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�� Introduction� A triangulation of a ��nite� point set S in �� is a maximally
connected straight line plane graph whose vertices are the points of S� Maximality
implies that with the exception of the unbounded face each face of the graph is a
triangle� The number of di�erent triangulations of S depends on n � jSj as well
as the relative location of the points� As implied by a result in �ACNS��	
 ����n

is an upper bound on the number of triangulations of any set of n points in ���
Furthermore
 if S is in convex position then it admits �

n��
�
�n��
n��

� � �n�� di�erent
triangulations� In order to choose an optimal triangulation
 under some criterion
 it
is thus not feasible to exhaustively search the set of all triangulations�

Indeed
 except for a handful of particular optimality criteria
 the problem of
�nding an optimal triangulation for a given point set is hard
 that is
 no polynomial
time algorithms are known� Among these exceptions are the maxmin angle criterion
�Sibs�	
 the minmax angle criterion �ETW��	
 the minmax smallest enclosing circle
criterion �Raja��	
 and the minmaxcircumscribed circle criterion� The optimumunder
the �rst
 third and fourth criterion is achieved by the Delaunay triangulation which
can be constructed in time O�n logn� �Del��	
 �PrSh��	
 �Edel�	�

In this paper we study the complexity of minimizing the maximumedge length� A
triangulation that minimizes the length of its longest edge is called a minmax length
triangulation� It is related to the so�called minimum length �or minimum weight�
triangulation that minimizes the sum of the edge lengths� The latter problem has
been studied by Plaisted and Hong �PlHo�	
 Lingas �Ling�	
 and others� In spite
of the lack of a proof that the problem is NP�hard
 no polynomial time algorithm
for constructing a minimum length triangulation is currently known� Even more
annoying is the lack of a constant approximation scheme
 that is
 an algorithm that
in polynomial time constructs a triangulation guaranteed to have total edge length at
most some constant times the optimum� The currently best approximation scheme is
described in �PlHo�	 and guarantees a factor of O�logn��
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In view of the apparent di�culty to compute minimum length triangulations
 it
is somewhat surprising that we are able to give a polynomial
 in fact quadratic time
algorithm for constructing a minmax length triangulation� It is the �rst polynomial
time algorithm for this problem� There is evidence for the potential usefulness of such
a triangulation �see �BrZl�	
 �WGS��	�� Still
 the authors of this paper consider the
additional insight into optimum triangulations under edge length criteria as the main
contribution of this paper�

The reader might �nd it instructive to rule out seemingly promising approaches to
computing minmax length triangulations before diving into the occasionally involved
developments of the forthcoming sections� Note �rst that the Delaunay triangulation
does not minimize the maximum edge length �see also Section ��� Second
 the incre�
mental greedy method
 that repeatedly adds the shortest edge that does not intersect
any previously added edge
 also fails to minimize the maximum edge length� Third

let us take a brief look at the decremental greedy method that throws away edges
in the order of decreasing length� It stops the deletion process if another deletion
would render the set of edges so that it does not contain any triangulating subset �see
Wismath �Wism��
 page ��	�� The trouble with this approach is that it is not clear
how to e�ciently decide whether the evolving edge set is still su�cient to triangulate
the point set� Indeed
 Lloyd �Lloy	 proves that the general version of this problem
�decide whether a given edge set contains a triangulation� is NP�hard� Finally
 the
iterative methods that use the edge��ip �Laws	 or the more general edge�insertion
operation �ETW��	 can get caught in local optima� The approach taken in this paper
is entirely di�erent from the above paradigms�

The organization of this paper is as follows� Section � reviews a few results
on relative neighborhood graphs and other subgraphs of the Delaunay triangulation�
Section � formulates the global algorithm� its straightforward implementation using
dynamic programming takes time O�n��� The only intricate part of this algorithm is
the proof of correctness provided in Section �� Sections � and � present a specialized
polygon triangulation algorithm that can be used to speed up the general algorithm
to time O�n��� While Sections � through � assume that the Euclidean metric is used
to measure length
 Section  demonstrates that all results extend to general normed
metrics� Indeed
 the arguments in Sections � through � are axiomatically derived
from a few basic lemmas in order to minimize the number of changes necessary to
generalize the results� Finally
 Section � brie�y discusses the contributions of this
paper and states some related open problems�

�� Subgraphs of the Delaunay Triangulation� The approach to construct�
ing a minmax length triangulation taken in this paper �rst adds enough edges to
decompose the plane into simple polygonal regions and then �optimally� triangulates
these regions� Both Plaisted and Hong �PlHo�	 and Lingas �Ling�	 used this ap�
proach to compute approximations of the minimum length triangulation� In our case

the initial set of edges is provided by the �boundary of the� convex hull and the rel�
ative neighborhood graph of the point set S� The remainder of this section formally
introduces these graphs
 along with the Delaunay triangulation and the minimum
spanning tree of S
 and reviews some basic facts about their relationships� If x� y� z
are three points in �� then xy denotes the relatively open line segment with endpoints
x and y
 jxyj is its length
 and xyz denotes the open triangle with vertices x� y� z�

The Delaunay triangulation of S
 denoted by dt�S�
 contains an edge ab
 a� b � S

if there is a circle through a and b so that all other points lie outside the circle� If the
points are in general position then dt�S� is indeed a triangulation�

	



As mentioned in the introduction
 the Delaunay triangulation does not minimize
the length of the longest edge� Take for example the points a � ���� ��
 b � ���

p
��


c � ����p��
 d � �� � �� ��
 with � � � � �� They form a convex quadrilateral
abdc and the Delaunay triangulation uses ad as the �fth edge� As � approaches � the
length of ad approaches �p

�
times the length of the longest edge in the alternative

triangulation� Indeed
 �p
�
is the worst possible ratio as can be shown using the result

of �Raja��	 that the Delaunay triangulation minimizes the radius of the maximum
smallest enclosing circle
 where the maximum is taken over all triangles� If the radius
of this circle is � then the longest edge of the Delaunay triangulation has length at
most �� By the optimality result every minmax length triangulation has a smallest
enclosing circle of radius at least � and therefore an edge of length at least

p
� �see

also �WGS��	��
The convex hull of S is the smallest convex polygon that contains S� We de�ne

ch�S� as the graph de�ned by the edges of this polygon� In the �degenerate� case
where three or more collinear points lie on the boundary of this polygon we think
of each such point as a vertex of the polygon� Thus
 edges are taken only between
adjacent collinear points� Each convex hull edge is an edge of every triangulation of
S
 and therefore also of every minmax length triangulation�

An edge ab belongs to the relative neighborhood graph of S
 denoted by rng�S�

if

jabj � min
x�S�fa�bg

maxfjxaj� jxbjg�

This de�nition goes back to Toussaint �Tous��	 who modi�ed a similar de�nition by
Lankford �Lank��	 for use in pattern recognition� Alternatively
 we can de�ne the
lune of ab as the set fx � �� � maxfjxaj� jxbjg � jabjg
 and de�ne rng�S� as the set
of edges ab whose lunes have empty intersection with S�

A minimum spanning tree of S
 mst�S�
 is a spanning tree of S that minimizes
the total edge length� it also minimizes the maximum edge length�

All four graphs
 dt�S�� ch�S�� rng�S��mst�S�
 are plane and connected
 and with
the exception of ch�S�
 they span S� Where convenient we will interpret these graphs
as edge sets� Plainly
 ch�S� � dt�S�
 and as observed by Toussaint �Tous��	
 we also
have mst�S� � rng�S� � dt�S�� Obviously
 ch�S� � mlt�S�
 for every minmax length
triangulation mlt�S�
 and we will show in Section � that there exists an mlt�S� so
that rng�S� � mlt�S��

�� The Global Algorithm� As mentioned above there exists a minmax length
triangulation mlt�S� that contains all edges of ch�S� and rng�S�� Because ch�S� �
rng�S� is a connected graph
 it decomposes the convex hull of S into simple polygonal
regions
 which we de�ne as open sets
 that contain no points of S� It is thus natural
to construct mlt�S� by computing ch�S�� rng�S� and then �optimally� triangulating
each polygonal region�

Strictly speaking
 however
 the polygonal regions are not necessarily simple poly�
gons in the usual sense of the term
 although their interiors are simply connected� The
di�erence is that the interior of the closure of a polygonal region is not necessarily the
same as the region itself� it may contain edges of the region and it may be non�simply
connected� The most e�ective way to deal computationally with this minor di�culty
is to represent each edge by a pair of oppositely directed edges
 and to represent
the boundary of each region by the collection of directed edges for which the region
lies on their left hand side� In e�ect
 this means that we interpret each polygonal
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region as a genuine simple polygon
 simply by pretending that its zero�width cracks
are opened up a tiny amount� In most cases
 this is a convenient interpretation and
the notation will be adjusted accordingly� Only occasionally
 the di�erence between
a simple polygonal region and a simple polygon will be uncovered�

Let us now formally specify the algorithm and give a preliminary analysis�

Input� A set S of n points in ���

Output� A minmax length triangulation of S�

Algorithm� �� Construct ch�S� and rng�S��
�� Determine the polygonal regions de�ned by ch�S� � rng�S��
�� Find a minmax length triangulation for each such polygonal region�

Step � can be carried out in time O�n logn� using results documented in �PrSh��	 and
�Supo��	 �see also �JKY��	�� Using the standard quad�edge data structure of �GuSt��	
for storing the plane graph ch�S�� rng�S�
 step � can be accomplished in time O�n��
Finally
 we can use dynamic programming to compute an optimal triangulation for
each polygon in time cubic and storage quadratic in the number of its vertices �see
�Klin��	
 �Gilb�	�� This adds up to time O�n�� and storage O�n��� The correctness of
the algorithm will be established in the next section� Sections � and � will show how
to speed up the algorithm to time O�n�� using a specialized polygon triangulation
algorithm�

�� The Subgraph Theorem� The main result of this section is what we call
the Subgraph Theorem which was announced earlier� We begin with two elementary
geometry lemmas about distances between four points in convex and in non�convex
position�

��Lemma� For a convex quadrilateral abcd� we have jabj� jcdj � jacj� jbdj�
Proof� Let x be the intersection point of the two diagonals
 ac and bd� Clearly


jabj� jcdj � �jaxj� jxbj� � �jcxj� jxdj� � jacj� jbdj�
In words
 the total length of the two diagonals of a convex quadrilateral always

exceeds the total length of two opposite sides� This is true even if three of the four
vertices are collinear� It implies that if one diagonal is no longer than one of the edges
then the other diagonal is longer than the opposite edge�

��Lemma� Let a� b� c� d be four distinct points so that the closure of the triangle
abc contains d� Then jadj � maxfjabj� jacjg�

Proof� If a� b� c� d are collinear the result is obvious� Otherwise
 let d� be the
intersection of the edge bc with the line passing through a and d
 and note that
jadj � jad�j� Of all points on bc only the endpoints can possibly maximize the distance
to a� The assertion follows because if d� is an endpoint of bc then d �� d� and therefore
ad is strictly shorter than ad��

Note that the length of the longest edge of any minimum spanning tree is no
longer than the longest edge of any triangulation of S� This follows trivially from the
fact that every triangulation contains a spanning tree� It is not very di�cult to prove
that the same is true for the relative neighborhood graph of S� First we need some
notation� The circle with center x and radius � is denoted by �x� ��
 and the bisector
of two points p and q is the set of points equidistant to both�

Length Lemma� Every triangulation of S contains an edge that is at least as
long as the longest edge of rng�S��





Proof� Let pq be the longest edge of rng�S� and let t�S� be an arbitrary tri�
angulation of S� If pq � t�S� there is nothing to prove� Otherwise
 pq intersects
edges r�s�� r�s�� � � � � rksk of t�S�
 sorted from p to q
 with all ri on one side of the
line through p and q and all si on the other� If pq is longer than all edges in t�S�
then r� and s� are both inside the circle Cp � �p� jpqj�
 because pr� and ps� are both
edges of t�S�� By the de�nition of rng�S�
 r� and s� are thus outside or on the circle
Cq � �q� jpqj�� Therefore
 r� and s� lie in the half�plane of points closer to p than
to q� Symmetrically
 rk and sk lie inside Cq and outside or on Cp and therefore in
the half�plane of points closer to q than to p� For each � � i � k � � we have either
ri � ri�� or si � si��
 which implies that there is an index j so that rj and sj do
not lie on the same side of the bisector of pq� But then the ��Lemma implies that
jrjsj j � jpqj
 because jpqj is no longer than each of two opposite edges of the convex
quadrilateral prjqsj 
 a contradiction�

The proof of the Subgraph Theorem is similar to that of the Length Lemma

although considerably more involved� The basic idea is to assume an extreme coun�
terexample and to contradict its existence by retriangulating parts of it using no
long edges� In the following
 we �rst develop three facts showing the possibilities of
retriangulations
 and then prove the theorem�

Let t�S� be a minmax length triangulation of S that does not contain some edge
pq of rng�S�� Suppose pq intersects the triangles t�� t�� � � � � tk of t�S�
 sorted from p to
q �see Fig� � left�� The deletion of the edges that intersect pq would result in a simply

p q�

� �

�

��
�
�

p q�c��

�
d

�
d�

�

�b
�

�b� a
�

�
a�c

p q�

� �

�

��
�

�

Fig� �� To the left we see the triangles of t�S� that intersect pq� If we remove the edges

intersecting pq we get a polygon whose boundary is oriented in a counterclockwise order� The pre�x

P and the su�x Q de�ned for this con�guration are illustrated to the right� Although b and a� are

the same point� they refer to di�erent angles of this point�

connected region
 which can be interpreted �as in Section �� as a polygonal region �
we treat each edge in its boundary as a pair of edges with opposite direction
 and to
trace the boundary of the region we traverse all directed edges that have the region
on their left side� Any two consecutive �directed� edges de�ne an angle �see Fig� �
middle�� Note that a vertex can correspond to many angles
 although the common
situation is that it corresponds only to one� We will therefore sometimes ignore the
di�erence between vertices and corresponding angles� Points p and q correspond to
only one angle each� An angle is convex if the two de�ning edges form a left�turn�
Call the sequence of edges from p to q the lower chain and the sequence from q to p

the upper chain� Each chain contains at least one convex angle di�erent from p and
q�

A pre�x is an initial subsequence of t�� t�� � � � � tk
 and a su�x is a terminal sub�
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sequence of t�� t�� � � � � tk� We say that a pre�x �su�x� covers an angle of the polygon
if it contains all triangles incident to this angle� Let i be minimal so that the pre�x
P � t�� t�� � � � � ti covers a convex angle other than p
 and let j be maximal so that
the su�x Q � tj � tj��� � � � � tk covers a convex angle other than q� P and Q consist of
at least two triangles each� We let b be the convex angle �vertex� covered by P � it
is incident to both ti and ti�� � and d be the other vertex common to ti and ti���
Furthermore
 c is the third vertex of ti�� and a is the third vertex of ti �see Fig� �
right�� Symmetrically
 de�ne vertices b�� d�� c�� a� of Q� We say that P �Q� is type �
if the last ��rst� two triangles of P �Q� are the only ones incident to b �b��
 and it is
type �
 otherwise �see Fig� ��� If P is type � then a� b� c belong to the same chain and
d belongs to the other chain �this includes the case that c � p�
 and if P is type �
then a� b belong to one chain and c� d to the other�

p

type �

�
�

�

�d

�a
�b

�c

�
q

type �

��
�c
�

�d
�

�a�
�b�

�

Fig� �� The pre�x P with vertices a� b� c� d and the su�x Q with vertices a�� b�� c�� d� are de�ned

depending on pq� P is type � and Q is type �� For illustration purposes the constraint that all

vertices must lie outside the lune of pq has been ignored�

Fact �� P � t�� t�� � � � � ti and Q � tj� tj��� � � � � tk share at most two triangles�
that is� i � � � j�

Proof� We show that the su�x R � ti��� ti� � � � � tk covers at least one convex angle
other than q
 so Q cannot be bigger than R� If P is type � then R covers b
 which is
convex� Otherwise
 R covers all angles between d and q
 d included� Since all angles
between p and d
 p and d excluded
 are non�convex
 at least one angle between d and
q must be convex
 and this angle is covered by R�

It should be clear that abcd and a�b�c�d� are both convex quadrilaterals by the
choice of their vertices� The next two facts imply that either abcd
 or a�b�c�d�
 or both
have alternate triangulations using ac or a�c�
 while maintaining the maximum edge
length of t�S�� In other words
 bd
 or b�d�
 or both can be switched� Formally
 we call
bd �b�d�� switchable if ac �a�c�� is no longer than the longest edge of t�S�� Fact � shows
strong locality constraints for a and d �a� and d�� if bd �b�d�� is not switchable� De�ne

A � fx � �� � jxpj � jpqj and jxpj � jxqjg and

D � fx � �� � jxpj � jpqj and jxqj � jpqjg�

with the understanding that A and a belong to one half�plane de�ned by the line
passing through p and q
 and D and d belong to the other �see Fig� ���

Fact �� If bd is not switchable then a � A and d � D�
Proof� Since bd is not switchable ac must be longer than the other �ve edges

de�ned by a� b� c� d
 and
 by the Length Lemma
 it must be longer than pq� We �rst

�



� �p q

D

A

Fig� �� The regions A and D as de�ned for the case when a is on the upper chain�

show that jacj � japj and then derive the four inequalities needed to establish the
claim�

��� jacj � japj� We can assume that c �� p� Note that c is contained in the closure
of triangle bdp� Since the line passing through b and d separates a from p
 the
closures of the two triangles abp and adp cover bdp completely
 and therefore
one of them contains c� If c lies in the closure of abp the claim follows from
jabj � jacj and the ��Lemma for abp
 and if c lies in adp it follows from
jadj � jacj and the ��Lemma for adp�

��� japj � jpqj� From the Length Lemma we get jpqj � jacj and from ��� we get
jacj � japj�

��� jdqj � jpqj� Assume jdqj � jpqj� The ��Lemma for paqd implies jadj � japj
and thus jadj � jacj because of ���
 a contradiction�

��� jdpj � jpqj� This is immediate from ��� because pq is an edge of rng�S��
��� japj � jaqj� Assume japj � jaqj and recall jdpj � jpqj from ���� By the ��

Lemma for paqd we get jadj � jaqj
 which implies jadj � japj by assumption

and jadj � jacj by ���
 a contradiction�

The proof of Fact � is now complete because ��� and ��� are equivalent to a � A and
��� and ��� are equivalent to d � D�

Symmetrically
 we de�ne regions A� and D� which is where a� and d� must lie if
b�d� is not switchable� Using Facts � and � we can now show that there is always an
edge that can be switched�

Fact �� It is not possible that both bd and b�d� are non�switchable�
Proof� If bd and b�d� are both non�switchable
 then ad lies on q�s side of the

bisector of pq and a�d� lies on p�s side
 by Fact �� Because of Fact � and because ad is
the last edge of P and a�d� is the �rst edge of Q we have fa� d� a�� d�g � fa� b� c� dg�
fa�� b�� c�� d�g� Furthermore
 the fact that bd and b�d� are both edges of t�S� implies
that they are the same and thus b � d�
 d � b�
 a � c�
 c � a� �see Fig� ��� It
follows that the polygonal region has the shape of a diamond with p� b� q� d as the only
convex angles� This contradicts the locality constraints for a� b� c� d stated in Fact ��
In particular
 the chain from p to d � D is concave or straight and therefore enclosed
by the circle �q� jpqj�� It follows that this chain is disjoint from A�
 which is where
c � a�
 the predecessor of d in this chain
 is supposed to lie�

With the above results and notations
 we now choose an extremal counterexample
to prove the main result of this section�
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�

Fig� �� If bd and b�d� are both non�switchable then b and d are the only convex angles besides

p and q�

Subgraph Theorem� Every �nite point set S in �� has a minmax length tri�
angulation mlt�S� so that rng�S� � mlt�S��

Proof� We assume there is a set S so that no minmax length triangulation contains
rng�S�� Let t�S� be a minmax length triangulation of S that satis�es the following
extremal properties
 where later properties are contingent upon earlier ones�

�i� t�S� minimizes the number of edges that intersect pq�
�ii� t�S� minimizes the number of edges incident to b that intersect pq�
�iii� t�S� minimizes the number of edges incident to b� that intersect pq�

It is conceivable that t�S� is not unique
 but it will be su�cient to assume that t�S�
is any one of the remaining triangulations�

By Fact �
 either bd
 or b�d�
 or both are switchable� If bd is switchable and P is
type � then the number of edges that intersect pq decreases when bd is switched� This
contradicts property �i�� Thus
 P must be type � if bd is switchable
 and
 similarly

Q must be type � if b�d� is switchable� When we switch bd the degree of b decreases

which contradicts property �ii�� Thus
 it must be that bd is not switchable and b�d� is�
But switching b�d� decreases the degree of b�
 which would contradict property �iii�

unless the degree of b increases at the same time� Remember that �iii� is contingent
upon �ii�
 so if �ii� is not satis�ed any more then we cannot draw any conclusion�
Thus
 the con�guration left for analysis is as shown in Fig� ��

p q

c�

d�d�

a�b�b�a�

�

��

�
�

�

Fig� �� In the �nal con�guration bd is non�switchable� so a � A and d � D� and b�d� is

switchable� so Q is type �� Furthermore� switching b�d� to a�c� increases the degree of b� so a� � b

and therefore P and Q overlap in exactly one triangle� The �gure ignores that by rights all points

should lie outside the lune of pq�

To reach the �nal contradiction
 we switch b�d� and rede�ne Q based on the new
con�guration� Since all angles from �the old� d� to q are non�convex
 the new points b�

and a� are the same as before
 and the new d� is the old c�� Thus
 we can again switch
b�d�
 and so on
 until Q is type � or c� � q at which point the next switch decreases
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the number of edges intersecting pq� This �nally contradicts property �i��
Remark� A natural extension of minimizing the length of the longest edge in a

triangulation is to also minimize the length of the second longest edge
 and so on�
Let mvt�S� be a triangulation that minimizes the entire vector of edge�lengths in this
fashion� If the points of S are in general position then mvt�S� is unique� Curiously

it is not always true that �there is an� mvt�S� �that� contains rng�S� as a subgraph�
The smallest example that illustrates this observation consists of four points a� b� c� d
so that c and d lie fairly close to b
 ab and cd intersect
 and c and d both lie outside
the circle �a� jabj��

�� Triangulating rng�Polygons� The goal of this section and the next is to
improve the cubic time algorithm of Section � to quadratic time� This is done using a
specialized polygon triangulation algorithm� The main part of the algorithm
 and the
structural properties of minmax length triangulations that guarantee its correctness

are developed in this section�

Recall that the �rst two steps of the algorithm in Section � decompose the convex
hull of S into polygonal regions by drawing all edges of ch�S� and rng�S�� these steps
remain unaltered� Each region is represented by a cyclic chain of directed edges that
trace its boundary in a counterclockwise order around the region� Because rng�S�
is a connected graph that spans S
 any polygonal region is bounded by at most
one edge not in rng�S�� this edge is in ch�S� � rng�S�� We call a polygonal region a
complete rng�polygon if all its edges belong to rng�S�
 and an incomplete rng�polygon

otherwise�

Obviously
 rng�polygons are not as general as arbitrary polygonal regions be�
cause for each edge ab
 except possibly for one
 the lune of ab
 �ab � fx � �� �
maxfjaxj� jbxjg � jabjg
 is free of points of S� We call pq a diagonal of a polygonal
region if it lies in the region entirely� For each diagonal pq of an rng�polygon it must
be that �pq contains at least one point of S� We further distinguish between the cases
where �pq contains points of S on both sides of pq and where it does not�

For a directed edge �pq let h �pq be the set of points to the left of or on the directed
line that passes through p and q in this order� De�ne the half�lune of �pq as

� �pq � �pq 	 h �pq�

By de�nition
 �pq � � �pq �� �qp
 and we have pq � rng�S� i� � �pq 	S � � �qp 	S � 
� We
call pq a ��edge if both half�lunes contain points of S
 and we call it a ��edge if only
one half�lune contains points of S� For a ��edge pq
 we say the side where the half�lune
contains points of S is beyond pq
 and the other side is beneath pq� Note for example
that if pq is a ��edge bounding an incomplete rng�polygon R then pq � ch�S� and
therefore R is beyond pq� We will see later that ��edges are useful in triangulating
rng�polygons�

The �rst lemma of this section shows that when we triangulate an rng�polygon R

whether complete or incomplete
 we can ignore all points outside R� More speci�cally

it shows that the type of any diagonal or edge ofR remains unchanged when we remove
all points of S that are not vertices of R�

Reduction Lemma� Let pq be a diagonal or edge of an rng�polygon R� If � �pq
contains points of S then it also contains vertices of R�

Proof� Assuming � �pq contains points of S but no vertices of R
 it must intersect
edges of R without containing their endpoints� Let yy� be the edge closest to p and
q
 and let x be a point in � �pq 	 S� Since x is not a vertex of R it must lie on the
other side of yy� 
 as seen from p and q� So yy� � rng�S� � ch�S�
 and therefore
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maxfjxyj� jxy�jg � jyy�j� Assume without loss of generality that jxyj � jyy�j� If y� lies
outside or on the circle �p� jpqj� we consider the convex quadrilateral pyxy�� Otherwise

y� lies outside or on �q� jpqj� in which case we consider the convex quadrilateral qyxy��
But now we have jxyj � jyy�j and either jpy�j � jpxj or jqy�j � jqxj
 a contradiction
to the ��Lemma in both cases�

Using the Reduction Lemma we now address vertices visible from both endpoints
of an edge� We need some notation� Two points x� y inside or on the boundary of
a polygonal region are visible from each other if xy is contained in the region� The
distance of a point x to an edge pq is de�ned as the in�mum
 over all points z � pq

of jxzj� If jpqj � maxfjpxj� jqxjg then this distance is referred to as the height of the
triangle pqx�

Visibility Lemma� Let pq be a diagonal or edge of an rng�polygon R� and let x
be a vertex of R that lies in � �pq and minimizes the distance from pq� Then x is visible
from p and also from q�

Proof� Consider the triangle pqx
 let x� � pq be the point with minimumdistance
from x
 and assume without loss of generality that x is not visible from q� Let yy�

be an edge of R that intersects qx� The proof of the Reduction Lemma implies that
at least one endpoint of yy� lies in � �pq
 say y � � �pq� In addition
 y and y� lie outside
the triangle pqx because x is closest to pq �see Fig� ��� Hence
 yy� intersects xp
 xq

y�
y

p

�
�

� �

�

q

x

x�

Fig� �� The quadrilateral xyx�y� is convex because x� � pq and y� y� �� pqx�

and all edges xz with z � pq� Thus
 xyx�y� is a convex quadrilateral
 and because
of jyx�j � jxx�j by the choice of x
 we have jyy�j � jy�xj from the ��Lemma� By
symmetry
 if y� lies in � �pq we have jyy�j � jxyj
 which implies yy� �� rng�S�� This is a
contradiction because yy� �� ch�S�� Thus
 y� must lie outside � �pq� If y

� lies outside or
on the circle �p� jpqj� then jpy�j � jpxj and therefore jxyj � jyy�j by the ��Lemma for
py�xy� Symmetricallywe get jxyj � jyy�j from the ��Lemma for qy�xy if y� lies outside
or on the circle �q� jpqj�� Together with jxy�j � jyy�j this contradicts yy� � rng�S��

We need one more elementary lemma�
Containment Lemma� If x � � �pq then � �xp � �pq �
Proof� Take a point z � � �xp and consider the four points p� q� x� z� If z � pq there

is nothing to prove� Otherwise
 pzqx or pqzx is a convex quadrilateral �possibly with
three of the four vertices collinear� or z � pqx� In each case jqzj � jpqj can be shown
using the �� or the ��Lemma� This implies z � �pq �

The following lemma is of fundamental importance to the quadratic time trian�
gulation algorithm�

��Edge Lemma� Let pq be a ��edge of an rng�polygon R� and let x be a vertex
of R that lies in � �pq and minimizes the distance from pq� Then px is either an edge
of R or a ��edge with pqx beneath px� and the same is true for qx�
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Proof� We have � �xp � �pq by the Containment Lemma� The part of � �xp in � �qp
contains no point of S because � �qp 	S � 
 by assumption� For a di�erent reason also
the part of � �xp in � �pq contains no point of S� This is because a point y � � �xp 	 � �pq
would be closer to pq than x is
 as can be shown using the ��Lemma for px�yx �see
Fig� �� So px is an edge of R if � �px contains no point of S either
 and it is a ��edge
with triangle pqx on its beneath side
 otherwise� The argument for qx is symmetric�

� �

�

p q

x

x�

�y

Fig� �� Vertex x is visible from p and from q� so pqx is empty� It follows that if y � � �xp � � �pq
then pqyx is a convex quadrilateral�

���� Incomplete rng�Polygons� The above lemmas are su�cient for e�ciently
triangulating an incomplete rng�polygon� As de�ned earlier
 all edges of an incomplete
rng�polygon R are rng�edges
 except for one ��edge
 pq � ch�S� � rng�S�
 which has
R on its beyond side� The algorithm below can triangulate more general incomplete
rng�polygons
 that is
 it is not necessary that pq � ch�S�
 but it must be that pq is a
��edge and R lies beyond pq�

Input� An incomplete rng�polygon R that lies beyond its ��edge pq�

Output� A minmax length triangulation of R�

Algorithm� �� Find a vertex x in �pq that minimizes the distance from pq�
�� Draw edges px and qx� This decomposes R into the triangle pqx


and two possibly empty incomplete rng�polygons R� and R��
�� Recursively triangulate R� and R��

The correctness of this algorithm follows from the ��Edge Lemma� Indeed
 it im�
plies that if R� is non�empty then it lies beyond px
 which is the only ��edge of R��
Similarly
 R� lies beyond its ��edge qx
 provided R� is non�empty� Thus
 the input
invariant is maintained all the way through the recursion� This implies that the algo�
rithm successfully triangulates� By the choice of point x
 the edges px and qx are both
shorter than pq� It follows that the diagonals are monotonely decreasing in length

down a single branch of the recursion
 and therefore all diagonals constructed by the
algorithm are shorter than pq� A straightforward implementation of the algorithm
takes time quadratic in the number of vertices of R�

Remark� Instead of choosing a vertex x that minimizes the distance to pq
 step
� of the algorithm could also choose other vertices as long as they are visible from p

and q and lie in their lune� An interesting choice among these vertices is the vertex y
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that minimizes maxfjypj� jyqjg� As long as y is unique
 which is the non�degenerate
case
 this choice leads to a triangulation of the polygon R that lexicographically
minimizes the sorted vector of edge lengths� Another possible choice is the vertex
z that minimizes jzpj � jzqj� This vertex is automatically visible from p and from q

and might be useful in actual implementations because it is often considerably less
expensive to compute the distance between two points than between a point and a
line segment�

���� A Lemma on Polygon Retriangulation� This subsection presents a
technical lemma on retriangulating a polygonal region� It will �nd application in
Sections ��� and �
 and is also of independent interest� In order to conveniently
distinguish between boundary and non�boundary edges of a triangulation
 we call a
non�boundary edge a diagonal � Let X be a polygonal region
 t�X� a triangulation of
X
 and xx� a diagonal of X that is not in t�X�� We say that xx� generates t�X� if it
intersects every diagonal of t�X�� We give an algorithmic description of a particular
triangulation of X
 called the fan�out triangulation fx�X� with �fan�out� center x�
The triangulation is illustrated in Fig� ��

�� Connect x to all vertices of X that are visible from x� Call these vertices and
also the two vertices connected to x by edges of X neighbors of x�

�� Two neighbors of x are said to be adjacent if they are consecutive in the
angular order around x� Connect any two adjacent neighbors u� v of x
 unless
uv is an edge of X�

�� Every edge uv created in step � decomposes X into two parts
 and the part
that does not contain x is called the pocket Xuv of uv� Assume that u is the
endpoint of uv so that the other incident edge of the pocket
 uw
 is partially
visible from x� Recursively construct the fan�out triangulation of Xuv with
center v�

�x

�
�

�
�
y���

x�
�

� u
�w

�
y

�v

Fig� �� The polygonal region X is triangulated by fanning out from x� connecting adjacent

neighbors of x� and recursing in the thus created pockets� The illustration of this process is schematic

and ignores some of the inherent shape constraints for X�

We introduce some terminology� Among the diagonals of fx�X� we distinguish
between fan�out edges constructed in step � and cut�o� edges constructed in step �
of the above algorithm� Each call of the algorithm triangulates part of a pocket and
recurses in each component �pocket� of the remainder� We call a pocket V a child of
another pocket Z if V � Z and V is maximal� The original polygonal region
 X
 is
also called a pocket and forms the root of the tree de�ned by the child relation� This
tree is exactly the recursion tree of the algorithm� Each pocket Z is associated with
a fan�out center z� The maximum distance between z and any other vertex of Z is
called the width of Z�

�	



The lengths of the diagonals of fx�X� are constrained by the length of the longest
edge of X
 the length of the longest diagonal of t�X�
 and the width of X� More
speci�cally
 we prove the following result�

Fan�Out Lemma� Let X be a polygonal region� with 	� the length of its longest
edge� let t�X� be a triangulation of X� with 	� the length of its longest diagonal� let
xx� be a generator of t�X�� and let 	� exceed the maximum distance of x from any
vertex of X� Then jabj � maxf	�� 	�� 	�g for every diagonal ab of fx�X��

Proof� Note that the assertion follows if we prove that maxf	�� 	�� 	�g exceeds
the width of every pocket Z created during the algorithm� To see this notice that the
width of Z is an upper bound on the length of any fan�out edge emanating from the
center of Z� Each cut�o� edge uv that creates a child pocket V of Z is incident to
the fan�out center of V which implies that the width of V is an upper bound on its
length�

The proof of the upper bound on the widths of all pockets proceeds inductively

from the top to the bottom of the tree� The width ofX is less than 	�
 by assumption

and therefore also less than maxf	�� 	�� 	�g� For the inductive step consider a pocket
Z and a child V of Z� We show that the bound on the width of Z is inherited by V 

with some environmental in�uence from X and t�X�� Let z be the fan�out center of
Z
 	 the width of Z
 v the fan�out center of V 
 uv the cut�o� edge that creates V 

and w the other vertex of V adjacent to u�

First
 we prove juvj � maxf	�� 	g� By de�nition of fan�out center v lies inside
the triangle uwz� The ��Lemma thus implies juvj � maxfjuwj� juzjg
 and we get the
claimed inequality because juwj � 	� and juzj � 	� Second
 we show that maxf	�� 	g
exceeds the maximum distance between v and any vertex of V other than u� Let
y �� v� u be such a vertex and let yy� be a diagonal of t�X� that intersects xx��
Such a diagonal exists because xx� generates t�X�� It follows that yy� intersects
uv and that therefore v lies inside the triangle yy�z� Using the ��Lemma we get
jyvj � maxfjyy�j� jyzjg � maxf	�� 	g because jyy�j � 	� and jyzj � 	� The two bounds
together imply that the width of V is less than maxf	�� 	�� 	g
 and induction shows
that it is less than maxf	�� 	�� 	�g�

In Section � we will need a result as given in the Fan�Out Lemma
 but restricted
to the fan�out triangulation on one side of the generator� More speci�cally we need
the following corollary whose proof is almost the same as the one of the Fan�Out
Lemma�

Fan�Out Corollary� Suppose W is a polygonal region
 t�W � a triangulation
of W 
 xx� a generator of t�W �
 and X the part ofW on one side of xx�� Let 	� be the
length of the longest edge ofX
 	� the length of the longest diagonal of t�W �
 and let 	�
exceed the maximumdistance of x from any vertex of X� Then jabj � maxf	�� 	�� 	�g
for every diagonal ab of fx�X��

Remark� The Fan�Out Lemma can also be formulated without the assumption of
an initial triangulation� The condition on the diagonal xx� is now that each vertex of
X must be visible from some point of xx�� The parameter 	� needs to be rede�ned as
the maximum
 over all vertices y of X
 of the in�mum
 over all points a of xx� visible
from y
 of the distance between y and a�

���� Complete rng�Polygons� It will be convenient to assume that no two
diagonals and edges of the rng�polygon R are equally long� With this assumption
we can show that every triangulation of R
 and therefore also every minmax length
triangulation
 contains a ��edge� To see this take the longest edge pq of a triangulation�
It is not an edge of R because the third vertex of the incident triangle lies in its lune
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�pq � It is therefore a diagonal with incident triangles pqr and pqs
 and we have
r� s � �pq by maximality of pq� Since r and s lie on di�erent sides of pq it follows that
pq is a ��edge�

We prove below that there is a minmax length triangulation mlt�R� of R that
contains only one ��edge pq� By the argument above pq is the longest edge of mlt�R��
We call pq expandable if there are vertices r and s in �pq
 on di�erent sides of pq and
both visible from p and q
 so that E � fpr� qr� ps� qsg is a set of rng� and ��edges
and the quadrilateral prqs lies beneath the ��edges in E� It should be clear that once
we draw an expandable ��edge we can complete the triangulation using the algorithm
for incomplete rng�polygons �Section ����� The resulting triangulation uses no ��edge
other than pq which is thus the longest edge of the triangulation�

We �rst present the algorithm and then prove its correctness by showing that
every complete rng�polygon R has a minmax length triangulation that contains an
expandable ��edge� This
 however
 assumes that no two diagonals or edges of R have
equal length� If this non�degeneracy constraint is not satis�ed it is necessary to run
the algorithm with a simulation of non�degeneracy
 see �EdM�u��	� The side�e�ects of
this simulation and how they can be undone will be discussed in Section ����

Input� A complete rng�polygon R�

Output� A minmax length triangulation of R�

Algorithm� �� Find the shortest expandable ��edge pq
 together with
corresponding rng� and ��edges pr� qr� ps� qs�

�� Triangulate the incomplete rng�polygons de�ned by pr� qr� ps� qs�

As mentioned in Section ���
 step � takes time that is only quadratic in the number
of vertices of R� In Section � we will see how step � can be implemented so it runs
in quadratic time too� We now formulate and prove the lemma that implies the
correctness of the algorithm�

��Edge Lemma� Let R be a complete rng�polygon with no two diagonals or edges
of the same length� Then there exists a minmax length triangulation mlt�R� of R that
contains an expandable 	�edge�

Proof� We assume there is no minmax length triangulation of R that contains
an expandable ��edge� A contradiction to this assumption will be derived using an
extreme minmax length triangulation t�R� de�ned as follows� Let pq be the longest
edge of t�R� and let pqr and pqs be the incident triangles� By the non�degeneracy
assumption
 pq is the longest edge of every minmax length triangulation of R� Choose
t�R� so that the sum of heights of pqr and pqs �that is
 the distance of r from pq plus
the distance of s from pq� is a minimum� We prove below that pq is expandable and
that r and s are witnesses thereof
 that is
 the quadrilateral prqs lies beneath every
��edge in E � fpr� qr� ps� qsg�

Case �� Assume that prqs lies beyond at least one ��edge in E
 say beyond pr�
Then we can retriangulate R on this side of pr using the algorithm for incomplete
rng�polygons� Among others
 this algorithm removes edge pq
 and all new edges are
shorter than pr
 which itself is shorter than pq� This contradicts the assumption that
t�R� is a minmax length triangulation�

Case 	� Assume that one of the edges of E
 say pr
 is a ��edge
 and assume
without loss of generality that r � � �pq� Thus
 there is a non�empty set of vertices z
of R contained in the half�lune � �rp� By the Containment Lemma these vertices z lie
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in �pq 
 and by the Visibility Lemma a non�empty subset S� of the z are visible from
both p and r�

If a vertex z is in S� then either pz 	 rq �� 
 or rz 	 pq �� 

 see Fig� �� Let S�p

� �

�

p q

r

Fig� 	� The points z lie in the interior of � �rp � pqr� which consists of one or two connected

components depending on whether or not the angle at r in the triangle pqr is non�acute�

be the subset of vertices z of the �rst kind
 and let S�r be the subset of vertices of
the second kind� If S�p �� 
 choose x � S�p so that the number of edges of t�R� that
intersect px is a minimum� Next
 remove all edges from t�R� that intersect px and
denote by X the polygonal region thus generated� If
 on the other hand
 S�p � 

 then
choose x � S�r �� 
 so that the number of edges in t�R� that intersect rx is a minimum

again remove all edges from t�R� that intersect rx
 and denote the resulting polygonal
region by X� For convenient reference we set x� � p in the �rst case and x� � r in
the second� In either case
 we construct a retriangulation fx�X� of X by fanning out
from x
 as described in Section ����

We show below that the new triangulation of R has properties that contradict the
assumptions of case �� Most importantly
 the Fan�Out Lemma of Section ���
 together
with a few claims which we are about to prove
 imply that the edges of fx�X� do not
exceed pq in length�

Claim ���� Except for x� all vertices of X lie outside the half�lune � �rp�
Proof �of Claim ����� Let y�y�� y�y�� � � � � ym��ym be the edges
 sorted from x� to

x
 that are removed from t�R� when X is constructed� Suppose the claim is not true�
Then there is a smallest index j � m � � with yj�� � � �rp� Consider the polygonal
region Xj of t�R� that is created by removing the edges y�y�� y�y�� � � � � yj��yj from
t�R�� Since yj�� is the only vertex of Xj that lies in � �rp it is visible from p and from
r
 inside Xj � But this means that yj��x

� intersects fewer edges of t�R� than xx�� This
contradicts the choice of x and completes the proof of Claim ����

Claim ���� For each vertex y of X we have jxyj � jpqj�
Proof �of Claim ����� Clearly
 both px and rx are shorter than pq� So let y be

any vertex di�erent from p� r� x
 and let yy� be an edge of t�R� that intersects x�x�
Because of Claim ���
 x is visible within X from p and also from r
 so pyxy� and
ryxy� are convex quadrilaterals� Since y� lies outside � �rp it cannot lie inside both of
the circles �p� jprj� and �r� jprj�� If y� lies inside �r� jprj� then jpy�j � jpxj which implies
jyy�j � jxyj by the ��Lemma for pyxy�� Otherwise
 we have jry�j � jrxj which implies
jyy�j � jxyj by the ��Lemma for ryxy�� This concludes the proof of Claim ��� because
yy� is an edge of t�R� and is therefore no longer than pq�

Claim ��� and the Fan�Out Lemma imply that all diagonals of fx�X� are shorter
than pq� In the case where pq 	 rx �� 
 we now have a contradiction
 because the
retriangulating process of X eliminates pq and all edges of the resulting new triangu�
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lation of R are shorter than pq� In the case where rq 	 px �� 
 the new triangulation
still includes pq� We show below that the height of the new triangle incident to pq is
smaller than the height of pqr and thus arrive at a contradiction�

So assume rq 	 px �� 
� in this case pq is an edge of the boundary of X and p

is visible from x� If q is also visible from x then the new triangle incident to pq is
pqx with height jxx�j
 where x� � pq minimizes the distance to x� Analogously de�ne
r� � pq that minimizes the distance to r� Since jprj � jpxj we have jrr�j � jxr�j by the
��Lemma for prxr�� Together with jxr�j � jxx�j this implies jrr�j � jxx�j� If q is not
visible from x then pq belongs to the pocket Xuv de�ned by a cut�o� edge uv� We
have u � p
 w � q
 and the center v of Xuv lies inside pqx� So again
 either pqv is a
triangle
 and its height is less than that of pqx and therefore that of pqr
 or q is not
visible from v
 in which case the argument can be repeated� Eventually
 we arrive at
a triangle incident to pq whose height is less than that of pqr�

Remark� Recall that the assertion of the ��Edge Lemma is made under the condi�
tion that no two diagonals or edges of the complete rng�polygon R are equally long�
Indeed
 the assertion is false without this condition� Take
 for example
 two equi�
lateral triangles abc and abd and move d slightly towards the common edge ab� For
S � fa� b� c� dg we have rng�S� � fac� cb� bd� dag
 ab is a ��edge
 and cd is a ��edge�
So acbd is a complete rng�polygon� There is only one minmax length triangulation of
acbd
 namely the one obtained by drawing the diagonal ab� But ab is not a ��edge�

���� Undoing the Simulated Perturbation� For every �nite point set S in
�� there is an arbitrarily small perturbation S� so that S� satis�es convenient non�
degeneracy assumptions �see �EdM�u��	�� For a point p � S we denote its perturbed
version by p�� In the case of relative neighborhood graphs and minmax length triangu�
lations this means that no two pairs of points in S� de�ne the same distance� Because
the perturbation is arbitrarily small
 the non�degenerate properties of S are main�
tained
 that is
 for four not necessarily distinct points p� q� r� s � S with jpqj � jrsj we
have jp�q�j � jr�s�j�

Let us consider the e�ect of the perturbation on the computation of a minmax
length triangulation� Clearly
 if p�q� � rng�S�� then pq � rng�S�
 but not vice versa�
The fact that in the perturbed setting the relative neighborhood graph has potentially
fewer edges than in the unperturbed setting does not adversely in�uence the triangula�
tion algorithm since rng�S�� is still connected and spans S�� When the edges of ch�S��
are added and the polygonal regions de�ned by ch�S�� � rng�S�� are triangulated
 it
can happen that triangles a�b�c� are constructed whose unperturbed counterparts abc
are �at
 that is
 a� b� c are collinear� Although this is not a problem for the algorithm

it is somewhat distressing when this triangulation is interpreted as a triangulation of
S� The remainder of this section shows how to remedy this de�ciency�

Let t�S�� be a minmax length triangulation of S�
 and consider its unperturbed
version t�S�
 that is
 pq � t�S� i� p�q� � t�S��� A longest edge of t�S� is no longer
than a longest edge of any minmax length triangulation mlt�S� of S
 since mlt�S��

the perturbed version of mlt�S�
 is a valid triangulation of S� and would otherwise
contradict that t�S�� is a minmax length triangulation of S�� The reverse is also true

namely a longest edge of t�S� is no shorter than a longest edge of mlt�S�� We show
this by converting t�S� into a minmax length triangulation of S�

Consider the dual graph t��S�� of t�S�� and call a node a�b�c� 
at if a� b� c� are
collinear� Determine the connected components of the subgraph of t��S�� induced
by the set of all �at nodes� Each component corresponds to a collection of collinear
points in S
 interconnected by �at triangles
 see Fig� ��� Carry out the following steps
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Fig� �
� The �ve points in the middle of the left triangulation are the perturbed versions of �ve

collinear points in the right triangulation�

for one component at a time� Remove all edges of the �at triangles of the component

sort the corresponding points along the supporting line
 and add edges connecting
points that are adjacent in the sorted order� This produces regions bounded by more
than three edges
 as shown in Fig� ��� All vertices x of such a region are collinear

except for one vertex y which is connected to the �rst and last of the vertices x�
Triangulate this region by connecting y to all other vertices x� By the ��Lemma
the newly introduced edges are no longer than the longer of the two original edges
incident to y�

�� Finding the Shortest Expandable ��Edge� This section shows how the
�rst step of the algorithm for triangulating a complete rng�polygon R can be made
to run in time O�n��
 where n is the number of vertices of R� As in Section ���

we assume that no two diagonals or edges of R are equally long� so the shortest
expandable ��edge is unique� For convenience we also assume that no three vertices
of R are collinear�

Input� A complete rng�polygon R�

Output� The shortest expandable ��edge of R�

Algorithm� �� Determine the type of each diagonal pq of R�
�� For each ��edge pq �nd vertices p�� p��� q�� q�� that minimize the

counterclockwise angles � p�pq� � qpp��� � q�qp� � pqq��
 contingent upon
pp�� pp��� qq�� qq�� being rng�edges or ��edges with pq on their beneath
sides �see Fig� ����

�� Return the shortest ��edge pq for which pp�� qq�� pp��� qq�� are such
that p� � q�� or pp� 	 qq�� �� 

 and p�� � q� or pp�� 	 qq� �� 
�

�

�

�

�

�

�

p q

q�

p�

p��

q��

Fig� ��� By the choice of p� the counterclockwise angle � p�pq contains no ��edge with pq on its

beneath side� Symmetric statements hold for p��� q�� and q���
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Below we give the algorithmic details of the above steps�
Step �
 classifying diagonals� For each vertex p of R
 we compute all incident

diagonals pq and their angular order around p� Furthermore
 we determine whether
or not the half�lune � �pq contains any vertex of R� Recall that by the Visibility Lemma
� �pq contains a vertex visible from p if it contains a vertex of R at all� We can thus
base the decision whether or not � �pq is empty of vertices solely on the vertices visible
from p� As de�ned earlier
 pq is a ��edge if both half�lunes of pq contain vertices of R�
Otherwise
 pq is a ��edge and its beyond side is where the half�lune contains vertices
of R� We now show that the computation for p can be done in time O�n�� It follows
that O�n�� time su�ces for step ��

Computing the sorted sequence of diagonals pp�� pp�� � � � � ppm incident to p is
a standard operation for simple polygons and can be done in time O�n�
 see e�g�
�ElAv��	
 �JoSi�	
 �Lee��	� Let pp� and ppm�� be the two edges of R incident to p

and assume that p�� p�� p�� � � � � pm� pm�� is in a counterclockwise order around p� To
determine whether there is a vertex of R in the half�lune � �ppi for � � i � m
 we
scan the list p�� p�� � � � � pm�� once
 from smallest index to largest� During the scan we
maintain a stack of diagonals ppl whose half�lunes � �ppl are not yet found to contain
any vertex of R� Before pushing ppi onto the stack
 we remove all diagonals ppl whose
half�lunes contain pi� Using a straightforward extension of the Containment Lemma
we can show that the order of processing implies that the edges whose half�lunes
contain pi lie on top of the ones whose half�lunes do not contain pi� Thus
 the former
can be removed simply by repeatedly popping the topmost diagonal� When the scan
is complete
 the stack contains exactly all diagonals ppl whose half�lunes contain no
vertex of R� Since a diagonal can be pushed and popped only once each
 the entire
process takes constant time per diagonal�

Step �
 �nding rng� and ��edges� For each vertex p
 we scan pp�� pp�� � � � � ppm
in this order� In the process we keep track of the most recent rng�edge or ��edge p�p
whose beneath side is in the direction of the scan� Initially
 p�p � pp�� When a ��edge
pq is encountered then p�p is the edge pp� that belongs to pq� A symmetric scan is
carried out to �nd the edge pp�� that belongs to pq� The total time
 for all vertices p
of R
 is clearly O�n���

Step �
 returning the solution� Step � is computationally trivial� It takes time
O�n�� since constant time su�ces to test whether or not pp�� pp��� qq�� qq�� satisfy the
conditions of step �� However
 it is not trivial to see that the edge pq returned in
step � is also the shortest expandable ��edge� First note that the shortest expandable
��edge is no shorter than pq� This is because all ��edges shorter than pq fail the test
of step �� The following straightforward topological lemma implies that these ��edges
are not expandable�

Crossing Lemma� Let v�� v�� � � � � vn be the sequence of vertices of a simple poly�
gon� and let v�vi and vjvn be two diagonals� Then v�vi 	 vjvn �� 
 i� j � i�

Proof� The edge vjvn decomposes the polygon into two disjoint polygons with
vertex sequences v�� v�� � � � � vj� vn and vj � vj��� � � � � vn� If j � i then neither of the two
polygons has v� and vi on its boundary� It follows that v�vi crosses from one polygon
into the other
 and because v�vi is a diagonal
 this is only possible by crossing vjvn�
To prove the other direction we assume v�vi 	 vjvn �� 
 and observe that v� and vi
belong to di�erent polygons because there is no way that v�vi can enter the second
polygon and leave it again� Thus
 j � i�

So it remains to show that the edge pq computed in step � is indeed expandable�
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Expandability Lemma� The shortest 	�edge pq of R that satis�es the conditions
of step � is also expandable�

Proof� We show below that R can be triangulated on both sides of pq using
only edges shorter than pq� If we now assume that pq is not expandable we get a
contradiction to the ��Edge Lemma
 because pq is the longest edge of the triangulation
and all expandable ��edges are longer than pq�

We describe how to triangulate the part of R to the right of �pq� the other part is
symmetric�

Case �� p� � q��� Assume jqq��j � jpp�j� Then jqq��j � jpqj for otherwise p � � �q��q

and qq�� would neither be an rng�edge nor a ��edge with pq on its beneath side� If we
apply the triangulation algorithm for incomplete rng�polygons �Section ����
 once for
pp� and once for qq��
 we get a triangulation with the desired properties�

Case 	� pp� 	 qq�� �� 
� In this case pp� and qq�� are ��edges� Because pp� and qq��

intersect
 it must be that p� is closer to q than to p or that q�� is closer to p than to
q� Assume without loss of generality that jq��pj � jq��qj� As in case � we also have
jq��qj � jpqj
 but note that we do not necessarily have jpp�j � jpqj�

We now describe the triangulation process� It takes three steps illustrated in Fig�
�� and ���

�� Construct the triangulation tqq�� of R beyond qq��
 using the algorithm for
incomplete rng�polygons �see Fig� ����

�� Find the subset V of vertices ofR that lie inside the triangle pqq�� and compute
the convex hull C of V �fp� q��g� Add the edges of C that are diagonals of R
to the triangulation
 and connect q to all vertices of C �see Fig� ����

�� Step � creates untriangulated pockets Yuv
 one for each edge uv of C that is
a diagonal of R� Assume that u precedes v on the clockwise path from p to
q�� on the boundary of C� The pocket Yuv is triangulated as follows�
��� Set uL �� v if uv is a ��edge and pq lies on the beneath side of uv�

Otherwise
 �nd a vertex uL so that juuLj � jpqj
 uuL is a ��edge
 pq lies
beneath uuL
 and uuL does not intersect C� �The existence of such a
vertex uL will be established shortly��

��� Construct the triangulation tuuL of R beyond uuL
 again using the al�
gorithm for incomplete rng�polygons
 but retain only the triangles that
lie completely inside the pocket Yuv� Let Xuv denote the untriangulated
part of Yuv�

��� Construct the fan�out triangulation fv�Xuv��

p q

q��

p�

� �

�
�

�

�

Fig� ��� The shaded portion represents the triangulation beyond qq��� it forms part of the �nal

triangulation�
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Fig� ��� The shaded portion of the pocket Yuv represents the part of the triangulation tuuL
beyond uuL that is retained for the �nal triangulation� The remaining portion is triangulated by

fanning out from v�

The remainder of the proof establishes that all diagonals of the thus constructed
triangulation are shorter than pq� This is indeed obvious for tqq�� 
 as constructed in
step �� We now prove an easy extension of the ��Lemma which implies that all edges
created in step � are shorter than pq�

Claim �� Let abc be a triangle and d� e two points inside abc� Then jdej �
maxfjabj� jacj� jbcjg�

Proof �of Claim ��� Assume without loss of generality that e lies inside abd� The
��Lemma for abd implies jdej � maxfjadj� jbdjg
 and the same lemma for abc implies
maxfjadj� jbdjg� maxfjabj� jacj� jbcjg� This completes the proof of Claim ��

If uuL � uv then juuLj � jpqj which implies that all edges of tuuL
 as constructed
in step ���
 are shorter than pq� In this case the proof is complete as Xuv � 
 and no
edges are added to Yuv in step ���� For the remainder of the proof we thus assume
that uL �� v which is the case only if � �uv contains at least one vertex of R� We show
that a vertex uL satisfying the conditions of step ��� indeed exists
 and that all edges
of the fan�out triangulation fv�Xuv� are shorter than pq� Assume the sequence of
vertices of the part of R beyond pp� is p � u�� u�� � � � � q

�� � uK � � � � � um � p� �see Fig�
����

Claim �� There exists a ��edge uuL that satis�es the conditions of step ����
Proof �of Claim ��� Construct a triangulation tpp� of R beyond pp� using the

algorithm for incomplete rng�polygons� This triangulation contains at least one edge
uul disjoint from C� The main invariant of the algorithm �described in Section ����
implies that uul is a ��edge and pq lies on its beneath side� If juulj � jpqj then ul
satis�es the conditions for uL and we are done�

So assume juulj � jpqj� Similar to the Containment Lemma we can show that
the part of � �uv to the left of �uul is contained in � �uul and thus contains no vertex of
R� It follows that the vertices in � �uv must be among uK��� uK��� � � � � ul��� By the
Visibility Lemma at least one of these vertices is visible from u� Let U be the subset
of vertices that are visible from u �including the ones outside � �uv�
 and let uL � U

minimize the distance to u� We have juuLj � juvj � juulj and
 as above
 the part of
� �uuL to the left of �uul is contained in � �uul� Therefore
 this part contains no vertex
of R� The part of � �uuL to the right of �uul contains no vertex of R by the choice of
uL� It follows that uuL is a diagonal that satis�es the conditions of step ���
 which
completes the proof of Claim ��
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We now show two easy facts about tuuL before examining the edges constructed
by step ����

Claim �� If uiujuk� with i � j � k� is a triangle of tuuL then uiuk is its longest
edge�

Proof �of Claim ��� The �rst triangle constructed is uIuluL
 for some I � l � L

and its longest edge is uIuL because ul � �uIuL� The general assertion follows by
induction
 which completes the proof of Claim ��

Claim �� The edges of tuuL that intersect uv� sorted from u to v� are monotonely
decreasing in length�

Proof �of Claim ��� If uiujuk
 with i � j � k
 intersects uv
 u � uI and v � uJ 

then either I � i � j � i � � � J � k or I � i � J � j � k �see Fig� ���� In both
cases uiuk intersects uv closer to u than the other intersecting edge
 ujuk or uiuj� By
Claim �
 uiuk is longer than both
 which implies the assertion�

Note that if we delete edges from tuuL that intersect uv
 then we get a polygonal
region
 say Wuv
 of which Xuv is the part on one side of uv� We can thus interpret uv
as a generator of tuuL restricted to Wuv� Since the edges of Xuv and tuuL are shorter
than jpqj
 we just need to show that all vertices of Xuv are closer to v than jpqj
 and
the rest follows from the Fan�Out Corollary� Indeed
 we prove a stronger bound on
the maximum distance from v to a vertex of Xuv�

Claim �� For each vertex x of Xuv we have jvxj � jvuj�
Proof �of Claim ��� Consider the vertices of Xuv in turn from u � uI to v � uJ 


and assume inductively that jvuij � jvuj
 for all I � i � j� Consider uj and the
triangle uj��ujuk in tuuL � By Claim �
 we have juj��ukj � jujukj� If uj��ujvuk is
a convex quadrilateral then the ��Lemma implies jvuj��j � jvujj
 as desired� Other�
wise
 uj is contained in vukuj�� and therefore also in vuuj��� The ��Lemma implies
jvujj � maxfjvuj� jvuj��jg which completes the proof of Claim ��

This also completes the proof of the lemma�
The following theorem summarizes the algorithmic implications of all of this�
MinMax Length Theorem� A minmax length triangulation of a set of n points

in �� can be constructed in time O�n���
The algorithm that constructs a minmax length triangulation in the claimed

amount of time is a combination of the algorithms given in Sections �
 ���
 ���
 and
�� Its correctness has been demonstrated in Sections �
 ���
 and ��

�� Arbitrary Normed Metrics� An open convex region D � �� that is sym�
metric with respect to the origin can be used to impose a norm on ��� for a point
x � �� de�ne kxk � kxkD � 
 if x lies on the boundary of 
D � f
y � �� � y � Dg�
The norm can then be used to impose a �normed� metric on ��� for two points
x� y � �� de�ne jxyj � jxyjD � ky � xkD� D is the unit�disk of the metric and the
boundary of D is its unit�circle� Notice that the three requirements for a metric are
indeed satis�ed� First
 jabj � � i� a � b because kxk � � i� x is the origin� Second

jabj � jbaj because D is centrally symmetric and therefore kxk � k� xk� Third

the triangle inequality
 jacj � jabj� jbcj
 follows from the convexity of D� Examples
of normed metrics are the lp�metrics
 for � � p � �
 and the so�called A�metric
discussed in �WWW��	 for its applications to VLSI�

In this section we assume that the triangle inequality is strict unless a� b� c lie
on a line in this order� This is the case i� the de�ning convex region D is strictly
convex
 that is
 no line intersects the boundary of D in more than two points� This
assumption is convenient and in fact without loss of generality as every convex but
not strictly convex region D� can be approximated arbitrarily closely by a strictly
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convex region D� Computationally
 this approximation can be simulated by de�ning

kxkD � kxkD� � �kxk��

where kxk� is the Euclidean or l��norm and � is an arbitrarily small but positive real
number� Clearly
 if � is su�ciently small then a minmax length triangulation under
D is also a minmax length triangulation under D��

In the remainder of this section we point out where the developments in Sections
� through � need to be adjusted when the Euclidean metric is replaced by an arbitrary
normed metric� Most importantly
 the graphs de�ned in Section � can be extended
in a natural way� More speci�cally
 the de�nition of ch�S� remains unchanged as it
makes no reference to any distance notion� If we now stipulate that �circle� means
a homothetic copy of the unit�circle as de�ned above and �jabj� means the distance
under the normed metric de�ned by D then the de�nitions of mlt�S�
 dt�S�
 rng�S�

andmst�S� can be taken verbatim� The minimumspanning tree
 mst�S�
 is connected
and spans S
 and the Delaunay triangulation
 dt�S�
 is plane because any two circles
intersect in at most two points� Since we still have mst�S� � rng�S� � dt�S� we
conclude that all three graphs are connected and plane and they span S� We remark
that these three graphs are not necessarily plane if D is not strictly convex�

As mentioned in the introduction
 the developments in Sections � through � are
all based on a small number of basic facts
 namely the distance relations expressed
by the ��Lemma and the �Lemma
 the convexity of the lune of an edge
 and the
straightness of the bisector of two points� The ��Lemma and the �Lemma are
direct consequences of the triangle inequality and hold in the stated form �with strict
inequality� for arbitrary normed metrics as long as D is strictly convex� The lune
of two points is clearly convex as it is the intersection of two homothetic copies of
D� Unfortunately
 the bisector of two points p �� q
 �pq � fx � jxpj � jxqjg
 is not
necessarily straight� Nevertheless
 �pq is still a simple curve that partitions �� into
two unbounded regions
 called half�planes
 one containing p and the other q� The two
half�planes are star�shaped with respect to p and q
 that is
 any line through p or q
intersects �pq in at most one point� In addition
 �pq is symmetric with respect to p�q

�

because D is centrally symmetric�
There is only one place where the straightness of the bisector is used in a sub�

stantial way
 and that is in the proof of Fact � in Section �� We restate this fact and
show how to prove it without the use of the straightness of the bisector� We suggest
the reader go back to Section � and remind him� or herself of Facts � and �� Recall
in particular that bd �b�d�� is said to be switchable if ac �a�c�� is no longer than the
longest edge of the triangulation t�S��

Fact �� It is not possible that both bd and b�d� are non�switchable�
Proof� As established in Fact �
 if bd is non�switchable then a and d are contained

in the open half�plane de�ned by �pq that contains q� Symmetrically
 if b�d� is not
switchable then a� and d� are contained in the other open half�plane� Unlike in the
Euclidean case
 it is possible that ad and a�d� intersect �pq � It is thus also possible that
ad precedes a�d� in the order of edges sorted from p to q by their intersections with
pq �see Fig� ���� Below we argue that if this is the case then ad �and symmetrically
a�d�� is switchable� In particular
 we show jadj � japj which
 together with japj � jacj
from Fact �
 implies that ad is switchable�

One characteristic of the described situation is that ad intersects �pq in at least
one point inside the lune of pq� Let x be such an intersection point closest to a� If
pq 	 dx �� 
 then pdqx is a convex quadrilateral with jpdj � jpqj by construction�
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Fig� ��� Although a and d lie on q	s side of the bisector and a� and d� lie on p	s side� ad

intersects pq closer to p than a�d� does� This is not possible if the bisector is a line as for the

Euclidean metric� see Fig� 
�

The ��Lemma thus implies jdxj � jqxj � jpxj� It follows that jadj � jaxj � jdxj �
jaxj�jpxj� japj� On the other hand
 if pq	dx � 
 then consider the point y � ad	pq
and note that jpyj � jqyj� We derive jdyj � jpyj from jpyj� jdyj � jpdj � jpqj � �jpyj�
Therefore
 jadj � jayj� jdyj � jayj� jpyj � japj as desired�

All other steps of the proof of the Subgraph Theorem go through unchanged for
arbitrary normed metrics� We thus get the following generalization�

General Subgraph Theorem� Let S be a �nite point set in �� equipped
with a normed metric with strictly convex unit�disk� Then S has a minmax length
triangulation mlt�S� so that rng�S� � mlt�S��

So the algorithm for computing a minmax length triangulation is clear  it is the
same as for the Euclidean metric
 only that the length of edges is now measured in
terms of a normed metric possibly di�erent from the Euclidean metric� We assume
that the length of an edge in this metric can be computed in constant time� A careful
reexamination of Sections � and � shows that the specialized polygon triangulation
algorithm works also in the context of arbitrary normed metrics� We remark
 how�
ever
 that it includes the distance computation between a point and a line segment�
Although it is certainly reasonable to assume that this can be done in constant time
too
 the observation in the remark at the end of Section ��� can be used to avoid
this computation� We thus have the following algorithmic result which generalizes
the MinMax Length Theorem of Section ��

General MinMax Length Theorem� Let S be a set of n points in �� equipped
with a normed metric with strictly convex unit�disk� Given the relative neighborhood
graph� a minmax length triangulation of S can be constructed in time O�n���

The algorithmic result extends to arbitrary normed metrics� As mentioned above

a norm with non�strictly convex unit�disk can be simulated by one with strictly convex
unit�disk� It follows that the quadratic time bound also holds for arbitrary normed
metrics� The result stated in the General MinMax Length Theorem raises the question
of how fast rng�S� can be constructed� The trivial algorithm tests all

�
n
�

�
edges
 each

in time O�n�
 and therefore takes time O�n��� Faster algorithms are known for the
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lp�metrics where O�n logn� time su�ces �see �JKY��	 and �Lee��	��

	� Discussion� The main contribution of this paper is the �rst polynomial time
algorithm for computing a minmax length triangulation of a set S of n points in ���
Given the relative neighborhood graph of S
 the algorithm takes time O�n��� The
algorithm works for arbitrary normed metrics� The polynomial time bound follows
because the relative neighborhood graph of S can be found in polynomial time� The
question remains whether or not a minmax length triangulation can be computed in
less than quadratic time�

The results of this paper are an out�growth of our general e�orts to understand
triangulations that optimize length criteria� There are
 however
 still many related
problems whose complexities remain open� These include the problem of minimizing
the entire vector of edge�lengths
 the minimum length triangulation problem
 and the
maxmin length triangulation problem�
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