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�� Introduction� Let S be a �nite set of points in the Euclidean plane� A
triangulation of S is a maximally connected straight line plane graph whose vertices
are the points of S� By maximality� each face is a triangle except for the exterior
face which is the complement of the convex hull of S� Occasionally� we will call a
triangulation of a �nite point set a general triangulation in order to distinguish it
from a constrained triangulation which is a triangulation of a �nite point set where
some edges are prescribed� A special case of a constrained triangulation is the so
called polygon triangulation where S is the set of vertices of a simple polygon and
the edges of the polygon are prescribed� In this paper only the triangles inside the
polygon will be of interest�

For a given set of n points there are� in general� exponentiallymany triangulations�
Among them one can choose those that satisfy certain requirements or optimize cer
tain objective functions� Di�erent properties are desirable for di�erent applications in
areas such as �nite element analysis ��� �� 	��� computational geometry �	��� and sur
face approximation ��	� ���� The following are some important types of triangulations
that optimize certain objective functions�

�i
 The Delaunay triangulation has the property that the circumcircle of any
triangle does not enclose any vertex ����

�ii
 The constrained Delaunay triangulation has the same property except that
visibility constraints depending on the enforced edges are introduced �����

�iii
 The minimum weight triangulation minimizes the total edge length over all
possible triangulations of the same set of points and prescribed edges ���� ����

It is known that the Delaunay triangulation maximizes the minimum angle over all
triangulations of the same point set �		�� This result can be extended to a similar
statement about the sorted angle vector of the Delaunay triangulation ��� and to
the constrained case ����� The Delaunay triangulation of n points in the plane can
be constructed in time O�n logn
 ��� ���� and even if some edges are prescribed its
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constrained version can be constructed in the same amount of time �	��� There is no
polynomial time algorithm known for the minimumweight triangulation if the input
is a �nite point set� but dynamic programming leads to a cubic algorithm ���� if the
input is a simple polygon�

In this paper� we study the problem of constructing a triangulation that minimizes
the maximum angle� over all triangulations of a �nite point set� with or without pre
scribed edges� We call such a triangulation a minmax angle triangulation� Although
avoiding small angles is related to avoiding large angles� the Delaunay triangulation
does not minimize the maximumangle � four points are su�cient to give an example
to this e�ect� Triangulations that minimize the maximum angle have potential appli
cations in the area of �nite element and surface approximation ��� 	� ��� Our main
result is summarized in the following statement�

Main Theorem� A minmax angle triangulation of a set of n points in the plane�
with or without prescribed edges� can be computed in time O�n� logn
 and space O�n
�

Curiously� our algorithm has the same complexity for point sets and for simple
polygons� Prior to this paper no polynomial time algorithm for constructing a minmax
angle triangulation for a �nite point set was known� On the other hand� if the input
is a simple ngon then a cubic time and quadratic space solution can be derived
simply by substituting the angle criterion for the edgelength criterion in the dynamic
programming algorithm of ����� Thus� it seemed that the problem for simple polygons
is much simpler than for point sets� Indeed� our attempts to apply popular techniques
such as local edge�ipping ���� ��� divideandconquer �	�� and planesweep ��� to
construct a minmax angle triangulation for a point set were not successful� see also
�����

Instead� we solve the problem by an iterative improvementmethod based on what
we call the edge�insertion scheme� An edge�insertion step adds some new edge qs to
the current triangulation� deletes edges that cross qs� and retriangulates the resulting
polygonal regions to the left and the right of qs� The di�erence to the simpler edge
�ip operation is that qs can cross up to a fraction of the current edges� whereas an
edge added in an edge�ip crosses only one edge� This di�erence turns out to be
crucial in the case of minimizing the maximum angle� the edge�ip scheme can get
stuck in a nonglobal optimum ���� whereas the edgeinsertion scheme is powerful
enough to always reach the optimum� A proof of the latter property is su�cient
to design a polynomial time implementation of the edgeinsertion scheme� Clever
strategies to �nd an edge qs that leads to an improvement of the current triangulation
and to retriangulate the created polygonal regions are needed to obtain the claimed
O�n� logn
 time bound�

Section 	 presents the algorithm to construct a minmax angle triangulation� and
section � proves the crucial piece needed to show that the algorithm is correct� Section
� gives the algorithmic details that lead to an e�cient implementation of the algo
rithm� Section � discusses the extensions to the constrained case and to the problem
of lexicographically minimizing the sorted angle vector� Finally� section � presents
experimental results� and section � mentions some related open problems�

�� The Global Algorithm� In general� there is more than one minmax angle
triangulation for a given set of points� Below we outline an algorithm that constructs
one such triangulation for a set S of n points in the plane� The maximum angle of a
given triangulation A is denoted by ��A
�
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Construct an arbitrary triangulation A of S�
repeat
�M�
 Find a largest angle � pqr of A�
�M	
 Apply the ear cutting procedure �section �
 to modify A by

adding a �suitable� edge qs to A� where s � S � fp� q� rg and pr � qs �� ��
removing edges that intersect qs �this step creates polygons P and R
which have qs as a common edge
� and

constructing triangulations P of P and R of R so that ��P
� ��R
 � � pqr�
until the ear cutting procedure fails to �nd such a qs�

To show that this algorithm is correct� we need the following two lemmas and
some forward references to the cake cutting lemma of section � and the ear cutting
procedure of section �� We de�ne � xsy � � if any two of the three points are identical�

Lemma ���� If xy is an edge in a triangulation A of a point set S then ��A
 �
maxs�S � xsy�

Proof� Let t be a point so that � xty � maxs�S xsy� Thus no points of S lies
inside the triangle xty� Clearly� if xty is a triangle in A then there is nothing to be
proved� Otherwise� there exists a triangle utv in A so that either u � x� v � S�fy� tg�
and uv intersects ty or u� v � S � fx� y� tg and uv intersects both xt and ty� In both
cases� ��A
 � � utv � � xty�

The proof of the next lemmamakes use of the cake cutting lemma to be presented
in section �� We suggest that the reader reads the statement of that lemma �Lemma
���
 and then returns to the current discussion leading to Lemma 	�	� We call a
triangulation B of S an improvement of A if

�i
 ��B
 � ��A
� or
�ii
 ��B
 � ��A
� every triangle abc in B with � abc � ��B
 is also a triangle in

A� and B has at least one fewer maximum angle than A�
The next lemma asserts that the algorithm makes progress as long as the current
triangulation is not yet a minmax angle triangulation� It does this by proving that
there is at least one suitable edge qs� In its current version� the algorithm can be
thought of as trying all possible edges going out of q� so if there exist edges qs that
lead to an improvement of A� then the algorithm �nds one such edge�

Lemma ���� Assume that A is not yet a minmax angle triangulation� Then an
iteration of the repeat�loop constructs an improvement of A�

Proof� Step �M�
 of the repeatloop �nds a triangle pqr in A so that � pqr � ��A
�
The main observation is that there is some edge qs that intersects pr and belongs to a
minmax angle triangulation T of S� This is because ��T 
 � ��A
 implies that � pqr
cannot exist in T � and consequently� pr �� T �by the previous lemma
� Therefore�
there exists a point s � S � fp� q� rg such that qs � pr �� � and qs is an edge of T �
With this edge qs� the cake cutting lemma �section �
 ensures that there are polygon
triangulations of P and R such that the largest angle of any triangle within P and
R is still smaller than � pqr� Section � shows that the ear cutting procedure of step
�M	
 indeed �nds such a point s and produces triangulations P and R of P and R

such that ��P
� ��R
 � � pqr�
The above two lemmas can now be used to analyze the running time of the

algorithm� First� we address the number of iterations of the repeatloop which is �
plus the number of successful iterations of step �M	
�

Lemma ���� The above algorithm reaches a minmax triangulation after at most
O�n�
 iterations of the repeat�loop�
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Proof� Each iteration produces a triangulation with a smaller maximum angle
than before� or with fewer maximum angles of the same size� Since the number of
di�erent triangulations is �nite an optimummust be reached� To get an upper bound
on the number of iterations notice that the edge pr removed from A during some
iteration will not reappear in the future� The claim follows because S allows only

�
n

�

�

di�erent edges�
We are now ready to argue that the above algorithm runs in time O�n� logn


and space O�n
� There are two data structures needed for the algorithm� First�
the quadedge structure of Guibas and Stol� ��� is used to represent A� it permits
common operations� such as removing an edge� adding an edge� and walking from
one edge to the next� in constant time each� Second� the angles of A are stored in a
priority queue that admits insertions� deletions� and �nding the maximum� Standard
implementations support each such operation in time O�logn
� see e�g� ���� The space
needed for both data structures is O�n
�

With these preliminaries we can give the analysis of the algorithm� By Lemma
	��� the number of times the priority queue is consulted to get a largest angle is O�n�
�
which implies that step �M�
 takes total time O�n� logn
� Section � will show that
the ear cutting procedure performs only a total of O�n�
 operations on the quadedge
structure� each in constant time� and only O�n�
 insertions into and deletions from
the priority queue� each in time O�logn
� We conclude that the running time of the
algorithm is O�n� logn
 as claimed�

�� The Cake Cutting Lemma� The result of this section is a technical lemma
which is nevertheless the heart of this paper� It assures that for some edge qs the
generated regions� P and R� can be triangulated without angles that are too large�
We �rst discuss the shape of these regions and then state and prove the lemma�

The regions P and R are generated in step �M	
 of the algorithm by adding an
edge qs and removing all edges that intersect qs� It follows that P �and by symmetry
R
 is very similar to a simple polygon� that is� it is simply connected and bounded
by straight line edges� The only di�erence is that there can be edges surrounded by
P on both sides� these are the edges contained in the interior of the closure of P �see
Figure �
� To simplify the forthcoming discussion �and also in the implementation of
the algorithm
 we treat each such edge as if it consisted of two edges� one for each
side� E�ectively� this means that we can talk about P and R as if they were simple
polygons�
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Fig� �� Regions P and R�

With this note we now state and prove the cake cutting lemma� The intuition
behind the proof is that we look at a piece of an optimal triangulation T and argue
about its edges� Keep in mind� however� that during the algorithm we have no way
of knowing what T really is� we only know that it exists�

Lemma ���� Let T be a minmax angle triangulation of S� A a triangulation of
S with ��A
 � ��T 
� pqr a triangle in A so that � pqr � ��A
� and qs an edge in





T that intersects pr� Let P and R be the polygons generated by adding qs to A and
removing all edges that intersect qs� Then there are triangulations P and R of P and
R so that ��P
� ��R
 � ��A
�

Proof� We prove the claim for P � it follows for R by symmetry� Imagine we have A
and T on separate pieces of transparent paper that we lay on top of each other so that
the points match� Following step �M	
 of the algorithm we add qs to A and remove
intersecting edges from A� thus creating P and R� Next� we clip everything outside
P � In A only P without intersecting edges is left� and in T there will in general be
edges that cut through P � By assumption� qs is also in T which implies that none of
these edges meets qs� We de�ne a clipped edge as a connected component of such an
edge of T intersected with P � Since P is not necessarily convex� some clipped edges
can belong to the same edge of T � Given a point x on the boundary of P � let the
path from x to q �or x to s
 be the part of the boundary between x and q �or x and
s
 that does not contain qs� We have four classes of clipped edges xy� see Figure 	�

I� Both endpoints� x and y� are not vertices of P and thus lie on edges of P �
II� Both endpoints are vertices of P �
III� Endpoint x is a vertex of P � y is not� and y lies on the path from x to s�
IV� The same as class III except that y lies on the path from x to q�
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Fig� �� The class I edges in this example are eg and mv� the class II edges are cj� ck� cz and

sp� the class III edges are cl and cw� and the class IV edges are jh� jd� un� zb and sa�

At any vertex x of P � the clipped edges with one endpoint at x de�ne angles at x which
are all smaller than ��A
� because the clipped edges come from T and ��T 
 � ��A

holds by assumption� The only disadvantage of the partition of P de�ned by the
clipped edges is that some of their endpoints lie on edges of P rather than at the
vertices� We will now construct a triangulation of P based on the clipped edges� It
proceeds step by step where each step either removes or rotates a clipped edge or
introduces a new edge�

�� All class I edges are removed� This does not harm any angle�
	� All class II edges remain where they are�
�� Let xy be a class III edge with y on the edge �� of P � where � precedes �
on the path from x to s� We replace xy by x��

Note �rst that x� is indeed a diagonal of P � Otherwise� it intersects the boundary of
P � which implies that either x or � is not visible from qs� This is a contradiction to
the way P is constructed� Note second that the angle at x that precedes xy in the
counterclockwise order increases in step �� Still� the angle formed by x� is strictly
contained in an angle at x in A because all edges of A that intersect P also intersect
qs� It follows that the angle formed by x� is smaller than ��A
� Another issue that

	



comes up is that there can be class IV edges x�y� with y� on the same edge �� of P �
these edges now intersect x�� To remedy this situation we replace x�y� by x�x� By the
same argument as above x�x is a diagonal of P � and the angle at x� that precedes x�y�

in the clockwise order and which increases as we replace x�y� by x�x remains smaller
than ��A
�

�� If xy is a class IV edge with y on the edge �� of P � where � precedes � on
the path from x to q� then we replace xy by x��

�� After steps � through � we have a partial triangulation of P which we complete
by adding edges arbitrarily� This �nishes the construction of P�

We have ��P
 � ��A
 since we started out with all angles smaller than ��A
� each
time an angle increases it remains smaller than ��A
 as argued above� and step �
decomposes angles thus creating only smaller angles�

Remark� Note that the only property of T used in the proof of the cake cutting
lemma is that ��T 
 � ��A
� The lemma thus also holds if we replace T by an
arbitrary triangulation B of S that satis�es ��B
 � ��A
� In fact� it su�ces if B is an
improvement of A and pqr is not a triangle in B�

�� The Ear Cutting Procedure� The cake cutting lemma in section � shows
that if A is not yet a minmax angle triangulation and qs is an edge in T � chosen by
the algorithm to improve A� then there are triangulations of the generated polygons
P and R with all angles smaller than � pqr� The two questions that remain are how
to �nd such an edge qs and how to quickly triangulate P and R� One obvious way to
�nd qs �not necessarily in T but in an improvement of A
 is to try all possible points
s with qs�pr �� �� For each such s we add qs to A and remove all edges that intersect
qs� The thus created polygons P and R are triangulated with minimum largest new
angle using dynamic programming� If the largest new angle is smaller than � pqr we
have an improvement of A and thus a desired qs�

Apparently� the implementation of an iterative step sketched in the above para
graph is rather ine�cient� We improve the performance by a more clever way to
search for an appropriate point s and by a fast procedure for triangulating P and
R� The two tasks are woven together to the extent that it is not advisable to look
at them as separate steps� For a chosen point s we attempt to triangulate P and R

with all angles smaller than � pqr� If this fails we get some guidance where to look
for a better point s� Following this guidance� a next point s is chosen so that we
can reuse part of the work done during the unsuccessful triangulation attempt� The
fundamental notion in all of this is that of an ear of a polygon triangulation�

���� Ears� An ear in a polygon triangulation is a triangle bounded by two poly
gon edges and one diagonal� It is easy to show that any triangulation of a simple
polygon with more than three vertices has at least two ears �����

In order to e�ciently triangulate P and R� with all angles smaller than � �
��A
 � � pqr� we need two properties� The �rst guarantees that no expensive testing
is necessary to recognize when an edge is a diagonal�

Lemma ���� Let P � be a polygon obtained from P by repeatedly removing ears
not incident to qs� If a� b� c are three consecutive vertices of P � with fq� sg �� fa� b� cg
and � abc � � then ac is a diagonal of P ��

Proof� By construction of P each of its vertices can be connected by a straight
line segment within P to a point on qs� This property is maintained whenever we
remove an ear not incident to qs� so it also holds for P �� In particular� it holds for the
vertices a� b� and c of P �� The edge ac can avoid being a diagonal only if it intersects
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the boundary of P � �it cannot lie outside P � because � abc � �
� But this contradicts
the above property for either a or c or for both�

By symmetry� Lemma ��� also holds for R� It is now easy to identify ears because
only one angle has to be checked� This is because the angles at a and c inside abc are
always smaller than � as they are properly contained in angles of A� Thus� all three
angles of abc are smaller than � if and only if � abc � ��

The second property we need is that it does not matter which ears we remove�
and in what sequence we remove them� as long as their angles are small enough�
This property is implied by the following lemma whose proof is omitted because it is
identical to that of the cake cutting lemma�

Lemma ���� Let P � be a polygon obtained from P by repeatedly removing ears not
incident to qs� If qs is an edge of T then there exists a triangulation of P � without
angles larger than or equal to ��

The two lemmas suggest that we triangulate P andR simply by repeatedly �nding
consecutive vertices a� b� c� with � abc � �� and removing the ear abc� We remark that
this strategy can also be used to get an inductive proof of the cake cutting lemma�
The next two subsections show how ear cutting and the search for an appropriate
point s can be combined to yield an e�cient implementation of an iterative step�

���� How to Cut� The way we search for a point s �section ���
 guarantees a
certain property of the polygons P and R which simpli�es their triangulation by ear
cutting� To be accurate we should mention that at the time we start the triangulation
process for P and R� some ears will already have been removed as a result of earlier
attempts to triangulate polygons generated for other points s� Consistently with our
earlier notation� we therefore denote the two polygons that we attempt to triangulate
by P � and R�� We state the mentioned property as an invariant of the algorithm after
introducing some notation�

As justi�ed above we pretend that P � and R� are simple polygons� by construction
they share the edge qs� Let k � 	 be the number of vertices of P � and m � 	 the
number of vertices of R�� and label them consecutively as q � p�� p�� � � � � pk� pk�� � s

and q � r�� r�� � � � � rm� rm�� � s �see Figure �
� De�ne �i � � pi��pipi�� for � � i � k

and 	j � � rj��rjrj�� for � � j � m� We can now state the property of P � and R��
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Fig� �� The circular arcs indicate angles that are known to be at least as large as ��

Invariant� �i � � for all � � i � k and 	j � � for all � � j � m�

This implies that pk��� pk� s are the only three vertices that possibly de�ne an
ear of P � that is not incident to qs �provided k � �
 and has all three angles smaller
than �� Symmetrically� rm��� rm� s are the only such three vertices of R�� If �k � �

then pk��pks is indeed such an ear and we can remove it from P �� This operation
decreases �k��� the angle at pk��� and leaves all other �i unchanged� Thus� P � still
satis�es the invariant after setting k �� k � �� Similarly� the invariant is maintained
if we remove rm��rms from R� and set m �� m� ��
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We now describe this process more formally as a procedure that alternates be
tween removing an ear from P � and removing an ear from R�� It either completes its
task of triangulating P � and R� or it stops because it encounters a situation where
�k � � or 	m � �� To avoid repetition we separate out the code that tests an angle
and removes an ear if the angle is small enough�

procedure cutearP��
if �k � � then

if k � � then add the edge pk��s to the triangulation endif�
remove the triangle pk��pks from P � and set k �� k � �

else set stop �� true
endif�

Similarly� we de�ne a procedure cutearR� which either removes rm��rms from
R� or raises the �ag by setting stop �� true� The attempt to triangulate P � and R� �rst
alternates between the two polygons and� if one polygon is successfully triangulated�
attempts to complete the polygon that remains�

stop �� false�
while k � � and m � � and not stop do
cutearP�� if not stop then cutearR� endif

endwhile�
while k � � and not stop do cutearP� endwhile�
while m � � and not stop do cutearR� endwhile�

If the procedure �nishes without raising the �ag �stop � false
 then we must
have k � m � � and the triangulation is complete� Otherwise� the �ag is raised either
while testing P � or while testing R� �so we should really have used two �ags to be able
to distinguish the two cases � and we pretend we did
�

Assume the �ag was raised because of �k � �� Let 
qs be the halfline that starts
at q and goes through s� and let p� be the point among p�� � � � � pk so that � p

�qs is a
minimum� Note that p� is not necessarily equal to pk� but p� � pk if P � is convex� We
have the following lemma which will be useful in searching for a new point s�

Lemma ���� Assuming �k � �� there is no point t � S so that qt is an edge in a
minmax angle triangulation T of S� qt � pks �� �� and qt � p�s �� ��

Proof� Suppose there is a point t that contradicts the assertion� Because qt�pks ��
�� this edge qt generates a polygon P �� so that q � p�� p�� � � � � pk is a contiguous subse
quence of its vertices �after removing appropriate ears
� Let pk��� � � � � pk��� pk���� � t

be the other vertices of P ��� By assumption we have � pi��pipi�� � � for � � i � k���
Furthermore� � pk��pkpj � � for all k � � � j � k�� � � because all these angles are
larger than �k� the angle at pk in P �� Hence� any attempt to triangulate P �� by re
moving ears �not incident to qs with angles all smaller than �
 must fail to cut o�
ears at pi for all � � i � k�

Remark� Similar as in the remark after the cake cutting lemma we can argue
that Lemma ��� is also true if we replace T by an arbitrary triangulation that is an
improvement of A�

Lemma ��� suggests that the search for a new s continue between 
qr� and 
qs if
the �ag is raised while testing P �� where r� is the counterpart of p� in R� and s is
the old s� Thus� all ears removed from P � are safe and do not have to be considered
again� However� all ears removed from R� have to be added back because they will
intersect any future edge qs� Simultaneously� the value of m has to be adjusted� The
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amount of time needed to add these ears back in is proportional to the number of ears
removed from P �� because the ear cutting alternates between P � and R�� Symmetric
actions are in order when the �ag is raised while testing R��

���� How to Search� Let us go back to the triangulation A of S that is not
yet a minmax angle triangulation� and as usual let p� q� r be the points so that pqr
is a triangle in A and � pqr � � � ��A
� The �rst vertex s that we test is the third
vertex of the other triangle of pr �if no such triangle exists then pr is an edge of the
convex hull of S and no appropriate point s exists
� Thus� we add qs and remove
pr� If the new angles at p and r are both smaller than �� then we are done� If
� qps � � and � qrs � � then� by Lemma ���� the edges we should test must intersect
ps� Symmetrically� if � qps � � and � qrs � � then we must search for edges that
intersect sr� If both angles are at least � then no appropriate edge exists�

We now generalize and formalize this idea� For given polygons P � and R� we
de�ne vertices p� and r� as above� and we denote the open wedge between 
qp� and

qr� by W � This wedge will get progressively smaller as we proceed with the search�
and only points s within the wedge will be considered as endpoints of new edges qs�
Initially� p� � p and r� � r� We are now ready to describe the algorithm that searches
for an appropriate point s�

Input� A triangulation A of S with maximum angle � pqr � � � ��A
�
Output� An improved triangulation or a message that the maximumangle cannot be
decreased� In the latter case� the input triangulation is a minmax angle triangulation
of S�
De�ne� third�a� b
 is the vertex c of the triangle abc so that q and c lie on opposite
sides of the line through a and b� If such a vertex does not exist� which is the case
if ab is an edge of the convex hull of S� then third�a� b
 is unde�ned� As before� W
denotes the open wedge de�ned by p�� q� and r��

Initialize k �� �� p� �� p� �� p� m �� �� and r� �� r� �� r�
loop
if third�pk� rm
 is not de�ned then
return the message that the maximum angle cannot be decreased and stop�
else
set s �� third�pk� rm
 and remove pkrm from A�
if s �W then
add qs to A and attempt the triangulation of P � and R� as described in x��	�
case �� The attempt succeeds� Return the new triangulation and stop�
case �� The �ag was raised while testing P �� Set k �� k � � � pk �� p� �� s�
case �� The �ag was raised while testing R�� Set m �� m � � � rm �� r� �� s�

else �i�e� s �� W 

if srm intersects W then
set stop �� false� while not stop do cutearP� endwhile�
set k �� k � � and pk �� s�

else �i�e� spk intersects W 

set stop �� false� while not stop do cutearR� endwhile�
set m �� m � � and rm �� s�

endif
endif

endif
forever�

�



We would like to point out a subtlety of the algorithm needed to prove its cor
rectness� That is� the polygons P � and R� de�ned by any edge qs are obtained from A
by removing only edges that intersect qs� Of course� some edges not in A have been
added already to remove some ears� In other words� P � is the polygon P �as de�ned
in section 	
 with some ears removed� and the same is true for R� and R�

���� The Final Analysis� The running time of an iterative step �the above
algorithm
 is proportional to the number of removed ears� Because of the alternation
between removing an ear from P � and one from R�� only at most one more than half
of the removed ears are added back to the polygon� This is also true if one polygon is
completely triangulated while ears are still removed from the other polygon� because
in this case only the ears of the former polygons need to be added back in� and their
number is smaller than the number of ears cut o� from the other polygon� It follows
that the total number of removed ears is O�n
� A single iteration therefore takes
only O�n
 time� Together with Lemma 	��� which states that there are only O�n�

iterations� this implies a cubic upper bound on the timecomplexity of our algorithm
�if implemented without priority queue
�

Below we argue that its running time is actually O�n� logn
� To achieve this
bound it is necessary to store the angles of the current triangulation in a priority queue�
for otherwise �nding all maximumangles costs time ��n�
� The crucial observation is
that the time spent in an iterative step is proportional to the number of edges in the
input triangulation that intersect the new edge qs� Each such edge has been removed
and we argue that it will never be added again because every future triangulation will
have an edge qt that intersects pkrm� the last edge before s� First note that every
future triangulation is an improvement of A� By Lemma ��� and the remark following
it� every improvement of A has an edge qt in the �nal wedge W as maintained by the
algorithm� Both� pk and rm� lie outside W �possibly on its boundary
 and the edge
pkrm intersects W � The claim follows because all points of W �S lie beyond pkrm as
seen from q� This implies the O�n� logn
 bound because we have only

�
n

�

�
� O�n�


edges to work with� It should be noted that the maintenance of the priority queue
storing the angles is the sole reason for the logn term in the O�n� logn
 bound� all
other operations take total time O�n�
�

�� Extensions� We address two types of extensions of our algorithm for con
structing minmax angle triangulations� The �rst extension is to the constrained case
where the input consists of a set of n points plus some pairwise disjoint edges de�ned
by the points that are required to be in the triangulation� The second extension
discusses the optimization of the entire angle vector rather than just the maximum
angle�

Only minor changes are necessary to adapt the algorithm presented in sections 	
and � to the constrained case� The most important change is that no prescribed edge
will be removed to give way to searching for a new point s� This modi�cation takes
no extra time which implies the part of the main theorem that deals with prescribed
edges�

Before we introduce angle vectors notice that for a given point set S all triangu
lations �whether constrained or not
 have the same number of triangles and therefore
the same number of angles� By Euler�s formula for planar graphs the number of trian
gles is t � 	n�h�	� where n � jSj and h is the number of points of S that lie on the
boundary of its convex hull� For any triangulation A of S we de�ne its angle vector
VA � ���� ��� � � � � ��t
� with �� � �� � � � � � ��t the �t angles of the t triangles�
If B is another triangulation of S with angle vector VB � ���� ��� � � � � ��t
 we de�ne

��



VB � VA if there is an index � � j � �t so that �i � �i for � � i � j and �j � �j�
For example� VB � VA if B is an improvement of A� but the reverse is not necessarily
true�

The problem of �nding a triangulation with minimum angle vector is at least as
di�cult as �nding a minmax angle triangulation� If any two angles de�ned by three
points of S each are di�erent we can construct the minimumangle vector triangulation
� which is unique in this case � as follows�

First� construct a minmax angle triangulation� T�� and declare the
three edges of the triangle that contains the maximum angle as pre
scribed� Second� construct a minmax angle triangulation T� for the
thus constrained input and introduce new constraints to enforce the
second largest angle in future triangulations� Continue this way and
construct triangulations T�� T� and so on until the prescribed edges
add up to a triangulation themselves� This triangulation minimizes
the angle vector�

An O�n� logn
 time bound for this algorithm is obvious because it just iterates the
minmax angle triangulation algorithm a linear number of times� Even better� we have
an O�n� logn
 time bound if we use Ti as the input triangulation for the construction
of Ti��� The improved bound follows because an edge once removed cannot appear
in any future triangulation� We thus get the following result by the same argument
as in section ����

Theorem ���� Given a set of n points in the plane so that no angles de�ned by
three points each are equally large� the triangulation that lexicographically minimizes
the angle vector can be constructed in time O�n� logn� and space O�n��

Remark� In the presence of multiple angles it is not clear how to adapt the ap
proach of this paper without requiring an exponential amount of time in the worst
case� We pose the existence of a polynomial algorithm for minimizing the angle vector
in the presence of multiple angles as an open problem� A case where multiple angles
can be handled relatively easily is that of a simple polygon� The straightforward cubic
time algorithm for minimizing the maximum angle� derived from the dynamic pro
gramming algorithm of Klincsek ����� can be extended to an O�n�
 time algorithm for
minimizing the angle vector as follows� Instead of characterizing a �partial
 triangu
lation by its maximum angle we store its sorted angle vector� The best triangulation
of a sequence of vertices is then selected on the basis of these vectors� The cubic time
increases to O�n�
 because comparing two angle vectors takes O�n
 time in the worst
case� in contrast to constant time for comparing maximum angles�

	� Experimental Results� To demonstrate that the results of the preceding
sections� which we believe are of theoretical interest� are signi�cant also from a prac
tical viewpoint� we implemented the algorithm along with a few other triangulation
algorithms from the literature� Using these implementations� we perform a small
scale comparative study of the triangulations they produce� A more extensive study
and complete description of the �ndings will be available as the master thesis of the
third author� The di�erence between two triangulations is expressed in terms of their
angles and edges �as in ����
�

The experimental study is based on implementations of four di�erent triangula
tions algorithms� Three work by iterative improvement� and to construct an initial
triangulation we use a planesweep strategy �see e�g� ��� section ������
� Triangula
tions constructed by planesweep are denoted by PS � The implementation of the edge
insertion algorithm of this paper minimizes the angle vector as discussed in section ��

��



Its triangulations are referred to as MV � To avoid the di�culty that arises when two
angles are equally large �see the remark at the end of section �
� we use a heuristic that
breaks ties in a consistent manner� Delaunay triangulations� DEL� are constructed by
�ipping the diagonals of convex quadrilaterals as long as the smallest angle involved
increases �see e�g� ����
� The third incremental improvement algorithm �ips the di
agonal of a convex quadrilateral if the largest of the six involved angles decreases�
As shown in ����� this heuristic typically gets stuck in a local optimum depending on
the initial triangulation as well as on the way the �ips are scheduled� We use this
algorithm to construct triangulations FPD� FPN� FDD� FDN where the middle letter
distinguishes between PS and DEL as the initial triangulation� and the �nal letter
distinguishes between deterministic �largest angle �rst
 and �nondeterministic� ��rst
in �rst serve
 scheduling�

The point sets chosen for our experimental study are drawn uniformly either
inside a square or near a circle �see Figure �
� To allow for exact arithmetic all points
are chosen on the integer grid� For each of various point set sizes� �� experiments are
carried out and average statistics is compiled�

DEL FDD MV

circle

square

Fig� �� The Delaunay triangulation� DEL� a locally optimal triangulation� FDD� and the

globally optimal triangulation� MV� for two small point sets�

Table � compares triangulations and their quality� More speci�cally� it compares
each triangulation X � fPL� DEL� FPD� FPN� FDD� FDN g with MV � the optimum
triangulation� The parameter �e gives the number of edges in X that are not in
MV � The angle vectors of X and MV are compared using parameters � eq� � sm� and

�

�
MV

� Their meaning is that the � eq largest angles of X and MV are the same

and that the next � sm largest angles are smaller for MV� �

�
MV

is the ratio between

the � eq � � largest angle of each triangulation� The statistics shows that for points
uniformly distributed in a square the edge�ip heuristic produces triangulations that
come close to the optimum� Consistent with the �ndings reported in ����� DEL di�ers
from MV by slightly less than �� of its edges� This is in sharp contrast to the
relative performance of the algorithms for points chosen on or close to a circle� In
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Table �

Comparison of MV with other triangulations�

�� points �in square� ��� points �in square� ��� points �in square�
	e

�
�
�
eq

�
sm

�

�
MV

	e

�
�
�
eq

�
sm

�

�
MV

	e

�
�
�
eq

�
sm

�

�
MV

PS ���� � �� ����� ��� � ��� ����� ���� � ��� ����
DEL ��� � �� ����� ��� � �� ����� ��� ��  �����
FPD ��� �� � ����� ��� � �� ����� ��� ��  �����
FPN �� ��  ����� ��� �� �� ����� ��� � � �����
FDD ��� �� � ����� ��� �� �� ����� ��� �� �� �����
FDN �� �� � ����� ��� �� �� ����� ��� �� �� �����

��� points �in square� ���� points �in square� �� points �near circle�
PS ���� � ��� ����� ���� � ���� ����� ���� � �� �����
DEL ��� �� ��� ����� ��� �� ��� ����� ��� � �� �����
FPD ��� �� ��� ����� ��� �� ��� ����� ���� � � ����
FPN ��� �� ��� ���� ��� �� ��� ����� ���� � � �����
FDD ��� �� �� ����� ��� � ��� ����� ���� � �� �����
FDN ��� �� �� ����� ��� � ��� ���� ��� � �� �����

��� points �near circle� ��� points �near circle� ��� points �near circle�
PS ���� � �� ����� ���� � ��� ����� ���� � �� ������
DEL ��� � �� ����� ��� � ��� ����� ���� �� ��� �������
FPD ���� � �� ����� ��� �� �� ����� ���� �� ��� �������
FPN ���� � �� ����� �� �� �� ����� ���� � ��� �������
FDD ���� �� �� ����� ��� � �� ����� ���� �� ��� �������
FDN ���� �� �� ����� ��� � �� ���� ���� �� ��� �������

this case� DEL and MV share very few nonconvex hull edges� The edge�ip heuristic
produces triangulations that are superior in terms of angles to DEL� but they hardly
share any more edges with MV �

It is interesting to note that the amount of work needed to construct MV is far
less for points in a square than for points near a circle� Table 	 shows the number
of edges removed during the construction of MV � While the di�erence between the
two point distributions is striking� the choice of the initial triangulation seems to have
far less in�uence on the running time of the edgeinsertion algorithm� In general� we
observe that the edgeinsertion algorithm is much faster on the average than expressed
by the worstcase analysis in section �� We would also like to remark that there are
no polynomial time bounds known for the edge�ip heuristic used in our experimental
study�

Table �

The number of edges removed by the edge�insertion algorithm when it computes MV from either

PS or DEL�

square circle
�� pts ��� pts ��� pts ��� pts ���� pts �� pts ��� pts ��� pts ��� pts

PS ��� �� ��� ��� ����� ���� ���� ���� ����
DEL ��� ��� �� ���� �� ���� ��� �� �����


� Conclusions� The main result of this paper is an O�n� logn
 time algorithm
for constructing a minmax angle triangulation of a set of n points in the plane� with
or without prescribed edges� This seems fairly e�cient considering that it is the �rst
polynomial time algorithm for the problem and that it somehow avoids to look at all
the

�
n
�

�
angles de�ned by the n points� On the other hand� our algorithm is a factor

n slower than the best algorithms for constructing Delaunay triangulations� at least
in the worst case� We thus pose the question whether a minmax angle triangulation
can be constructed in o�n� logn
 time�

In the nondegenerate case where no two angles de�ned by three points each are
equal� the algorithm can be extended to compute the triangulation that lexicograph
ically minimizes the sorted vector of angles� The running time is till O�n� logn
 in

��



the worst case� and our experiments indicate that the average runtime is signi�cantly
less�

A problem related to minimizing the maximum angle is to construct a triangu
lation that minimizes the number of obtuse angles� It seems that the edgeinsertion
scheme does not work for this criterion� The problem thus remains open for point
sets� although dynamic programming yields a cubic time algorithm if the input is a
simple polygon� Still� the authors of this paper believe that the edgeinsertion scheme
is more generally applicable and plan to further investigate this paradigm�
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