
The Visual Computer (1998) 14:153±165
� Springer-Verlag 1998 153

Resolving occlusion
in image sequence
made easy

Kiem Ching Ong, Hung Chuan Teh,
Tiow Seng Tan

Department of Information,
Systems and Computer Science,
National University of Singapore,
Lower Kent Ridge Road, Singapore 119260
E-mail: ong-kc@hotmail.com,
{tehhc|tants}@comp.nus.edu.sg

While the task of seamlessly merging
computer-generated 3D objects into an im-
age sequence can be done manually, such
effort often lacks consistency across the
images. It is also time consuming and
prone to error. This paper proposes a
framework that solves the occlusion prob-
lem without assuming a priori computer
models from the input scene. It includes a
new algorithm to derive approximate 3D
models about the real scene based on re-
covered geometry information and user-
supplied segmentation results. The frame-
work has been implemented, and it works
for amateur home videos. The result is an
easy-to-use system for applications like
the visualization of new architectures in a
real environment.

Key words: Augmented reality ± Occlu-
sion ± Structure-from-motion ± Segmenta-
tion

1 Introduction

The deployment of computer graphics to insert vir-
tual objects into real scene has many applications
in medicine, manufacturing, visualization and en-
tertainment (Azuma 1997). To enhance the illusion
that the computer objects are actually present in
the real scene, three problems need to be solved:

1. Common viewing parameters must be found
when the virtual camera used to render the in-
serted computer objects is to correspond as
closely as possible to the actual camera.

2. The problem of occlusion must be solved when
the computer objects are to be properly occlud-
ed by objects in the real scene in the event that
they are placed behind them.

3. Illumination must be attended to when the com-
puter objects are to be subject to the same lighting
conditions as the real objects and must have appro-
priate shadows cast to and from the real objects.

This paper focuses on achieving correct occlusion
and does not deal with the illumination issue. The
problem of occlusion occurs when the inserted
computer objects are placed behind real objects
in the scene. Usually, the region occupied by the
real objects is masked so that no computer objects
can be drawn within. This mask essentially cap-
tures the silhouettes of the blocking real objects,
and the mask edges dictate how seamless the
merging will be. The masking effect can be
achieved in two dimensions by designating a 2D
pixel region in the real image manually (Nakamae
et al. 1986; Ertl et al. 1991) or semiautomatically
(Berger 1997). This method is simple but tedious
because each frame requires its own mask. Fur-
thermore, flexibility suffers as the 2D mask will
in effect occlude all inserted computer objects re-
gardless of whether they are in front or behind
the real objects. The masking effect can also be
achieved in three dimensions with known comput-
er models or simply depth values. When a comput-
er model of the blocking real object is registered in
the image, i.e. its 2D projection matches the real
object in the image, correct occlusion is achieved
if the inserted computer object is placed behind
the real object (Breen et al. 1996). This approach
is general, but unfortunately, computer models of
real scene are usually unavailable, and it is often
time consuming to create one by hand. Due to this,
some researchers use depth information derived
from the real scene for occlusion resolution (Koch
1993; Wloka and Anderson 1995). Typically, ste-

Correspondence to: H.C. Teh or T.S. Tan



154

reoscopic image pairs are used for feature corre-
spondence to recover the depth value at each pixel.
Since this approach has no notion of the geometri-
cal aspect of the real objects, silhouettes of the real
objects are not explicitly delineated. Due to errors
in feature correspondence, the recovered depth val-
ues often cause an unsatisfactory merging effect,
especially at the occluding boundary of the real ob-
jects.
In view of the flexibility of the 3D mask and the
importance of accurate masking at the edges of
real objects, we propose the following framework.
Some real object silhouettes are first segmented by
hand in selected frames called key frames. The re-
sult is then used to construct automatically approx-
imate 3D computer models, which serve as 3D
masks to the real objects. The 3D models are ap-
proximate because their geometry may not corre-
spond exactly to that of the physical real objects
they represent. However, they are constructed in
such a way that, when projected onto the images,
they cover exactly the silhouettes of their respec-
tive real objects. In general, we offer a solution
to the following problem: given a monocular im-
age sequence with neither a priori knowledge
about the scene nor the availability of any real
scene models, resolve the occlusion problem that
occurs when computer objects are inserted into
the scene. The framework is not intended for
real-time applications; rather, an image sequence
of the real scene is captured, digitized and then
processed. Nonetheless, the whole framework is
designed to be fully automated with little interven-
tion from users, except for object-silhouette extrac-
tion, when the user outperforms the computer.
Based on the framework, an architecture visualiza-
tion application has been implemented. Such a sys-
tem assists an architect to evaluate the impact of
his or her design by merging a computer model
of the architecture in a video of the location where
it is to be built. The augmented video is most use-
ful in multimedia presentations since it conveys
the architectural design more realistically. Further-
more, the framework requires only a monocular
image sequence that can easily be obtained with
a video camera. Virtual objects are merged into
real images interactively through a GUI.
In Sect. 2, we outline the proposed framework.
Sections 3±7 zoom into the respective modules
within the framework and examine the implemen-
tation issues. Results from our implemented sys-

tem are shown in Sect. 8, and we conclude this pa-
per in Sect. 9.

2 Proposed framework

Given an input image sequence, the proposed
framework (Fig. 1) derives sparse 3D feature
points from the scene using a structure-from-mo-
tion algorithm from computer vision. We use the
user-segmented object silhouettes in the key
frames to cluster the 3D points of the real objects
to which they belong. We then use each of the
clustered point sets to define and subsequently en-
large 3D bounding boxes of the real objects so that
their 2D projections onto the key frames will com-
pletely cover their respective object silhouettes.
These bounding boxes form the initial models,
which we call clones to the real objects.
Since our purpose in building the 3D clones is to
deal with occlusion, we want to construct them
so that they project exactly to their respective ob-
ject regions in the real images. Therefore, for each
of the initial clones, their 2D object silhouettes in
the key frames are back-projected to the 3D space
to trim away unwanted 3D regions in the clone.
This, however, results in overtrimming due to er-
rors in the estimated virtual camera parameters.
A set of 3D patch voxels that can dynamically be
turned on or off is used to compensate for regions
on clones that are to be retained in certain key
frames, but have been trimmed in others. Geomet-
rically, the resultant clone is a solid 3D object with
a set of dynamic 3D patch voxels that are turned on
or off, depending on which key frame is active.
With the clones, we can then establish a common
reference system between the real objects in the
images and the inserted virtual objects. The subse-
quent merging process is simply depth comparison
with which proper occlusion is realized.
This framework does not set out to recover detail
3D models of real objects. We exploit the fact that
the clone is intended for occlusion and not for vi-
sual rendering. As a result, in terms of geometry,
only approximate 3D clones are constructed. There
are cases when exact geometry of the clone is de-
sirable. This happens when there is physical con-
tact between real and virtual objects; for example,
in making a virtual vase sit on top of a real table.
Our framework is more concerned with exhibiting
correct visual occlusion for assessment purposes.



155

Also, since our approach constructs clones from
the silhouettes, the registration problem associated
with the model-based method is nonexistent.

3 Recovering structure from
the image stream

A recent trend in solving structure-from-motion
problem has focused on using a long image stream,
which has a twofold advantage. Firstly, the feature
correspondence problem between successive frames
can more easily be solved due to a small change in
the image content. Secondly, data redundancy can
be exploited to counteract noise in images.
The structure-from-motion problem with perspec-
tive projection is inherently a nonlinear minimiza-
tion problem. This class of problems is susceptible
to local minima in the parameter space, and a good
formulation is essential to better manage its com-
plexity during minimization. Hu and Ahuja
(1993) and Szeliski and Kang (1994) have used

nonlinear optimization techniques to extract both
3D structure and camera motion from image
streams. However, there are researchers who relax
the requirement of perspective projection to its ap-
proximations like orthography, scaled orthography
and paraperspective in order to convert the nonlin-
ear problem into a linear one. In particular, the fac-
torization method by Tomasi and Kanade (1992),
which assumes orthographic projection, has shown
good results. In fact, Yu et al. (1996) have man-
aged to use the Taylor series expansion to general-
ize their factorization method to higher-order ap-
proximations to perspective projection. Apart from
using point features to recover scene structure as in
these papers, Taylor and Kriegman (1995) and
Vieville and Faugeras (1990) have used straight-
line features to solve the structure-from-motion
problem. Quan and Kanade (1997) have recently
extended the original factorization method to line
features.
In our implementation, we employ the factoriza-
tion method under orthography by Tomasi and
Kanade. This method encodes an image stream

Fig. 1. Framework for resolving occlusion in image sequence



156

as a 2F�P measurement matrix of the image coor-
dinates (u, v) of P points tracked through F frames.
Under orthography, the registered 2F�P matrix
(W) has rank 3 and can be decomposed into camera
orientation (R) and the object shape (S).

W
2F�P

� R
2F�3

S
3�P

Their method is robust due to the use of singular
value decomposition, which is a numerically stable
factorization method. Furthermore, shape informa-
tion is derived without the use of intermediate
camera-centered depth values, which are known
to be noise-sensitive for distant objects.
Even though the orthographic projection assump-
tion is tolerable in our intended application (archi-
tecture visualization where the camera is far away
from the real scene), it does limit the kind of cam-
era motion allowed. For example, the camera
should not move towards or away from the scene
in order to minimize perspective distortion. Also,
when the camera is purely translated across the
scene with a constant line-of-sight vector, the fac-
torization method will fail due to violation of the
basic principle of Ullman's (1979) results, which
say that at least three distinct views are required
to determine structure and motion under orthogra-
phy. This is because the images generated by this
kind of camera motion effectively only give a 2D
view of the real objects.
The output from Tomasi and Kanade's factoriza-
tion algorithm is the matrices R and S. R contains
the relative orientation of the camera in each
frame, whereas S contains the recovered 3D fea-
ture point coordinates. The origin of the coordinate
system is at the centroid of the recovered 3D points
and its orientation is arbitrarily aligned to the first
frame's camera orientation.

4 Camera parameter derivation

The recovered camera orientation alone is not suf-
ficient to specify a virtual camera completely. We
also require the camera position and zoom factor in
each frame. In our implementation, the camera
zoom factor has been assumed to be constant
throughout the image sequence. As a result, there
are only 3F+1 unknown camera parameters to re-
cover (F is the number of frames). To this end,

we make use of the recovered 3D feature points,
together with their corresponding tracked 2D fea-
ture points, to fit for the 3F+1 unknowns using
Levenberg-Marquardt minimization (Press et al.
1992). The error function to minimize is

c2 a� � �
XF

f�1

XP

p�1

ufp

vfp

� �
tracked

ÿ ufp

vfp

� �
computed




where:

F: number of frames
P: number of feature points
a: vector of 3F+1 camera parameters

ufp

vfp

� �
tracked

: tracked 2D feature point p in frame f

ufp

vfp

� �
computed

: computed 2D projection of 3D fea-
ture point p in frame f given the es-
timate of a.

Experimentally, we find that when orthography is
still used as the underlying projection model, the
solution converges faster (less than ten iterations)
and is more accurate. When perspective projection
is used, the fitting process sometimes fails because
the solution does not converge.

5 Image segmentation
and key frame selection

To date, a robust and automatic image segmenta-
tion algorithm is still elusive. Snakes (Kass et al.
1988), Intelligent Scissors (Mortensen and Barrett
1995) and the ubiquitous magic wand available
in most image processing packages, though speed
up the segmentation task, still require human guid-
ance to achieve correct segmentation. Boundary
tracking across multiple frames for image segmen-
tation has been explored by Ueda et al. (1992) us-
ing Snakes and by Mitsunaga et al. (1995) using al-
pha values. Nevertheless, these methods are not
perfect at all times, and user correction is needed
when the segmentation is unsatisfactory.
The proposed framework relies on correct object-
silhouette segmentation in the key frames to guide
the construction of 3D clones of real objects. The
definition of the key frames depends largely on
the geometrical changes to the real objects in the



157

images. A frame should be made a key frame when
there is large geometrical change, such as the ap-
pearance or disappearance of facets on real objects.
Generally, the more key frames the user defines,
the more accurate the constructed clones will be.
In the implementation, we use Intelligent Scissors
as a tool to help users define the object silhouette.
We find that using Intelligent Scissors is intuitive,
and its interactive snapping live-wire feature is
highly desirable in practice. However, the live wire
sometimes snaps to a nearby wrong edge that ex-
hibits a stronger edge characteristic. To accommo-
date this, a simple point-and-click straight-line tool
(which does not automatically snap to edges) has
been incorporated into Intelligent Scissors, and
we alternate between the two at our convenience.
We have, by default, made the first and the last
frames key frames, and users have to decide which
of the other intermediate ones are to be key frames.

6 Clone construction

The most important function that a 3D clone of a
real object serves is to occlude the inserted virtual
objects. When a virtual object occludes a real ob-
ject in the image, simply overlaying the virtual ob-
ject on top of the image will do the trick. This is
not so straightforward when a real object in the im-
age is to occlude the inserted virtual object. We
need a reference 3D clone of the real object in or-
der to determine which part of the virtual object is
to be occluded. Since the virtual objects should on-
ly be occluded at the boundary of real objects, the
3D clone should be constructed in such a way that

its 2D projection onto the image plane covers ex-
actly the real object's silhouette in every frame.
Due to the use of orthographic projection in the
camera fitting process, we also assume orthogra-
phy as the underlying projection model in clone
construction. The whole process is accomplished
in five steps.

Step 1. Initial model definition

Based on the user-supplied object silhouettes
(Fig. 2b) in the key frames, we cluster the recov-
ered 3D feature points from the factorization meth-
od (Sect. 3) to their respective real objects. For
each such object, we then define a rough model us-
ing the bounding box of the 3D feature points. Fig-
ure 2c shows the world-coordinate-axis-aligned
bounding box of the 3D feature points derived
from the box.

Step 2. Model orientation determination

Due to the fact that our centroid-based coordinate
system has an arbitrary orientation, the ground
truth information is unknown. This means that
we cannot assume that the ground is on the x�z
plane, and thus our initial rough model may not
have the correct orientation. Having a correct ori-
entation, though not critical, speeds up subsequent
processing. As a result, we provide an interactive
mechanism for users to change the orientation of
the initial model. Figure 2d shows that the user
has interactively adjusted the orientation of the

a b c d

Fig. 2. Constructing a 3D clone for the
white box (panel a)

a b c d

e f g h



158

bounding box so that it is closer to that of the white
box.

Step 3. Model enlargement

Since a good clone is one that projects to its 2D ob-
ject silhouette exactly, we need to ascertain that
the initial model at least covers its object silhou-
ettes in all the key frames, albeit overcover. We
systematically enlarge the model with the follow-
ing algorithm. Figure 2e shows that the enlarged
model projects to completely cover the user-de-
fined object silhouette.
The algorithm works as follows. Assume that the
initial model is bounded by bottom-left-far point
(x1, y1, z1) and top-right-near point (x2, y2, z2)
where x1<x2, y1<y2, and z1<z2, the algorithm goes
through all the key frames in turn to progressively
enlarge the model.
For each key frame, the algorithm computes the
2D (axis parallel) bounding box of the object sil-
houette and locates two points (possibly one point
in degenerate cases), each on the object silhouette,
that are farthest apart on each boundary edge of the
bounding box. For each of these eight (or less)
points, the algorithm checks whether any enlarge-
ment is necessary, as in the next paragraph.
For each of the eight (or less) points, the algorithm
casts a ray from the point on the image plane to the
3D space, using the computed camera parameters.
If the ray intersects the current model, then no en-
largement is necessary. Otherwise, the ray is out-
side the current model, indicating that enlargement
is necessary because the model does not project to
cover this point. In this case, the algorithm finds
the corner, say C, of the current model closest to
the ray. Let 3D point (x, y, z) be the point on the
ray closest to C. Then, the algorithm enlarges the
current model by setting: x1=min(x1, x); y1=min
(y1, y); z1=min(z1, z); x2=max(x2, x); y2=max(y2, y)
and z2=max(z2, z).

Step 4. Model trimming

This step is crucial because it trims away the 3D
region on the model that does not project to the
2D object silhouette. To facilitate the trimming
process, we use a voxel representation for the mod-
el. Each model is subdivided into voxels of similar

size and all these voxels are initially assigned ºINº
to indicate that they belong to the model. The di-
mension of the voxel is computed so that each vox-
el can only potentially project to cover a single
pixel. We subsequently employ a ray-casting algo-
rithm that casts rays from the image plane to the
3D space to trim the model. When a ray originat-
ing from a pixel outside the object silhouette inter-
sects with the model, we assign ºOUTº to voxels
that fall on the path of the ray. The whole process
can be implemented efficiently by casting rays
along the boundary of the object silhouette and dis-
carding the 3D region that does not project to the
silhouette.
Another way to look at the whole trimming pro-
cess is by solid object intersection. First we define
a valid 3D region (model defined after Step 3)
where intersection is allowed. The resultant model
is essentially the intersection of the object-frustum
back-projected from the object silhouettes in the
key frames to the 3D space. Figure 2f shows the
constructed model, which is represented by voxels.
Notice that the model has missed out boundaries at
the top and bottom of the box.

Step 5. Derivation of dynamic patch voxel

Up to this point, we have had 3D clones that we
have trimmed using their respective object silhou-
ettes in the key frames. Due to inaccuracy in the
computed camera parameters (camera position,
orientation and zoom factor), the resultant clone
may be overtrimmed at certain places, especially
near the boundary. This implies that the clone will
no longer project to cover exactly the object sil-
houette in some key frames, and visual error will
occur at the occluding boundary between real
and virtual objects during merging. To remedy
this, we make use of a set of dynamic 3D patch
voxels that have the same voxel dimension as the
clone. For each key frame, we locate the missing
region on the clone that will make the clone pro-
ject perfectly to the object silhouette. We later en-
code this missing region using patch voxels.
The challenge of this problem is, given that the
clone does not project exactly onto the silhouette,
how to reinstate the missing 3D region on the
clone. We know that the missing region is still
within the bounding box of the clone and must
be geometrically close to the overtrimmed model,



159

so we sort of extrapolate the model with the fol-
lowing algorithm.
The patch voxels needed for each key frame are
computed with two passes through all pixels within
the object silhouette.
Let us discuss the first pass. For each pixel, the al-
gorithm casts a ray from the pixel on image plane
to the 3D space (using camera parameters comput-
ed earlier). If the ray does not intersect the clone,
then overtrimming of the clone has occurred for
this pixel and patching of voxels is needed for this
pixel in the second pass. Otherwise, the algorithm
computes d1 and d2, the nearest and farthest z-co-
ordinates, respectively, of the clone intersected
by the ray.
In the second pass, we create patch voxels for pix-
els identified by the first pass. For each such pixel,
the algorithm estimates d1 (and d2) of the pixel as
the average of the d1 values (and d2 values, respec-
tively) of the surrounding eight (or less) pixels.
Note that the estimation has to be done in some or-
der of pixels closest to pixels with known d1 and d2
values and so on. Next, the algorithm casts a ray
from the pixel so as to encode the ray segment be-
tween d1 and d2 as patch voxels.
Note that the last statement on casting a ray is re-
placed in practice by casting more than one ray per
pixel. This is to ensure that any potential patch
voxel that may belong to the missing region is
not overlooked. Additionally, instead of casting
rays to the 3D space as in the first pass of the al-
gorithm, we can also project the voxels of the
clone to the image and then perform the second
pass for pixels that fall outside the projected re-
gion, but within the user-defined object silhouette.
Now, each key frame has a set of 3D patch voxels
that will be employed in the following manner.
During merging of virtual objects into real images,
when the frame is a key frame, we use the over-
trimmed model, together with the key frame's
patch voxels, as a clone to the real object. This en-
sures that the object silhouette is exactly covered
by the clone. For intermediate frames that are not
key frames, we define the clone to be the over-
trimmed model together with the patch voxels of
the nearest key frame. Thus, when we step through
the image sequence, the clone, which is the over-
trimmed model, is dynamically patched up with
patch voxels belonging to different key frames.
Figure 2g, h shows two views of the clone with
patch voxels drawn.

The clone construction process is somewhat simi-
lar to Szeliski's (1993) work, which uses the octree
to construct 3D object models from a set of imag-
es. However, we wish to point out that his work
does not cater to the overtrimming case, which of-
ten occurs due to errors in the estimated camera
parameters.

7 Merging with virtual objects

To achieve occlusion between real and virtual ob-
jects, we make use of the hardware Z-buffer in the
graphics workstation. The Z-buffer is used primar-
ily for visible surface determination. It keeps track
of the nearest z-coordinate (in camera coordinate)
at each pixel. A pixel colour is only updated if
the incoming z value is smaller than that stored
in the Z-buffer, i.e. is closer to the camera.
To merge the virtual objects with the real images,
the following rendering pipeline is used. Note that
no specific texture-mapping algorithm is required.

Step 1. Display the image in the frame buffer.
Step 2. Render clones (both overtrimmed model

and patch voxels) in the Z-buffer only.
Step 3. Render virtual objects in both the frame

buffer and the Z-buffer. A virtual object
appears occluded in the merged image if
it is behind real objects with clones ren-
dered in Step 2.

In order to ensure that the clones still conform to
the way they are built, we use orthographic projec-
tion to render the clones to the Z buffer. The insert-
ed virtual objects are rendered with perspective
projection model.

8 Results

Figure 3a shows a sample of eight frames from a
99-frame video sequence. Figure 3b shows the
augmented video after we add in a virtual dome
and two trees. The dome is made up of polygons
and is rendered with a single, fixed light source.
The trees are texture mapped from images onto
some 3D planes. To illustrate the correct occlusion
between the inserted virtual objects and the real
object in the images, we position the dome and
one of the trees behind the front building and let
the other tree block the front building. Notice that



160

frame 1

frame 42

frame 84

frame 56

frame 99

frame 70

frame 14 frame 28

a

frame 1

frame 42

frame 84

frame 56

frame 99

frame 70

frame 14 frame 28

b

Fig. 3a, b. a Original image sequence; b augmented image sequence;



161

Fig. 3c±f. c user-defined object silhouettes; d recovered 3D feature points; e two views of the constructed clone (overtrimmed model
and patch voxels); f two views of the objects represented in the computer: 3D feature points, clones, and virtual objects

c

d

e

f



162

occlusion is properly shown at the occluding
boundary in all the frames. Also, the estimated
camera parameters used to render the computer ob-
jects are accurate because the virtual objects move
together with the images.
Altogether, six segmented silhouettes of the front
building (in frames 1, 21, 41, 61, 81 and 99) have
been provided, and two of such segmentation re-
sults are shown in Fig. 3c. The input video se-
quence is fed into Tomasi and Kanade's factoriza-
tion algorithm, and we manage to recover 204 fea-
ture points from the scene (Fig. 3d). Based on the
object silhouette, the program then clusters the fea-
ture points belonging to the real building and con-
structs an initial model for the building using the
3D bounding box of these points. This is followed
by model trimming, which eventually yields the

clone (overtrimmed model with patch voxels for
each key frame) as shown in Fig. 3e. For better un-
derstanding, we also provide two views of all the
computer objects used in the merging process
(Fig. 3f).
Figures 4 and 5 show some augmented frames
from another two image sequences. In the first se-
quence, segmentation results from eight key
frames (1, 10, 20, 30, 40, 50, 60 and 70) are used
to construct the clone for the real temple before we
insert the virtual dome behind the structure. In the
second sequence, five key frames (1, 10, 20, 30
and 43) are used to construct clone for the exot-
ic-looking mushroom-shaped real structure. Two
similar looking 3D virtual structures and a 3D vir-
tual statue are then placed behind and in front of
the real structure, respectively.

frame 1 frame 25

frame 45 frame 70

Fig. 4. Temple sequence



163

We have run the program for these examples on an
SGI High Impact machine. A GUI has been pro-
vided to enable users to interactively manipulate
virtual object positions and orientations. A PC ver-
sion is also currently under development.

9 Conclusion

Exhibiting correct occlusion between virtual and
real objects remains one of the most desirable fea-
tures, when we insert virtual objects into a real en-
vironment. The proposed framework integrates a

new clone construction algorithm with other best-
of-tools from computer vision and image processing
to solve the occlusion problem. A structure-from-
motion algorithm from computer vision is em-
ployed to derive sparse 3D points from the scene.
Using these points together with user-segmented
object silhouettes in the key frames, we adopt a
clone construction procedure to build approximate
clones that exactly project to their respective real
object silhouettes. The framework is easy to imple-
ment, and no expensive equipment is required.
In this paper, we have not addressed the issue of
lighting, which is as critical as occlusion for a con-

frame 1 frame 15

frame 30 frame 43

Fig. 5. Hotel sequence



164

vincing merge of virtual objects into a real envi-
ronment. The 3D clones constructed in our work
can be used as a basis to derive illumination inter-
action between virtual and real objects. Also, we
see potential that automatic segmentation on the
intermediate frames between two consecutive key
frames can be performed. The dependency
between the projection model assumed in the
structure-from-motion algorithm and that used in
clone construction is another area worth investi-
gating.

Acknowledgements. This work is supported by the National
University of Singapore under grants RP940641 and RP960618.

References

Azuma RT (1997) A survey of augmented reality. Presence:
Teleoperators and Virtual Reality 6:355±385

Berger MO (1997) Resolving occlusion in augmented reality: a
contour based approach without 3D reconstruction. Confer-
ence on Computer Vision and Pattern Recognition, pp 91±96

Breen DE, Whitaker RT, Rose E, Tuceryan M (1996) Interactive
occlusion and automatic object placement for augmented re-
ality. Eurographics 15:C11±C22

Ertl G, Mueller-Seelich H, Tabatabai B (1991) Move-x: a sys-
tem for combining video films and computer animation.
Proceeding of the International Conf. Eurographics '91 pp
305±314

Hu X, Ahuja N (1993) Motion and structure estimation using
long sequence motion models. Image Vision Comput 11:
549±570

Kass M, Witikin A, Terzopoulos D (1988) Snakes: active con-
tour models. International Journal of Comp Vision, Vol. 1,
No. 3, pp 321±331

Koch R (1993) Automatic reconstruction of buildings from ste-
reoscopic image sequences. Eurographics 12:C339±C350

Mitsunaga T, Yokoyama T, Totsuka T (1995) AutoKey: human
assisted key extraction. Proceedings of SIGGRAPH 95 (Los
Angeles, CA). In Computer Graphics Proceedings, Annual
Conference Series, 1995, ACM Press pp 265±272

Mortensen EN, Barrett WA (1995) Intelligent Scissors for image
composition. Proceedings of SIGGRAPH 95 (Los Angeles,
CA). In Computer Graphics Proceedings, Annual Confer-
ence Series, 1995, ACM Press pp 191±198

Nakamae E, Harada K, Ishizaki T, Nishita T (1986) A montage
method: the overlaying of the computer-generated images
onto a background photograph. Siggraph, Dallas, ACM
Press pp 207±214

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992)
Numerical recipes in C: the art of scientific computing,
2nd edn. Cambridge University Press, Cambridge, pp 683±
688

Quan L, Kanade T (1997) Journal Version: Affine structure
from line correspondences with Uncalibrated Affine Cam-
eras. IEEE Transactions on Pattern Analysis & Machine In-
telligence vol 19 No 8pp 834±845

Szeliski R (1993) Rapid octree construction from image se-
quences. CVGIP: Image Understanding 58:23±32

Szeliski R, Kang SB (1994) Recovering 3D shape and motion
from image streams using non-linear least squares. J Visual
Commun Image Rep 5:10±28

Taylor CJ, Kriegman DJ (1995) Structure and motion from line
segments in multiple images. IEEE Trans Patt Anal Machine
Intell 17:1021±1032

Tomasi C, Kanade T (1992) Shape and motion from image
streams under orthography: a factorization method. Int J
Comput Vision 9:137±154

Ueda N, Mase K, Suenaga Y (1992) A contour tracking method
using elastic contour model and energy minimization ap-
proach, IEICE Trans J75-D-II:111±120

Ullman S (1979) The interpretation of visual motion. MIT Press,
Cambridge, Mass

Vieville T, Faugeras O (1990) Feed-forward recovery of motion
and structure from a sequence of 2D-line matches. IEEE In-
ternational Conference on Computer Vision, pp 517

Wloka M, Anderson B (1995) Resolving occlusion in augment-
ed reality. Symposium on Interactive 3D Graphics Proceed-
ings, New York, ACM Press pp 5±12

Yu H, Chen Q, Xu G, Yachida M (1996) 3D shape and motion
by SVD under higher-order approximation of perspective
projection. Proceedings of 13th International Conference
on Pattern Recognition, pp 456±460

KIEM-CHING ONG received
his BSc (Hons) and MSc in Com-
puter Science from the National
University of Singapore in 1996
and 1998, respectively. He is
now working as an R&D Engi-
neer in a commercial simulation
company. His research interests
include computer graphics, com-
puter animation and their appli-
cations.



165

HUNG-CHUAN TEH received
his PhD (1972) in Physics from
McMaster University, Canada.
His previous research in physics
includes studies of the thermal,
magnetic and relaxation proper-
ties of matters using inelastic
thermal neutron scattering and
laser-light scattering. He is cur-
rently an Associate Professor at
the Department of Information
Systems and Computer Science
at the National University of Sin-
gapore. His current research in-
terests include geometric model-
ing, global illumination and im-
age-based rendering. He is a
member of the ACM and IEEE.

TIOW-SENG TAN received his
BSc, majoring in Computer Sci-
ence and Mathematics, from the
National University of Singapore
(NUS) in 1984. Having worked
for a few years in the IT industry,
he then returned to NUS to com-
plete an MSc in 1988, and then a
PhD in 1992 at the University of
Illinois at Urbana-Champaign.
He is currently a Senior Lecturer
at the Department of Information
Systems and Computer Science,
NUS. His research interests in-
clude computational geometry,
computer graphics and image
processing.


