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1 Introduction

In many engineering applications such as finite element analysis [7], surface interpolation [14],
and shape reconstruction [6], two and higher-dimensional domains are {requently decomposed into
small and simple elements before numerical computation. One particularly important class of
decompositions is the so-called simplicial cell complex, usually referred to as triangulation, where
a domain is decomposed into simplices—triangles in two and tetrahedra in three dimensions—such

that the intersection of two simplices is either empty or a face of both.

For a given domain such as a polygonal region or, more generally, a plane graph with straight
edges, there are clearly many ways to decompose or triangulate it into a triangulation, with or
without the addition of new vertices to the domain. But accuracy and efficiency of an engineering
computation impose optimal criteria such as the triangle shape (with bounds on triangle angles
away from 0 and 7) and vertex size (with bounds on the number of new vertices), respectively.
These criteria of shape and size are somewhat conflicting—good triangles may be the result of
adding new vertices. Automatic generation of triangulations has been a subject for research since
the 1960s. Nevertheless, many interesting results, both practical and theoretical ones, have been
discovered in the recent years too; see, for example, [5, 8, 9, 10, 15, 16, 17, 18, 19, 20, 21] and the
survey [4].

This paper considers triangulating a plane geometric graph, i.e. a plane graph with straight
edges, using triangles with no large angles. Such resulting triangulations have potential applica-
tions in the area of finite element and surface approximation; see, for example, [1, 2, 12]. This
paper shows that triangulating a plane geometric graph of n vertices using angles no larger than
2 requires at most O(n®) new vertices. The previous result by Mitchell [17] achieves angle
bound of gw with O(n?log n) new vertices. This paper thus provides significantly better bounds
on triangle shape and vertex size. The proof is constructive with relatively simple steps. The
detailed argument about its correctness is however involved, requiring many new insights besides
adapting some results from [17]. Note that the quadratic bound on the vertex size is within a
constant factor of worst case optimal; see [3, 17] for discussions on the lower bound construction

due to M. S. Paterson.

The paper is organized as follows. Section 2 formalizes the problem. Section 3 provides the

outline of the method that proves the quadratic bound, and Sections 4 to 9 discuss its details for

3
4

it to a = %7‘[‘, and Section 11 concludes the paper. Appendix A documents some technical details

required in Section 6.

angle bound « = 2m. Then, Section 10 provides details on implementing the proof and extending
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2 Some Terminologies

We first introduce some notions, then define the problem.

Plane Geometric Graphs. Let S be a set of n points or vertices in ®%. An edge is a closed line

segment connecting two points. Let £ be a collection of edges determined by vertices of S. Then

G = (S, F) is a plane geometric graph if

(i) no edge contains a vertex other than its endpoints, that is, abN S = {a, b} for every edge

ab € E. and

(ii) no two edges cross, that is, abNed € {a,b} for every two edges ab # ed in F.

One example of a plane geometric graph is a (simple) polygon where F forms a single cycle. The
cycle is the boundary of the polygon. It subdivides R? into a bounded face, its interior, and an

unbounded face, its exterior. A polygon with four edges (or sides) is a quadrilateral.

Triangulations. A triangulation is a plane geometric graph 7 = (5, F') so that F is maximal.

By maximality, edges in £ bound the convex hull ch(S) of S, i.e. the smallest convex set in R?
that contains S, and subdivide its interior into disjoint faces bounded by triangles. With reference

to a polygon, we talk about its triangulation as restricted to only its interior.

Conforming Triangulations. A plane geometric graph G’ = (57, E') conforms to another such
graph G = (5, F) if S C 5" C ch(S) and each edge in F is a union of edges in F’. A triangulation

G’ conforms to a plane geometric graph G is called a conforming triangulation of G. Fach vertex

in 5" — S is termed a Steiner vertex. The problem studied here is as follows:

Given a plane geometric graph G = (5, F), find a conforming triangulation of G with a

small vertex set and with each angle of its triangles measuring at most a.

3 The Outline of Construction

Given a plane geometric graph G = (5, E) where |S| = n, the algorithm of Edelsbrunner, Tan
and Waupotitsch [11] can augment it by edges to a triangulation that minimizes its maximum
angle over all possible augmentations. We are done if 7 has angles each measuring at most the
targeted angle bound «. Because of this and the fact that the size of any triangulation of G is a

constant factor of the size of G, we assume in our discussion that the given plane geometric graph
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G = (5, F) is actually a triangulation 7 and 7 has some bad angles. A bad angle is an angle with
measure larger than «, whereas a good angle is otherwise. For our discussion, the targeted angle

bound « is set to %7‘[‘ unless specified otherwise as in Section 10.

The main difficulty of the problem is as follows. Suppose T has a bad angle at ¢ in Apgr.
Then, we can add a Steiner vertex, say ¢, on pr to subdivide the bad angle at ¢ with the edge tq.
This resolution however creates a “large angle” of m at ¢ in the triangle, say prs, sharing the edge
pr with Apgr. In other words, the trouble of a large angle has propagated to Aprs and another
subdivision is necessary. Unless ¢s can subdivide this large angle into two good angles or Aprs
does not exist as pr is actually an edge bounding ch(5), we need to add one Steiner vertex on
either ps or rs and the situation continues to propagate each time to another adjacent triangle.
The sequence of Steiner vertices generated in this manner can be viewed as forming a propagation
path with edges joining two consecutive Steiner vertices. A successful approach to add a bounded
number of Steiner vertices has to terminate each propagation path effectively. This is achieved in

this paper by fences (Section 4) and dead-ends (Section 5).

The proposed construction has six major steps. It first subdivides each triangle of T into three
quadrilaterals (Section 4) and works with these quadrilaterals throughout the construction. In
the second and third steps (Sections 5 and 6), it decides where to add Steiner vertices forming
propagation paths. To control the number of Steiner vertices, the construction bounds the number
of vertices in each propagation path to linear in size. In the fourth and fifth steps (Sections 7 and
8), the construction manipulates edges of propagation paths to remove all crossings among edges
of propagation paths. As a result, some Steiner vertices added by the third step may be removed.
In the last step (Section 9), the construction triangulates each quadrilateral one by one using edges
of propagation paths lying in the quadrilateral. The output is the union of triangulations of all

quadrilaterals.

4 Erecting Fences

For a triangle pgr, let ¢ be the center of its inscribing circle. Each edge joining ¢ with the
perpendicular projection of ¢ onto a side of Apgr is a spoke of Apgr. For example in Figure 4.1,

cr',cq’ and cp’ are the three spokes of Apgr. For convenience, we let 3 =7 — a.

Step 1. Erecting Fences.
For each Apgr € T, add its spokes ¢r’, ¢p’ and c¢g’ to subdivide it into three quadrilaterals
pqg'er’ rq'cp’, and gr'cp’ as shown in Figure 4.1. Next, mark pg'cr’ as a fence if /p > (3 else

as a non-fence. Similarly, mark r¢’cp’ according to /r and mark ¢r’cp’ according to /q.
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qr'| = lqp'|, and |er’| = |ep/| = |eq/].

rp| = Ird

Figure 4.1: Note that |pr'| = |pq¢’

? ?

The main purpose of fences is to stop each newly created Steiner vertices (introduced by later
steps) lying on a boundary edge of some fence from further generating Steiner vertices. The next
lemma shows that each fence with or without Steiner vertices on its boundary edges can always
be triangulated with only good triangles. A good triangle is a triangle with no bad angle. For
convenience, we will treat each edge bounding ch(S) as a (degenerate) fence since fences and edges

of ch(S) both terminate the generation of more Steiner vertices.

Lemma 4.1 Let pg'cr’ be a fence with /¢' = Zr' = § and /p > 3. Then, the region bounded
by pq'cr’, possibly with other vertices on pr’ and pq’, can always be triangulated with only good

triangles.

Proof. When there are no other vertices on pr’ and pq’, we are done as pqg’cr’ can be triangulated
with two right angle triangles pg’c and pr’c. Now, suppose there are other vertices along pr’ and
pq'. Let the vertices along pr’ be sorted as p = ro,71,...,7, = r’ with increasing distance from p.
Similarly, let p = qo,q1,-..,q = ¢ be the corresponding sequence along pq’. We now triangulate
pq'er’ to prove the claim. There are two cases: 20 < /p < w and 3 < /p < 23. For the first
case, we simply add edges c¢;, for 1 =0 to [ — 1, and edges cr;, for 3 =1 to m — 1. Each triangle
obtained is of the form cg;qi11 or crjr;yy. For the former, we have Zeggiy1 < 5 and Zgieqiyr < %
because Acg;q' has a right angle at ¢'. And, Zeqip1g: < m — 3 = a because in Acqoqi1 we have
Lgo = %Ar’pq’ > . So Acqigiyy is good. Similarly, we have good Aerjrit.

We next consider the case where 8 < /p < 2. Initially, set ¢ = 1,7 = 1. Add the edge r;¢;,
and then increment j if r; is closer to p than ¢; else increment 1. Repeat the previous statement
until pg’er’ is triangulated. Triangle r,,qc, the last one obtained, has clearly good /r,, and /¢,
and also good /¢ because Lc =7 — /p <7 — 3 =a. And, Apriq, the first one obtained, is good
because § < p < 28 < a. The rest of the triangles are either of the form r;_yr;q; or ¢i_1¢;r;.

We just consider Ar;_yr;q;; similar argument applies to Ag;_1¢;r;. By construction, we have r;_;

T—20
2

Arj_yrjq; has Lrj_y = m — Lgirj—ip < 2+ 08 < a. And, its Zr; and /g; are also good because

Lripg; > 3. So, it is a good triangle and the proof is complete.

closer to p than ¢;, i.e. Zrj_y > Lg; in Aprj_1q;. Since Lp < 23, we have Lgrj_1p > . Hence,
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5 Setting Traps

The second step, consisting of the planning and the adding sub-steps, is to augment 7 with linear

number of Steiner vertices, termed dead-ends. We need some terminologies for our discussion.

Paths. A path with origin py and last vertex py is a sequence of vertices pg, p1, p2, ..., pr where
each vertex lies on some edge of 7 and each line segment joining consecutive vertices p; and p;14
does not cross any edges of quadrilaterals. The line segment joining p; and p;y; is an edge of the
path or, more specifically, a directed edge pip; , with tail p; and head p;y,. For pip, , lying in
pq er’ with p; € pg’ and pyq € pr’, we refer to Zp;p;y1p and Zp;p;i17’ as the two angles at its head,
and /p;y1p;p and Zp;1piq’ as the two angles at its tail. Formally, each propagation path is a path

where the two angles at the tail of each of its directed edges are good.

Path P with vertices pg, p1, p2, ..., pr and path ) with vertices qo, q1,p2,. .., q are said to be
coherent if p;p;11 and ¢;q; 41, for each 0 <1 < k—1, lie in the same quadrilateral. They are parallel
if p;pir1 and q;qiz1, for each 0 <1 < k —1, lying in the same quadrilateral are parallel. The length

of a path is equal to its number of directed edges.

A backward path is a path where the two angles at the head of each directed edge are o and 3,
and all good angles of 3 at the heads are on the same side along the path. Analogously, a forward
path is a path where the two angles at the tail of each directed edge are o and 3, and all good

angles of 3 at the tails are on the same side along the path.

Planning Dead-ends. To plan for sufficient number of dead-ends, Step 2a computes for each

point x of each quadrilateral edge whether there exists a good propagation path, i.e. a propagation
path of length K with origin = and last vertex at an endpoint of a spoke where K < 6n is two
times the number of edges of 7. From this, we can view each quadrilateral edge, with respect to
its quadrilateral, consisting of alternating good and (open) bad segment where the former includes

points that have good propagation paths whereas the latter otherwise. Some of these bad segments

will be used by Step 2b to add dead-ends.

Step 2a. Planning Dead-ends.

Consider each non-fence pg’cr’; see Figure 5.1. We work on ¢’ and similarly on r’. Trace a
Vi

backward path starting at ¢ with its second vertex ¢} on pr’ such that Z¢'¢)r" = 3. We first

mark ¢/r" as a (part of some) good segment with respect to pg’cr’. At each extension of the

backward path from length 7 at ¢j’ to length ¢ + 1 at ¢}, where ¢/ € pig/ and ¢’ | € p;r;
of non-fence p;gic;rt (with g} = Lr} = F), we mark ¢t} | = ¢\ sl O porl as a (part of

some) good segment with respect to p;gic;ri where s, | is the point on the line through p;r’
with Zts!, ¢, = 3 and 17 is an endpoint of the good segment ¢t identified (with respect

to pi—1qi_yci—1ri_y) by the previous extension. The backward path terminates when one of
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the following conditions holds: it reaches an edge of a fence, or an edge for the third time,

or it will cross a spoke in the next extension.

Figure 5.1: The first five good segments identified due to the backward path with origin ¢’ are shown shaded.

A few remarks are in order. First, we could have included in the definition of a good propagation
path for one of bounded length to some edge of a fence. This is, however, not efficient for
computation. Second, for the same reason, Step 2a identifies some but not all good segments, and
simply takes the remaining as bad segments. Third, vertices of backward paths in Step 2a as well
as forward paths in Step 2b are for discussion purposes only and are not Steiner vertices added to

T; only dead-ends of traps are Steiner vertices added to T by Step 2b.

Adding Dead-ends. A trap consists of a base xy, dead-ends ©' and y', and boundary paths P,

from x to 2’ and P, from y to y’. Note that dead-ends 2/, y’ may be the same point, and boundary
paths P, and P,, excluding their last edges, are coherent forward paths starting at @ and y so that
those good angles of 3 at tails of their directed edges are inside the region bounded by P,, P, zy

and z'y’.

Step 2b. Adding Dead-ends.
Consider each non-fence pg'er’ C pgr; see Figure 5.2(i). We discuss the following for r/, and
treat ¢/ similarly. Let p;rieiqy ¢ Apgr be the non-fence incident to pg (if pq is not a convex
hull edge) with r' € p1g;. If ' is an endpoint of a bad segment x1r' C p1q; with respect to
p1riciqy, we construct a trap with base x17’ in the direction into pirjci1¢). Next, let p.qlc.r!
be the non-fence containing the last edge of the backward path traced from r’' at Step 2a.
If the head of this last edge is an endpoint of some bad segment with respect to p.qle.r.,

we construct in the direction into p.q¢le.r) a trap with base at this bad segment; see Figure

5.2(ii).
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Figure 5.2: (i) shows the backward path traced from 7’ in Step 2a terminating at y. Segment zy is a bad

!
V2l

/

' is constructed as

segment with respect to p.q¢lc.rl, so a trap with base 2y in the direction into p.¢lc.r

shown in (ii).

To construct in the direction into, say p.q.c.rl, a trap with base xy on p.q. where y € x¢,, we
trace two coherent forward paths at « and y into p.¢lc.r’ so that the paths move closer to each
other as their lengths increase. Both paths continue until they have just reached, say Ap,,¢nrm
(with endpoints of spokes p!. € rnqm, 7. € PmGm, @ € PmTm), ab, say @, € pnq., (possibly
Ty =) and y,, € xnq, (possibly v, = y), where

/

' when

1. the two forward paths will intersect at a point, say a, in the interior of p,. ¢, c.,r

further extended for one more step (as in Figure 5.2(ii)), or

2. pmq., is the very first edge visited for the third time by both forward paths.

For case 1, we consider &' € p,,q,, where az’ is perpendicular to x,,y,,. We take 2’ as the dead-end
if ax’ does not intersect ¢,,r! ; otherwise, take r/ as the dead-end. And, we complete the boundary
paths of the trap by joining both forward paths to the dead-end. For case 2, z,, and y,, are the
dead-ends and both forward paths are the boundary paths of the trap. The following result is

immediate because of case 2.
Lemma 5.1 The length of each boundary path of a trap is at most K. Hl

In the above, we ignore the fact that (i) x may be the same as p, so a forward path from p,
is not well defined, (ii) the two coherent forward paths traced may first hit an edge of a fence, or

(iii) the two forward paths reach Apy,¢mr., such that z,, € p.q¢., and y,, € ¢,rm, where we can
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no longer maintain coherent forward paths in their extensions. In all these, we can actually ignore
the construction of a trap. The reason for (i) is explained in Section 6 (in the proof of Lemma
6.3), for (ii) is that each point on xy after all has propagation paths of linear length to an edge

nor

of a fence, and for (iii) is as follows. The point x,, is so that x,, € rl ¢, C pmq,, of non-fence

/

/ ! "ol
Pmdh, Cmry, Where Lr! r

"q.. = [, and similar statement holds for y,,; thus, zy is a good segment

not identified by Step 2a. This is so because the region R enclosed by Py, #mYm, Py, yx (where P,
and P, are the two forward paths from x to x,, and y to y,,, respectively) is emptied of endpoints
of spokes, except for ¢/, € 2, Y. So, if v/ is an interior point of x,,q/ , then the backward path
from 7/ traced at Step 2a inside R is parallel to P, and reaches zy, and Step 2a should have

identified some part of zy as a good segment.
Lemma 5.2 The number of traps constructed in Step 2b is at most 14n.

Proof. Consider Apgr € T with endpoints of spokes p’ € rq, v’ € pq,q € pr as in Figure 5.1. It is
easy to check that at least one of the three quadrilaterals, say ¢r'cp’, is a fence. So, we trace at
most one backward path each at ' and p’, and at most two at ¢’. These backward paths result
in at most eight traps but at most seven is necessary since the two with bases at ¢/, if any, can
always be combined into one (and we pretend we did so in the construction). The claim follows

as there are at most 2n triangles.

6 Generating Paths

The necessity to propagate vertices in computing triangulation with angles bounded away from =

is a consequence of the following simple lemma introduced in [11].

Lemma 6.1 If xy is an edge in a triangulation A of a point set S, then p(A) > maxges Lasy
where 1(A) denotes the largest angle in A.

In effect, propagation is to subdivide each long edge into smaller ones so as to remove large angles
subtended by the edge.

We adapt a few terminologies from [17]. Let s be a point on pg’ of non-fence pg'er’ with
Lq" = Lr" = 7. The cone at s consists of all points ¢ of pqg'cr’ such that both /tsp and /tsq’ are
at most a. And, the maw of s is the portion of the cone at s on the boundary of p¢'cr’, except
for s. Note that each point on the maw of s is a candidate for extending a propagation path from
s. Next, the iterative construction of union of cones at points in maws, starting with s, results in
the horn of s. Initially at stage 0, the horn is the cone at s. The horn at stage ¢ + 1 is the union

of cones at points in the union of maws, or simply maw, at stage ¢; see Figure 6.1. It is clear that
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the two paths bounding the horn of s are actually forward paths starting at s. They are referred
as the boundary paths of the horn.

forward
path

edges of
quadrilaterals

p S
Figure 6.1: The horn at stage 0 is the cone sab, and the maw at this stage is ab. The horn at stage one

is the region bounded by the two forward paths from s to ¢’ and s to o', and the maw a’b’ at this stage. At
stage three, the horn at s contains ¢/ , and a propagation path such as s, sy, s9, 53, ¢/, can be constructed

from ¢/, back to s3 (with ¢/, in the maw of s3), then s3 to sy (with s3 in the maw of s3), and so on.

To generate a propagation path with origin s, the construction first computes iteratively the
horn of s until it intersects some point ¢ which can be an endpoint of a spoke (on some edge of T'), or
a dead-end, or any point on an edge of a fence, or a vertex of some existing propagation path, then
works straightforwardly from ¢ back to s. Besides the above, ¢ can possibly be some point common
to cones of the horn from different stages, which happens when the horn of s self-intersects; see
Figure 6.2. For all these, we need to place two restrictions on the above choices of ¢ so as to say
that a propagation path terminates properly and to call it a properly-terminating propagation path:
P can terminate at a dead-end only when the horn of s has entered the corresponding trap through
the base of the trap, and it can terminate at vertex ¢ of some propagation path P’ (possibly P
itself) only when the last edge of P and some edge of P’ share ¢ as head in the same non-fence;
see Figure 6.3. These are to avoid having a Steiner vertex (other than an endpoint of a spoke) to
serve both as a head of some directed edge and a tail of another directed edge lying in the same
non-fence. Also, the construction maintains that propagation paths do not cross spokes. This is
possible because of the simple fact that whenever a horn intersects spokes ¢¢’ or ¢r’ inside pq’er’

upon entering from pq’, it also contains r’.

Step 3. Generating Paths.
Consider endpoints of spokes that are on edges of T one by one. With each such endpoint as
the first vertex, generate a (short) properly-terminating propagation path of linear length.
Then, for each dead-end that terminates some propagation paths constructed so far, gener-
ate a (short) properly-terminating propagation path of linear length with this dead-end as
the origin. At the end, those dead-ends that do not terminate any propagation paths are

removed.
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(ii)

Figure 6.2: Horn self-intersects while passing through pg¢’cr’ in the same direction as in (i) or in the opposite

directions as in (ii). The latter is not used to derive propagation paths, whereas the former is used when the

intersection contains a vertex such as ¢ whose horn lying inside the horn of s contains itself at some later

P
dead- P ’ P ’
cnd dead-end P
N A
/ \ / \
/ \ /

/ \

//»e\—/ base h t \
P
P

(i) (i) (i) (iv)

Figure 6.3: Propagation path P terminates properly at a dead-end as in (ii) or at some vertex ¢ of P’ as in

stage.

(iv). The two restrictions prohibits the termination of P as in (i) and (iii).

The next three lemmas imply the quadratic bound on the number of Steiner vertices. Two

directed edges ab and de with endpoints on pg" and pr’ of non-fence pg'er’ (with Z¢' = /r' = 7)
are said to have the same orientation if a and d (and b and e) are on the same edge of pg'er’,

otherwise opposite orientations.

Lemma 6.2 Let 7' be a trap of case 2 (Section 5) with base zy and length of boundary paths L.
If the horn of s € xy entering T self-intersects in opposite directions at a stage less than L, then

there exists a propagation path of length L from s that terminates properly at one dead-end of T

Proof. It suffices to show that the horn of s intersects one boundary path of T' and thus contains
a dead-end of T at a stage less than L. Suppose non-fence pq'cr’ is where the horn first self-
intersects in opposite directions. Then, two edges, say p;pi+1 and p;pii1, of a boundary path P

of the horn cross inside pg'cr’. Let p; precede p; in P. Suppose p; € pq’, then piry,p; € pr’ and
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pi+1 € pq’. Additionally, it is easy to check using incident angles of directed edges that p; € ppjiy
and p; € ppip1 with Zpipipip = 0 and Lpjr1p;p = o, as shown in Figure 6.2(ii), whereas all the
other situations (for example, p;11 € pp; and p;11 € pp; with Lpipipip = o and Lpj1ip;p = ) are

impossible.

Let P’ be the subpath of P from pip;,, to p;p.,,, and let R be the region bounded by P’
i i1

(shown shaded in Figure 6.2(ii)). It is clear that one boundary path of 7" has some part lying in
R and is coherent to P’. Let this part be P” and let its directed edges be labeled in the same
way in increasing order as in P’. Observe that P” and P’ are two forward paths that move closer
to each other, as if they are boundary paths of a trap. Moreover, a directed edge of P” does not
cross another of P’ of smaller index because of incident angles of directed edges (unless P” has
already crossed a directed edge of P’ of the same orientation). Thus, some directed edge of P”

crosses a directed edge of P’ of the same orientation since P’ self-intersects.

Lemma 6.3 The length of each propagation path constructed by Step 3 is less than 12n.

Proof. The claim is clearly true when the origin of the propagation path lies on a good segment.
So, it suffices to show for each point s lying on bad segment zy C p;q’ with respect to p;qic;r’
(having Zq; = /r = 7) there exists a properly-terminating propagation path with origin at s, first

edge in p;qic;r’, and length less than 12n.

Let us first review Step 2a on the identification of good segments. Each portion of a good
segment identified at each iteration is defined by two endpoints. One is due to the backward
path traced from the endpoint of a spoke (such as ¢’ in Figure 5.1). And, the other is either an
endpoint of a spoke or obtained by the extension of an endpoint of the good segment identified
in the previous iteration. It is not hard to see that some sequence of vertices mentioned in the
previous statement form a backward path with the vertex of the former case (such as r’ and 1} in
Figure 5.1) as the origin. To distinguish each such backward path from those explicitly mentioned

in Step 2a, we call it an implicit backward path.

First we consider at least one of the endpoint of xy, say * € S be a vertex of an implicit
backward path, say P., with origin v and in the direction out of p¢’er’ C pgr. (For example in
Figure 5.1, & can be the endpoint on pr] of the dashed line incident to r’.) We trace a forward
path P with origin s and parallel to P, until P and P,. have vertices separated by an endpoint
of a spoke, or until P; arrives at ¢r'cp’ (which is adjacent to pqg’cr’). We will discuss the latter
with P terminating at u € ¢r’; we can treat the former similarly. We are clearly done if ¢r’cp’
//T,/

I

is a fence. If not, we are done too because u € p’r’ C qr’ where Lp'p"r" = [ and Ps plus u_pE’ is
a good propagation path; otherwise u € ¢p” which implies that the backward path with origin p’

into gr'cp’ traced by Step 2a reaches xs, a contradiction to the fact that zy is a bad segment.
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Next, we let @ and y be vertices of backward paths with origins g and yo traced in Step 2a.
Then the horn of s at a stage no larger than A encounters one of the three situations in Figure

6.4. Figure 6.4(iii) shows the horn intersecting some good segment, and a propagation path of the

backward ' backward
path / path /
Yo /Y, Y,
X, / X, / X, /
\ / \ / / \ / /
\ / \ x'/ \ /
\ / \ / \ /
\ \ / \
/ \ / \ /
X\ S / y X\ S / \ X\ S / y
backward \ ’ backward ! ’/ \ '/
path N path \ A

O (i (i
Figure 6.4: Edges of quadrilaterals are drawn as horizontal line segments here. The horn of s (shaded region)

encounters either only bad segments as in (i) and (ii), or some good segments as in (iii).

required length can clearly be constructed. Figure 6.4(i) shows the horn entering a trap with xq
as an endpoint of its base, and Figure 6.4(ii) a trap with " as an endpoint of its base. Note that
the case of 2/ in (ii) be a vertex of some implicit backward path has already been discussed in the

previous paragraph.

Let z be a point common to the horn of s and the base of the trap T that the horn enters. Now
if T' has one dead-end, we are done. This is because a forward path with origin z and parallel to
one boundary path of T' meets the other boundary path of T" and, thus, the horn of z contains the
dead-end of T'. In such case, we can derive one properly-terminating propagation path P, with
origin z and length bounded by that of the boundary paths of T'. A propagation path from s to
z concatenated to P, gives a properly-terminating propagation path of the required length. On
the other hand, if T has two dead-ends (case 2 in Section 5), then an extension of results in [17]
(Lemma A.3 in Appendix A) plus Lemma 6.2 imply the existence of a propagation path of the
required length. Also, if T' was not really constructed because one endpoint of its base coincides
with a vertex, say py, of T, then the horn of z in this case moves only around edges incident to p;
and self-intersects at z after one round (by Lemma A.1 in Appendix A), thus a propagation path
of the required length that terminates properly at z can be derived.

Lemma 6.4 Step 3 computes less than 34n propagation paths.

Proof. Since a trap has one or two dead-ends, we have in total at most 28n dead-ends by Lemma
5.2. So Step 3 generates at most 28n propagation paths with origins at dead-ends. The remaining
propagation paths are due to the endpoints of spokes of less than 2n triangles.



An Optimal Bound for High-quality Conforming Triangulations 13
7 Removing Complications

The next step considers merging of nearby propagation paths. Besides removing redundant por-
tions of paths, i.e. subpaths, this step resolves a complication in triangulating non-fences us-
ing edges of propagation paths (in Section 9). Let us label vertices of non-fence p¢’cr’ (with
Lq" = Lr' = T) along pq’ as p = qo.q1,q2,--.,q = ¢ and along pr' as p = ro,r1,r9, ..., v =1
A neighboring pair of directed edges are two directed edges of the same orientation such that the

open segment defined by their tails contains no other tail.

Step 4. Merging Paths.
For each non-fence pg’cr’, repeat the following as long as there exists a neighboring pair ¢;7
and ¢;7y, 1 < g and i/ # j', with 8 < Zrpg;p < a, or, analogously, a neighboring pair r;g;
and r;g; 1 < jand i’ # j', with 8 < ZLgur;p < a. We just describe the former. Let P be
some propagation path containing ¢;7j;, and let P’ be the shortest subpath of P starting
with ¢;7; until a vertex z where z can be an endpoint of a spoke, or a vertex on an edge
of a fence, or a head common to two or more directed edges, or z = ¢; (when P = P’).
Remove edges and vertices of P’ except for its last vertex if shared by other propagation

paths. Then if z # ¢;, terminate properly the subpath of P before ¢;7; by ¢,7:.

Lemma 7.1 All propagation paths still terminate properly with merging of paths.

Proof. It suffices to consider propagation paths other than P. Since each vertex, other than an
endpoint of a spoke, does not act as both a head and a tail of different directed edges in a non-
fence, vertices removed in one iteration are not involved in other propagation paths. Also, when
the last vertex z of P’ is not removed, it does not result in a bad angle of 7 because it remains
incident to either two directed edges or a directed edge and a spoke at both sides of the edge of
T containing z. So, all propagation paths still terminate properly.

8 Untangling Crossings

For this and the next section, we view each directed edge as an individual with two good angles
at its tail, without associating it to a particular propagation path. With reference to non-fence
pq’er’ having Steiner vertices along pg’ and pr’ labeled as in Section 7, the next step is to remove
all crossings, in particular, crossings due to directed edges of opposite orientations. It replaces

some existing directed edges by new ones while maintaining the following invariants:
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I-1. each edge is assigned an orientation such that both angles at its tails are good;

I-2. each Steiner vertex is an endpoint of some directed edge;

I-3. no Steiner vertex is a tail of more than one directed edge;

I-4. directed edges of the same orientation do not cross; and

14

I-5. for ¢;7; and ¢;7;; with ¢« < 7 and ¢/ < j’, the region defined by their four endpoints can be

subdivided into two good triangles using 7;/g;. Analogous assertion applies to r;¢; and r;q;.

Initially, I-1, I-2 and |-3 are trivially true. Also, -4 and I-5 are true; otherwise, it is easy to verify

that Step 4 did not complete all possible mergings. In Step 5, the next available index from i refers

to the smallest index, starting at 7 and in increasing order, whose corresponding vertex can be

used as the head of a new directed edge while maintaining I-4. We say an ordered pair (a,b) is

lexicographically smaller than another ordered pair (a’,b') if a < ', or a = a’ and b < V.

Step 5. Untangling Crossings.

Consider each non-fence pg'cr’ one by one. The following is repeated until all crossings are

removed. Each iteration involves ¢;r;, crossing r;q;,, 1 < ji and j < i1, such that (147,714 71)

is lexicographically the smallest ordered pair.

Case A.

Case B.

q;T;, crosses 1;¢;, (see Figure 8.1).

There are two symmetrical cases depending on which of ¢; and r; has good
angles. Let us just discuss the former. For each ¢;7;,, 1 < 7' < gy, if Lrjqpq’ <
a, we move its head from r; to r; (i.e. replace ¢;i7;, by ¢;ir;). As a result, if
i, (# rm) is no longer a vertex of any directed edge, we perform the following:
if Lg;,ri,rm < o, add 1,7, where j; is the next available index from j;, else
add q;,7,.

i qi crosses q;,r; (see Figure 8.2).

We add ¢;7; if ¢; is not a tail of any directed edge, else add r;g; if r; is not a
tail of any directed edge. Next, if ;, is a head of other directed edge, we are
done by removing r;¢;. Symmetrically, if g;, is a head of other directed edge,
we are done by removing ¢;,;7;. Otherwise, move the head ¢; of all directed

edges crossing ¢;,r;, inclusive of r;q;, to q;» where 3" =i+ 1.

It is clear that each iteration of either Case A or Case B may introduce new crossings. Still, the
process does terminate by removing all crossings. This is because (i) the new crossing introduced

by say qure Nreqer, for a < b and b < @', is such that a +b > ¢ + j, and (ii) there are finitely many
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Before

4 9 g 9  g=gq P 4 9 49 9  g=g

Figure 8.1: Any directed edge e with endpoint on r; for j < ¢/ < iy crosses ¢;7;, by the choice of (i+j,714J1).
Because of this and |-4, the other endpoint ¢;, of e is such that j, > j;, and the orientation of e is opposite
to ¢;7%;,. A similar statement applies to directed edges such as ¢;/7;, for i < j’ < ji. In the above, r;;, is

added to maintain I-2 after those edges with head at r;, have been moved to r;.

Before

4 9 9 9  g=gq P 4 9 49 9 g=g

Figure 8.2: Directed edges shown have orientations enforced by the choice of (i + j,i; + j1) and I-4. Since
neither r;, nor ¢;, is a head of other directed edge, this iteration removed the crossing between r;’¢; and ¢;,7;

by moving all edges with head at ¢; to ¢;/, and adding ¢7;.

crossings due to line segments each joining a pair of Steiner vertices. The next lemma is useful in

the verification of the invariants after each iteration of Case A and Case B.

Lemma 8.1 For Apg;ry with Zp < 3, at least one of the two exterior angles at ¢; and r; is good.

Lemma 8.2 Invariants I-1 to |-5 are maintained by each iteration of Case A.

Proof. Refer to Figure 8.1 for the relative positions of vertices mentioned in the following discus-
sion. Let us first show that each stated edge when added satisfies |-1. First, consider ¢;r;. Clearly
Lg; and /r; inside Apg;r; are good as they are parts of two good angles at tails of ¢;7;, and r;g;,.
As /p < 3, Lemma 8.1 implies that one of the two exterior angles of Apgr; at ¢; or r; is good,
and we are done for ¢;r;. We can now assume, by symmetry, for the remaining proof that ¢;7; is
added. We can check similarly that each addition of directed edges ¢;7; (obtained from ¢;/7;,),

i qj,, or q;,T;, satisfies I-1. This completes the verification for I-1.
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The moving of heads of ¢;/7;, maintains -4 because /r;q;,¢ < a for some ;" implies that it is
also true for smaller j'. (So this moving can be carried out in increasing order of the indices of
tails.) By construction, r;,q;, when added still maintains I-4. Next, notice that if Zg;, i, rm is bad,
there cannot exist ¢;/7, with 1 < 3’ < j; and 1y < 13 because ¢;7;, satisfies |-5 before the iteration.
So, adding ¢;,7;, does not violate -4 (and I-3), and the invariant is maintained. Invariants -2 and

I-3 are clearly valid.

In the following verification of -5, we mention only one of the six angles involved since the
remaining five can easily be checked to be good. Consider ¢;7; with other g7 where j # f' (and
i # f). i > f, then Lgrpr; = Lgirpr;,, which is good because ¢;7; with ¢7;, satisfies I-5.
Next, if i < f < j; and f" = iy, then Zrjq;¢’ > o implies that Zqsr;r;, < a (Lemma 8.1). And,
ife < f<giand f >y, Lgrjry < qprirp < a by the fact that ¢7;, with g7 satisfies I-5.
Lastly, if ¢+ < jy < f, then Zgyr;rp < o because of r;g;,. Notice that the argument simply applies
-5 on existing edges sharing endpoints with ¢;7; to show that ¢;7; satisfies I-5. The same approach

applies to other newly added edges ¢;i7;, ri,q;, and ¢;,7;,. This completes the proof.

Lemma 8.3 Invariants I-1 to |-5 are maintained by each iteration of Case B.

Proof. Refer to Figure 8.2 for the relative positions of vertices mentioned in the following discus-
sion. Let us begin with |-1. First we show that all the eight angles at the endpoints of ¢;r; and
ri,qj, are good, so directed edges based on them always satisfy |-1. The two exterior angles of
Apgj,ri, at r;, and g;, are good because they are only parts of some good angles at tails of r;g;
and ¢;;7;. Next looking at Ag;r;,r;, we have good Zr; followed from the good exterior angle at r;,
because of r; ¢;. Similarly, we have good Zr;¢;q;,. Now with these four good angles of interest as
exterior angles of Apg,r; and Apg;,r;,, we can easily deduce that the other four (interior) angles

of interest are also good.

Next, we consider each r;;g; for 1o > 7; that is moved to r;,q;; where 7' =1+ 1. For r;[q;, we
can indeed have r; gy as it is within the wedge defined by r;¢; and r;g;,. Similarly, each r;,g;s

for i3 # 1y satisfies I-1. This completes verifying I-1.

Invariants I-2, I-3 and |-4 are valid by construction. We next verify |-b, as in the previous
lemma, by checking one of the six angles involved. Since all the four angles at the endpoints of
gir; are good, ¢;7; or r;g; can never be involved to invalidate I-5. Next, consider r;,g;, for iz > 1,
with other r;q, where 3’ # ¢'. If ¢ =1, we have Zr;,qiqy < Lrjqqjy < a. Now suppose g # 1.
Since r,q;» has the same tail as r;;g;, -5 is maintained when 73 > ¢g because of the fact that r;Jg;
with r,q, satisfies I-b. Lastly, for i3 < g, we have Zr,qjqy < Lrjqyqy < (m — Lrjq;,p) < . This
completes the proof.
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9 Triangulating Quadrilaterals

For each non-fence pg’er’, any directed edges in its interior do not cross. Thus, they subdivide
pq’er’ into regions of three, four, or five sides. All regions except possibly for the one containing ¢
have good triangulations, i.e. triangulations with no bad angles. We must nevertheless handle the
region containing ¢ first by merging it with nearby regions. Hence, some directed edges are just

guides in the construction and may not be in the final triangulation.

Step 6. Triangulating Quadrilaterals.
Fences and quadrilaterals without subdivision points can easily be triangulated with good
triangles; refer to Lemma 4.1. We next consider each non-fence pqg'er’ with /¢' = /r' = .
Label its faces from ¢ to p by Ry, Ry,..., R,. Starting with R = 0 and k& = 0, we then
repeat incrementing k and including Ry into R until we can produce a good triangulation
for R = UL, R;. Then for the remaining regions R, for y=k+1,k+2...,m, of three or

four sides, we triangulate each in a straightforward way.

The following two lemmas show that Step 6 can indeed produce a good triangulation for pg’er’.

Let the vertices along pq’ be sorted as p = qo,q1,...,q = ¢ and along pr’ as p = ro,r1,..., 1, =1

Lemma 9.1 Each region Ry for k = 2,3,...,m’ has a good triangulation.

Proof. If Ry is of three sides, then it is pgi71, ¢iqit17;, or r;7j41¢;. With the directed edge based
on q1r1, Apgyry is clearly good. And, Ag;qiti7; is good because ¢;7; or ¢;{1r; exists by |-3 and
Lg; or Lg;41 1s thus between 3 and «. Similarly, Ar;riiiq; is good. Now, if Ry is of four sides, say
qiqi+17j417j. Then it is supported by two directed edges based on ¢;r; and ¢;+17;41. If they are of
opposite orientations, then ¢;q;+17;117; has two opposite angles each measuring between 3 and o.
So we have a good triangulation for the region by adding the diagonal not incident to these good
angles. If they are of the same orientation, a good triangulation is ensured by I-5. We are done as

Ry has either three or four sides by I-2.

Lemma 9.2 There exists a k < m’ such that R = U R; has a good triangulation.

Proof. We consider successively larger R beginning with R = R;, then R = Ry U Ry and so on.
For each one, we test R for a good triangulation by joining ¢ with Steiner vertices on the boundary
of R so as to subdivide Zger,, further. As we will see, a good R is found once Zgcr,, can be

subdivided into good angles. The following are the details.
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Initially, R = Ry which is (1) gierm, (2) qi—1qicrm, (3) qiermrm—1, or (4) qi—1qicrmrm-1. For (1),
we just go on to enlarge R since Z¢ is bad. For (2) and (3), we add ¢g—1 and er,,—1, respectively,
to subdivide Zc. We are done if we have only good angles around ¢. For (4), if |eq—1] < |erp—1]
we add c¢q;_1, else add ¢r,,_1, resulting in a region yet to be triangulated. If Z¢ of this region is
good, we are done by completing the triangulation with the diagonal not incident to ¢; otherwise,

we use the other diagonal to further subdivide Z¢ and are done if all angles around ¢ are good.

To enlarge R, we remove the directed edge supporting the current R. In general, we have just
removed an edge say ¢;417j41 to obtain a part of R which has yet to be triangulated. This is

GiGit1CT j+1, Git1CT 4175, OF iGiy107 4177, which is handled analogously as in (2) to (4).

It is easy to see that the process terminates, producing only good angles around ¢. We next
verify that only good triangles are produced. Suppose the process terminates with (2) creating
Agieripr (and Agigipic) from qigiprerjyr. Consider giqierjyq. Since Lgerjyn > o and Lg = Z
both Zg; and Zrj4y are good. So Agerjyy is good. Symmetrically, the triangle created last due to
(3) is also good. For (4), the process terminates either similar to (2) and (3) or with a region, say
(without loss of generality) g;cr;t17j, subdivided into Ag;er;iq and Agrjyq7r;. Note that Agerjqq
is good as g;qierjqy has Zc > a and Zq = 5. And, Agirjyir; is good as /r; is good by our choice
of cq; to triangulate ¢;qjy1cr;417;, and Lg; and Zr;4; are good by the existence of directed edges

based on ¢;r; and g;y17;41, respectively.

The rest of the triangles resulting from the above are of the form ¢g;g;y1 or the symmetrical
form erjrjipy. For Acqigiyr, Lgi and Le are clearly good as they are acute. And, Zg;4y is good
from the following: Z¢;i1¢r,, > « because a directed edge incident to g;41 was removed to enlarge

R Lquiieqp < T — Lgiyrcry, < m —a and Legur1qr = Lgiyicqr + Lqoiiqic < %7‘[‘ —a = q.

Till here, we have established the following theorem:

Theorem 9.3 Triangulating a plane geometric graph G = (5, F) of |S| = n vertices and |F| =

O(n) edges using angles no larger than 27 requires O(n?) Steiner vertices.

10 Implementing Construction

In this section, we describe an efficient algorithm to implement the above constructive proof. Also,

we discuss ways to avoid some redundant Steiner vertices, and extend the construction to a better

angle bound of o = %7‘[‘. Let us assume that each point coordinate can be stored in a constant

amount of storage and that basic geometric operations, such as projecting a point onto a line can

be carried out in a constant amount of time.
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Theorem 10.1 Triangulating a plane geometric graph G = (S, F) of |S| = n vertices and |E| =

3
4

O(n) edges using angles no larger than 27 requires O(n?) storage and O(n?logn) time.

Proof. From G, we can first compute in O(n?logn) time the triangulation 7 that minimizes its
maximum angle over all triangulations of G [11] and store it in a quad-edge data structure of
O(n) storage [13]. If the maximum angle of 7 is no larger than 3, then we are done. Otherwise,
we proceed to refine T with the construction given in Sections 4 to 9. To perform those steps
efficiently, we maintain for each edge of T a sorted list of O(n) vertices of propagation paths on the
edge. And, we link up vertices with pointers that act as directed edges of propagation paths. Also,
we keep some general information about each quadrilateral edge (such as its type as a fence or
non-fence, its good and bad segments, etc.) and about each vertex (such as its type as a dead-end
or an endpoint of a spoke, its outgoing pointer, etc.). All in all, these structures requires O(n?)

storage.

With the above, Step 1 to Step 3 are straightforward. The splitting of an edge of 7 into edges
of quadrilaterals, and the subsequent walking from one quadrilateral to an adjacent one can each
be done in constant time with the quad-edge data structure. The checking of vertices within a
maw, and the insertion of a vertex to an edge of 7 (or a quadrilateral) can be done in logarithmic
time. Therefore, Step 1 to Step 3 are bounded by O(n®logn) time. Step 4 is simple by first
separating directed edges of opposite orientations into two sets and then working on each set in

say increasing order of neighboring pairs. This step thus takes O(n?) time.

Next, Step 5 is slightly involved. Let us discuss it with notation introduced in Section 8 and with
reference to non-fence pg’cr’ of O(n) Steiner vertices. Note first that the sum ¢+ j+i1+4j; (from the
lexicographically smallest ordered pair) is increasing in successive iterations because of I-4. Thus,
the bound of O(n) on the sum also bounds the number of iterations. Note second that the next
available index along pg’ (or pr’) in Case A is also increasing in successive iterations. The reason
is that each vertex v that we passed in a search for the next available index remains unavailable
because of blocking by other edges, or v becomes unblocked by the removal of directed edges but is
now out of range of the searching. Thus, a careful implementation of Step 5 needs only O(n) time
in locating vertices along pq’ (or pr’) by marching across pq’ and pr’ once in some coherent way.
With these notes, we can implement Step 5 to run in O(n) time by maintaining for each Steiner
vertex a list of directed edges with heads at the vertex. Each list stores elements in increasing
order of indices of tails, and is a queue that allows a removal of an element or an appending of
another queue in constant time. So, crossings of directed edges inside all quadrilaterals can be

removed in O(n?) time.

Lastly, Step 6 is straightforward and runs in time linear to the number of vertices in the

resulting triangulation.
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Reducing Steiner Vertices. The above construction generates considerably many Steiner ver-

tices, though it achieves the worst case optimal bound within a constant factor. We see in the
following, a modified construction that avoids many redundant Steiner vertices. Let us start with
Step 1. Instead of subdividing each Apgr, with largest angle at ¢, into three quadrilaterals, we
subdivide it into two or four triangles as follows. Also note that a fence now has three edges (with

only one is a spoke).

Case a. /g > a.
Subdivide Apgr into Apqq’ and Arqq where ¢’ € pr and Zpqq’ = /rqq’. We treat

both triangles as non-fences and ¢¢’ as a spoke.

Case b. 28 < /g < a.
Same as Case a. But, mark Apqq’ as a fence if /p > (3 else as a non-fence, and

similarly mark Argq’ according to /r.

Case c. Lq < 20.
Subdivide Apgr into Apr'q', Nqp'r', Arg'p’ and Ap'g'r

" where p', ¢, r" are the

three perpendicular projections of the center of inscribing circle of Apgr onto
qr, rp, pq, respectively. Also, treat edges p'q’, ¢'r" and r'p’ as spokes, and mark
ot

each of the triangles (excluding Ap'¢'r’) as a fence if its angle opposite its spoke

is no less than 3, else as a non-fence.

With this subdivision, we then plan and set up traps in Step 2a and Step 2b. Then, Step 3
generates propagation paths selectively for dead-ends and endpoints of spokes—so endpoints of
spokes are just like dead-ends that may or may not be Steiner vertices in the final construction. A
dead-end as before originates a propagation path if it terminates some propagation paths, whereas
an endpoint of a spoke originates a propagation path in the following situations. A ¢ of Case a
always originates a propagation path. A ¢ of Case b and p', ¢, " of Case ¢ each originates a
propagation path if it terminates some other propagation paths, or if the two smaller triangles
in Apgqr sharing this endpoint have Steiner vertices on their boundaries. (Other refined rules in

selecting vertices for propagation are omitted in this paper for simplicity in the presentation.)

Step 4 as before removes unnecessary subpaths. Note that each spoke in a triangle can be
considered as a directed edge in either orientation since all the four angles defined by its two
endpoints with edges of the triangle are good. Spokes are not involved in merging. Next, Step
5 remains the same. Finally, Step 6 works in a similar way as before: for a non-fence, we just
use the straightforward method in Lemma 9.1 (treating each spoke as a directed edge of either
orientation); otherwise, we have a fence that can be solved with Lemma 4.1. It is easy to check
that Ap'q'r’ of Case ¢ is good; each of its angle is just a half of the sum of two angles of Apgr.

However, there is one minor problem—¢’ in Case b or p’, ¢/, r’ in Case ¢ which are used in Step 6
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may not be Steiner vertices in the construction as mentioned. Nevertheless, a simple shifting of

edges can remedy the problem in all cases; see Figure 10.1.

(i) (ii) (iii)

Figure 10.1: Vertex ¢’ of Case b (i), p/, ¢',r" of Case c (ii), and p’, ¢’ of Case c (iii) are not Steiner vertices
in the construction. Edges incident to these vertices are shifted to r as shown in dashed line segments. All
new angles that resulted from the shifting can be checked to be good using the simple extension of Lemma
8.1to /p < 20.

%7‘[‘ can slightly be improved to a = %7‘[‘ (i.e.

132°), but with a larger constant in the quadratic bound on vertex size. In this case, 8 = %7‘[‘

(i.e. 48°). All results developed starting from Section 4 are valid except for Lemma 4.1, Lemma

Reducing Angle Bound. The angle bound of a =

8.1 (with Zp < 28) and Lemma 9.2. We need not worry about Lemma 9.2 since it is no longer
relevant to the above modified construction. As for the other two lemmas, problem arises when
T — 20 < /p < 26. One way to resolve this is to perform the following before Step 1: for each
Apgr of T with largest angle between m — 23 and 23, we subdivide it by a new vertex s inside pgr
into triangles with angles at s equal to %7‘[‘. The existence of such a subdivision can be verified as
follows. Let Zg > /p > /r. We can identify an interior point s’ on gr such that /ps'r = %7‘[‘ since
Lp+ Lg > %7‘[‘. Hence, we can draw a circle through p, s’,r whose arc inside Apgr represents the
loci of points forming angles of %7‘[‘ with pr. Note that Zgir is m# when ¢ = ', and decreases as ¢
moves along the arc towards the intersection point s” of the arc with pg. Since Zgtr < %7‘[‘ when

t = s" as /q > %, some point s along the arc is such that Zgsr = %7‘[‘.

Corollary 10.2 Triangulating a plane geometric graph G = (S, F) of |S| = n vertices and |E| =

O(n) edges using angles no larger than 1+ requires O(n?) storage and O(n*logn) time.

11 Concluding Remarks

This paper shows that there exists for any plane geometric graph a conforming triangulation with
a quadratic bound on its vertex set and %7‘[‘ bound on its angles. It is possible to extend the
result to a slightly better bound on angles, but with a larger constant factor in the quadratic

bound on the vertex set. The paper mentions such an improvement for angle bound of %7‘[‘. On
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the whole, it improves the result of Mitchell [17] by reducing a logarithmic factor on the bound
on the vertex set and by reducing at least T on the bound on angles. The new bound on the
vertex set is asymptotically optimal and can be computed in slightly more than quadratic time.
The computation is simple and practical, without introducing many unnecessary vertices. On the

other hand, it remains open whether the bound on angles can be reduced further.

The main idea of the paper is on the control of the lengths of propagation paths using fences
and traps. There is a similar idea in Edelsbrunner and Tan [10] where the corresponding notion
is termed walls. The current paper is, nevertheless, much more complex and has a number of new
strategies to address issues on the number of fences, traps and the crossings of propagation paths.
It remains interesting to see whether some of these ideas and strategies can be applied to other

triangulation problems.
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Analyzing Step 3

We prove again some important results of Mitchell [17]; our new proofs are necessary because those

results are applied here to a more general setting. For a horn of s, its center path is the sequence of

line segments where each connects the midpoints of the maws of two consecutive stages, starting

at s. Each midpoint mentioned is also termed a center path point. The length of a line segment

is the distance of its two endpoints, and the length of a center path is the sum of the lengths of
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its line segments. And, the maw width of a maw is the distance between its two endpoints. For
our following discussion, horns refer to those that do not intersect endpoints of spokes; otherwise

our analysis of Step 3 is trivial.

Lemma A.1 For a point s on an edge of T, the maw width of its horn at some stage is greater
than the length of the center path up till that stage.

Proof. It suffices to show that the increase in the maw width from one stage to the next is no less
than the increase in the length of the center path. Referring to Figure A.1, we show |a'd'| — |ab| >
le€¢’|. Note that the case of stage 0 is so that « = b = e. We have |ab| + |de| < |a’d”| from simple

p a€ b oq

Figure A.1: The part of the horn of s inside pg’cr’ is abb’a’. That is, the horn of s arrives at ab C pq’ and
then extends to a’b’ C pr’. The midpoint of ab and &'’ are e and €', respectively. Point 4" € bb' is so that

a'b” is parallel to ab, and d € a’b” is so that de is perpendicular to ab. Notice that €'d is parallel to 0'0".

observation, and |de| + |de’'| > |e€| from the triangle inequality. So, we just need to show that
|a'b'| —|a’b"] > |de’|. The law of sines for Ad'de’ gives |de’| = |a'¢/| siny/ sin o = $|a'b/|siny/sin a,
and for Ad'b"t gives |a'b"| = |a'V|sin(8 — )/ sin a. So,

|a'b'| — |a’b"| 2sin « (1 sin(f8 — ’y))

|de’| sin 7y sin «

2
= (sin # — sin f cos v + cos @ sin )

sin
2 )
> — (cos Bsin~)
sin
= 2cosf > 1.

Let T' be a trap having two distinct dead-ends (case 2 in Section 5) with base xy. For a point

z € zxy, it is clear that the horn of z into T moves closer in successive stages to both boundary
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paths of T'. This notion of closeness can be formalized from the concept of inverse horn [17]. For
our purposes, we define an inverse horn as the region between two coherent forward paths (in a
given sequence of non-fences) where good angles of 3 at tails of their directed edges are inside the
region. The notions of maw, maw width, center path, and boundary paths for horn are extended
analogously to inverse horn. As mentioned, the maw width of an inverse horn decreases (rather
than increases) from one stage to the next. When the maw width is negative, the two boundary

paths of the inverse horn have crossed.

Lemma A.2 Let us consider the inverse horn defined by coherent forward paths originated at w
and z. Initially, / = |wz| is the maw width. Then, the maw width ¢ at some later stage is so that
(=0 > %Ec where (. is the length of the center path up till that stage.

Proof. Analogous to the previous lemma, it suffices to show that from one stage to the next, the
decrease in maw width is at least % the increase in the center path length. Referring to Figure
A.2, we show in the following |ab| — |a'b'| > 2|e€|. The law of sines for Ad'de’ gives |de’| =

L@’V siny/ sin B8, and for Aa’b"b' gives |a'b"| = |a'V|sin(m — f — )/ sin 3 = [a'V| sin(3+7)/ sin §.
So,

la'b"| = |a'b'| : .
|d€/| - sin’y (Sln(ﬁ+7) Slnﬁ)v
and, for 0 <y < g8 =7, % is decreasing in 4. This means
|a'b"| — |a't| 4
|de’| 5
so the claim is proved because |ab| > |a'b"| + |de| and |de| 4 |de’| > |e€’|.
the claim i db b "W+ |d d |d de’ !

\ .
a e b °q

Figure A.2: Region abb'a’ is the part of the inverse horn inside pg’cr’. The inverse horn arrives at ab C pq’
and then extends to 't/ C pr’. The midpoint of ab and a’b’ are ¢ and €', respectively. Point 8" € bb is so

that a’b” is parallel to ab, and d € a’b” is so that de is perpendicular to ab. Notice that ¢’d is parallel to b'b".
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With the above lemmas, we next complete the argument of Lemma 6.3 using the next result,

which implies the existence of a properly-terminating propagation path with origin z and length

O(n).

Lemma A.3 Let z be a point on the base of a trap T having two distinct dead-ends (case 2 in
Section 5). Then, the horn of z inside T either self-intersects or intersects at least one boundary

path of T at a stage no larger than the length of the boundary paths of T

Proof. Let pg be the edge intersected three times by each boundary path of T' (so pg contains
the dead-ends of T'). For the proof, it suffices to consider the horn H. of z; inside T" where z; is
some point on the first intersection of the horn of z and pg. Assuming H, does not self-intersect
inside T', we prove that H. intersects a boundary path of T'. Each boundary path of T with one
boundary path of A, form an inverse horn. Refer to Figure A.3; the inverse horn Z of interest
has initial maw z;w; where w;y (on a boundary path of T') lies on z;v and v is some point on the

second intersection of H, with the line through pq. (In Figure A.3, v is z.)

Do % S Z; W Z3 \\g
1 w Wa Zp I

(i) (ii)

Figure A.3: The edge pq intersects one boundary path of #, at zy, 29, 23 and one boundary path of T at
wy, wa, ws. | he figure shows two representative situations of the inverse horn 7: z, and z3 are on the same
side of z1 in (i), but on different sides in (ii). Note that wy may be a point in zyw; rather than w23, and w3

of (ii) may lie in zywy rather than z32;.

For Figure A.3(i), the maw widths of H. at z, and at z3 are both greater than |z;22| by Lemma
A.1. So, the center path length of Z from midpoint of wyz; to midpoint of wsz3 is at least 2|z 25
Since H. does not self-intersect, then Lemma A.2 implies that the maw width Z at wszs is at
most |wyzz| — 3(2[z122]) < 0, as required. Besides Figure A.3(i), there are three other situations
to consider for z; and z3 on the same side of zy. First, H. may leave pg at z; and return to pq at
zg from below (rather than from above as shown in the figure). In doing so, the center path of H,
intersects some point v on the line through pg but not on pq. If z9 € pg N z1v, then the maw of

H. at z3 contains z; (Lemma A.1) because the center path of H, has traveled a distance larger
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than |zv|; if 29 € pg M z1v, we can use the argument in the next paragraph. Second, H, may leave
pq at z3 and then return to pq at z3 from above, intersecting the line through pg at points not on
pq. In this case, the above arguments also apply. Third, if z3 € 2129, then the maw of H. again

contalns 2.

For Figure A.3(ii) with z5 and z3 on different sides of zy, the center path point of Z at zjw;
must be to the right of that at z3ws since z3 € 2123 and the maw width of Z at z3 is smaller than

that at z;. Thus, the center path of Z traveled a distance of at least {; = |z;w;]| to the midpoint

of zzws, Lemma A.2 implies that its maw width /3 = |z3w;| < 1 — gﬁl = éﬁl. With this bound

on /3, a better bound on the distance traveled is ¢; + (% — %3) > gﬁl, which in turn implies that

5 is negative (Lemma A.2). Notice that the same argument can also handle the situation similar

to Figure A.3(ii) with ¢ € wywy, i.e. z3 and wq are not on pq. Hl

Note that Lemma A.3 can be proved even if Lemma A.2 is weakened to having ¢ — ¢/ > %Ec.

This just requires a few more rounds of calculation of the bound on the distance traveled by the

inverse horn for Figure A.3(ii). This and because Lemma A.l remains valid as long as § > =

37
67

we can pick o = 2 (or § = &) to derive £ — ' > LL{. for Lemma A.2 and, as a result, an

improved angle bound.



