamos and D� Hoey� Closest point problems� In �Proc� ��th Ann� IEEE Sympos�
Found� Comput� Sci�� �
�	�� �	������

�Sib��� R� Sibson� Locally equiangular triangulations� Comput� J� �� ��
��� ������	�

�StFi��� G� Strang and G� Fix� An Analysis of the Finite Element Method� Prentice�Hall� Engle�
wood Cli�s� NJ� �
���

�WaPh��� D� F� Watson and G� M� Philip� Systematic triangulations� Comput� Vision� Graphics�
Image Process� �� ��
��� ��������


