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Abstract—We propose the first GPU solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight
line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in
computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing
power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal
Delaunay triangulation problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation
has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU.
Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of
magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both
randomly generated PSLGs and real-world GIS data having millions of points and edges.

Index Terms—GPGPU, Parallel Computation, Computational Geometry, Voronoi Diagram, Image Vectorization.
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1 INTRODUCTION

D ELAUNAY triangulation (DT) is one of the most
important geometric structures in computational

geometry. Due to its nice property of avoiding long,
skinny triangles, the DT has many practical applica-
tions in different fields. For example, in Geographical
Information System (GIS), one way to model the
terrain is to interpolate the data points based on the
DT [13]. In path planning, the DT can be used to
compute the Euclidean minimum spanning tree of a
set of points, because the latter is always a subgraph
of the former [23]. The DT is also often used to build
quality meshes for the finite element analysis [18].

The constrained Delaunay triangulation (CDT) is a
direct extension of the DT where some edges in the
output are enforced beforehand [7]; these edges are
referred to as constraints. Given a set S of n points (or
sites) in the 2D plane and a set of non-crossing con-
straints, the CDT is a triangulation of S having all the
constraints included, while being as close to the DT
of S as possible. Constraints occur naturally in many
applications. For example, in path planning, they are
obstacles; in GIS, they are boundaries between cities;
in surface reconstruction, they are contours in the
slices of the body’s skull; and in modeling, they are
characteristic curves [3], [19], [30]. In short, the CDT
complements the DT and is a very useful structure in
many fields. See Figure 1 for some examples.

In another development, recently the graphics pro-
cessing unit (GPU) with its enormous parallel com-
puting power has been used widely in many disci-
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plines, including computational geometry, for general
purpose computation. Early works include computing
the digital Voronoi diagram (VD) [5], [10], [17], a struc-
ture that is closely related to the DT. Recently Rong et
al. [25] present a serious attempt to derive the DT from
the digital VD. Their algorithm, however, is hybrid,
since parallel computation is only used in the first part
while leaving the rest to a sequential algorithm. As for
the CDT problem, there is no efficient GPU solution as
far as we know. This is partly because both the DT and
the CDT problem do not present themselves readily to
parallel computation. A parallel algorithm, in order to
fully utilize the GPU hardware, usually needs to have
regularized work and localized data access. It is not
clear how to achieve those criteria while adapting the
traditional and usually complex parallel techniques,
such as divide-and-conquer, to both these problems.

Our main contribution here is a novel algorithm,
termed gCD, fully parallelized on the GPU, to com-
pute the CDT for a given PSLG. Our experiment
shows that our implementation using the CUDA pro-
gramming model is robust and efficient. Compared to
popular software such as Triangle [27] and CGAL [6]
as well as to the hybrid approach of Rong et al. [25],
gCD runs up to an order of magnitude faster. This
paper is an extension of the original version [24]. We
incorporate more implementation details, complexity
analysis and experiment results. Due to the page limit,
the Appendices are only available as an electronic
supplement document in the digital library of TVCG.

The outline of our paper is as follows. Section 2
introduces some definitions and reviews the previous
works. Section 3 presents our GPU approach to the
DT problem, and Section 4 extends it to compute the
CDT. Experiment results and some applications are
provided in Section 5. Section 6 concludes the paper.
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Fig. 1. Constrained Delaunay Triangulation applications. (a) A contour map. (b) A raster image and the CDT for
its edge map.

2 PRELIMINARIES

We introduce some important definitions and proper-
ties first before reviewing the related work on com-
puting the DT and the CDT.

2.1 Terminology

Let S = {p1, p2, . . . , pn} be a set of n points in R2. A
planar straight line graph (PSLG) G = (S,E) is a plane
graph with the point set S and the edge set E where
all edges in E are straight segments.

Definition 1 (Digital Voronoi Diagram): In the 2D
digital space, consider a grid of size m × m, and
assume all the points in S are on the grid points
(which are centers of the grid cells). We say that a
grid point x is colored by the point p ∈ S if p is nearest
to x among all points in S. In case the distances from
two points pi and pj (i < j) to x are equal, we color x
by pi. The grid with all grid points colored as above
is called the digital Voronoi diagram (VD) of S.

Definition 2 (Delaunay Triangulation): Given a set of
points S, a triangulation of S is a PSLG T = (S,E)
such that |E| is maximal. An edge ab ∈ E satisfies the
empty circle property (with respect to S) if there exists
a circle passing through a and b such that no points
in S are inside the circle. A triangulation T of S is a
Delaunay triangulation (DT) if every edge of T satisfies
the empty circle property.

Definition 3 (Constrained Delaunay Triangulation):
Given a PSLG G = (S,E), two points a and b
in S are visible from each other if the (open) line
segment ab does not intersect any other edge in E.
A triangulation T = (S,E′) is a constrained Delaunay
triangulation of G if E ⊆ E′ and each edge ab ∈ E′ \E
satisfies the empty circle property with respect to all
the points of S that are visible from both a and b. If
E = ∅, the CDT of G is the same as the DT of G.

2.2 Related Work

In this subsection, we review some algorithms for
constructing the DT and the CDT in 2D.

2.2.1 Delaunay Triangulation
There are many sequential algorithms developed for
the CPU to compute the DT [1], [12], [29]. All these
algorithms in general follow one of the three well-
known paradigms: divide-and-conquer [9], sweep-
line [11] and incremental insertion [15].

a. Divide-and-Conquer. An algorithm based on this
strategy recursively divides a set of points into two
smaller sets, until each set is small enough and its
DT can be trivially computed. Then, the algorithm
recursively merges the results of each pair of adjacent
sets into that of a bigger one, until all the results are
grouped to form the DT. Using this approach, the DT
can be built in optimal O(n log n) time [9], [26].

b. Sweep-line. The VD and the DT are dual of each
other. Fortune [11] uses a sweep-line algorithm to
construct the VD, from which the DT is obtained.
First, the algorithm sorts the input points according
to their x-coordinates. Then, a vertical line, called the
sweep-line, is swept from left to right. Points behind
the sweep-line are already added into the VD, while
points ahead of the sweep-line are waiting for process-
ing. As the sweep-line progresses, the Voronoi edges
are generated incrementally. The running time of this
algorithm is also O(n log n).

c. Incremental Insertion. A natural way to compute
the DT is to repeatedly insert points one at a time,
re-triangulating the affected parts of the triangulation
if necessary. To insert a point, we first locate the
triangle containing that point. The new point splits the
triangle containing itself into three triangles. Then, we
perform edge flipping to obtain the DT, before insert-
ing the next point. Though this incremental insertion
approach runs in O(n2) time in the worst case, its
expected time complexity is O(n log n), provided that
the points are inserted in a random order [15].

2.2.2 Constrained Delaunay Triangulation
The input of the CDT problem contains both points
and constraints. According to the order of handling
points and constraints, the algorithms for constructing
the CDT can be classified into two categories:

a. Processing points and constraints simultaneously.
Chew [7] shows that the CDT can be built in optimal
O(n log n) time using a divide-and-conquer approach.
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Let us assume that all the points and constraints are
contained within a given rectangle. First, we sort all
the points by their x-coordinates, and use this infor-
mation to divide the rectangle into vertical strips such
that each strip contains only one point. In each vertical
strip, we compute the CDT, followed by gluing pairs
of adjacent strips together to form bigger strips, until
the CDT for the entire rectangle is obtained. In a
different approach, Domiter [8] uses a sweep-line to
process points and constraints together. The insertion
of a constraint is done once it is swept entirely, by
fixing the triangles it pierced.

b. Processing points and constraints separately. Since
the CDT is a generalization of the DT with the notion
of constraints [20], we can first construct the DT of the
given point set, and then insert the constraints one by
one into that triangulation. Such an insertion of a con-
straint can be done either by removing the triangles
pierced through by the constraint and re-triangulating
the region due to the removal, or by flipping some
edges in a certain order until the constraint appears
in the triangulation [2], [27].

Our approach for constructing the CDT on the GPU
lies in-between these two categories. First we con-
struct a triangulation of the given point set, then we
insert all the constraints using edge flipping, followed
by transforming the resulting triangulation into the
CDT, also using edge flipping.

2.3 GPU Programming Consideration

The GPU is massively multithreaded, with hundreds
of processors. To effectively utilize the GPU, it is
desirable to have tens of thousands of executing
threads at any given time. As such, we keep in mind
the following two design principles when developing
algorithms for the GPU. First, the GPU architecture is
most suitable for data-parallel computations, where
the same computation is performed by many threads
on multiple pieces of data. Therefore, we need to
make our algorithm as simple and uniform as possi-
ble. That translates to writing our thread code with
little complicated control flow and having similar
amount of work across various threads.

Second, with so many threads, common issues in
parallel programming such as cooperation among
threads, conflicting data access, and racing conditions
become more serious. To mitigate this, we usually
employ some simple checks to break the set of tasks
into several groups, within which the tasks can be
done concurrently with none or fewer conflicts.

3 COMPUTING THE DT ON THE GPU
Our algorithm derives from the digital VD of the
input point set S an approximation of the DT, then
transforms it into the needed DT. The algorithm con-
sists of the following phases:

Phase 1. Digital Voronoi diagram construction.
Map the input points into a grid and compute
the digital VD. If several points are mapped
to the same grid point, keep just one and treat
the others as missing points.

Phase 2. Triangulation construction.
Dualize the digital VD into a triangulation by
finding all the digital Voronoi vertices to form
triangles. This triangulation is an approxima-
tion of the DT.

Phase 3. Shifting.
Points have been moved due to the mapping
in Phase 1. Shift them back to their original
coordinates and modify the triangulation if
necessary.

Phase 4. Missing points insertion.
Insert all missing points into the triangulation.

Phase 5. Edge flipping.
Verify the empty circle property for each edge
in the triangulation, performing edge flipping
if necessary.

Compared to the previous hybrid approach [25], the
transformation from the approximation of the DT to
the DT itself (Phase 3 to Phase 5) is now completely
done on the GPU. Some technicality in the approx-
imation construction (Phase 1 and Phase 2) is also
provided. We adopt the triangulation data structure
used by Shewchuk [27] in our computation. A list of
triangles, referred to as the triangle list, is stored in
a pre-allocated array of size no more than 2|S|. Each
triangle has the indices of up to three other triangles
edge adjacent to it. Each point in S has a linked list
of triangles incident to it. These linked lists altogether
form a data structure referred to as the vertex array.
This data structure comes in handy whenever we
want to visit the triangles incident to a point.

3.1 Phase 1: Digital Voronoi diagram construction
In this phase, we first translate and scale the point set
such that its bounding box fits inside a 2D grid Q of
m×m cells. Each point is mapped to the nearest lower
left grid point. If several points are mapped to a same
grid point, only one of them is recorded while the rest
become missing points and will be handled later.

Second, we compute the mentioned digital VD of all
points except missing points on the GPU. However,
the dual of the digital VD may not be a geometrically
valid triangulation, since it can have duplicate and
intersecting triangles; see Figure 2. Cao et al. [4] show
that by dualizing the output of the so-called Standard
flooding algorithm, one gets a valid triangulation
of the points. The output of the Standard flooding
algorithm is very close to the digital VD except that
each region of a same color is connected. We adopt
the Parallel Banding Algorithm (PBA) of Cao et al. [5]
to compute the digital VD on the GPU as it is much
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Fig. 2. (a) Duplicate and (b) intersecting triangles due
to the digital Voronoi vertices u and v.

faster than the Standard flooding algorithm. Then we
quickly amend the digital VD so that the result is the
same as that generated by the Standard flooding algo-
rithm. After that, one can obtain a valid triangulation
by dualizing the amended digital VD. The detailed
discussion on how to amend the digital VD can be
found in Appendix A.

3.2 Phase 2: Triangulation construction
In this phase, we dualize the result of the previous
phase. A corner shared by up to four grid cells is
incident to one to four different colors. If it is incident
to three or four different colors, we call it a digital
Voronoi vertex. For each Voronoi vertex that is inci-
dent to three colors, which correspond to three sites,
we add one triangle formed by these sites into the
triangulation. Similarly, for each Voronoi vertex that
is incident to four colors, two triangles formed by the
four corresponding sites are added.

Recall that during Phase 1, points are translated,
scaled, and then slightly shifted from their original
positions. We reverse this process on the constructed
triangulation in two steps. First, we reverse the scaling
without destroying the validity of the triangulation.
Second, we shift the points and fix the triangulation if
necessary. The second step is done with care in Phase
3. On the other hand, the first step, though looks
trivial, can result in an invalid triangulation if the
possible numerical error during the scaling process is
not handled. Further discussion about this issue can
be found in Appendix B.

As the digital VD is truncated within the texture,
its dual is not always a complete triangulation with
a convex boundary. We fix this by traversing along
the boundary of the texture, using the idea similar
to Graham’s scan algorithm [14] to identify triangles
whose Voronoi vertices fall outside the texture, and
add them into the triangulation. This additional step
is performed on the CPU as it is a simple task, and it
can be done concurrently while the GPU is populating
the triangle list.

In the later phases of our algorithm, we need to
add or delete points from the triangulation in parallel.
Deleting a point on the convex hull or inserting a
point outside the convex hull can be quite involving,
causing non-uniform parallel computations. We apply
a common technique of bounding the point set with
a large enough convex polygon, referred to as the

s

s′

(a)

s s′

(b)

Fig. 3. Shifting a point s to s′ may or may not require
some modifications to the triangulation. (a) Bad case.
(b) Good case.

fake boundary, to make sure all insertions and dele-
tions are done inside the triangulation. Although a
polygonal boundary with 3 points is sufficient, in our
implementation we choose to use

√
k points where

k is the number of points on the convex hull. This
helps to avoid any of them being incident to too many
triangles, resulting in the work of some threads being
unbalanced.

In the above computation, we want the generation
of each triangle to be independent from that of other
triangles in order to achieve good parallelism. Thus,
each triangle is generated without linking up with the
triangles sharing its edges. Once all the triangles are
generated, we construct in parallel the vertex array
and use that to identify for each triangle, in parallel,
up to three other triangles edge adjacent to it. As a
result, we obtain the data structure of a triangulation
similar to that in [27].

3.3 Phase 3: Shifting
In Phase 1, we move the points during the mapping
step. We should shift them back to their original
coordinates. We say two points are neighbors when
they are endpoints of an edge in the triangulation.
Assuming the neighbors of a point s are static, shifting
s may or may not cause any intersection. We refer to
the former as a bad case and the latter as a good case; see
Figure 3. The bad case happens when s moves across
the boundary formed by its neighbors. We expect, due
to the very small shifting distance, majority of the
shifting in practice are good cases.

To achieve regularized work while shifting points in
parallel, we separate the processing into two stages. In
the first stage, we only shift points that are good cases.
To do so, we perform this stage in multiple iterations.
Algorithm 1 details our approach. Initially, all the
points are marked as unchecked. In each iteration,
each parallel thread in charge of an unchecked point si
first verifies that all its neighbors with indices smaller
than i are checked (line 4). We skip the processing
of si if this condition is not met. Then, if shifting si
while all its neighbors remain static does not cause
any intersection, we shift it (line 6–7). Otherwise, we
leave it for the second stage (line 9). After a point
is processed, it is marked as checked. Since most
points would be processed and marked as checked in
the first few iterations, we use compaction after each
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Algorithm 1 Shifting points of good cases and record-
ing points of bad cases

1: set all points as unchecked;
2: repeat
3: for each unchecked point pi do in parallel
4: if all neighbors pj of pi, j < i, have been

checked then
5: mark pi as checked;
6: if shifting pi is a good case then
7: update pi to its original coordinate;
8: else
9: mark pi as a bad case;

10: end if
11: end if
12: end for
13: until all points have been checked;

iteration to skip points that are marked as checked in
subsequent iterations. This helps to speed up the later
computation.

In the second stage, we delete all points that are bad
cases, treating them as missing points for later pro-
cessing. Note that we also need the above-mentioned
multiple iterations to avoid deleting in parallel two
points that are neighbors; see line 2–7 of Algorithm 2.
First, for each set of points to be deleted in parallel,
we count their degrees. Applying parallel prefix sum
on these counts, we get the starting position that
each thread might use to store the indices of the
triangles to be deleted (line 8). These indices are
needed to store the newly created triangles during
the re-triangulation. We allocate a piece of memory
for each thread to store the indices mentioned above.
Second, using one thread per point in parallel, we
mark all triangles in its fan as deleted and store their
indices in the allocated memory (line 9–11). Third,
we fix the vertex array in parallel by removing the
deleted triangles from it (line 12–14). After that, we
use the ear-cutting method [16] to re-triangulate the
resulting star-shaped holes in the triangulation in
parallel, while updating the vertex array at the same
time (line 15–17). Since the triangles to be created is no
more than those deleted, we can use the deleted slots
in the triangle list that we recorded earlier to store the
new triangles, with no racing memory access during
parallel computation. In the end, we update the links
between the newly created triangles and those that
are edge adjacent to them (line 18–20).

3.4 Phase 4: Missing points insertion
In this phase, we insert the missing points identified

in Phase 1 and Phase 3 into the triangulation. The
insertion of each missing point pi starts by identifying
the triangle(s), referred to as the container, in the
triangulation that contains pi, or has an edge passing
through pi. For each missing point obtained from

Algorithm 2 Deleting points of bad cases
1: repeat
2: for each points p to be deleted as marked by

line 9 in Algorithm 1 do in parallel
3: if p can be processed in this iteration then
4: Mark p as active;
5: Record its degree;
6: end if
7: end for
8: Compute parallel prefix sum of the degrees;
9: for each p marked as active do in parallel

10: Mark triangles in p’s fan as deleted and store
their indices;

11: end for
12: for each q incident to a deleted triangle do in

parallel
13: Fix q’s linked list in the vertex array
14: end for
15: for each p marked as active do in parallel
16: Triangulate the resulting star-shaped hole and

update the vertex array;
17: end for
18: for each new triangle t do in parallel
19: Compute t’s 3 neighbors and update the links

between t and its neighbors;
20: end for
21: until all bad cases have been deleted;

Phase 1, we start the search from a triangle incident to
the point of S that was mapped to the same grid point
as pi and was kept in the digital VD computation. As
for one obtained from Phase 3, we start the search
from a triangle incident to a neighbor pj of pi before
pi was deleted. During the processing of pi, if pj is
not yet in the triangulation, we delay the insertion of
pi to a later iteration. This search is done in parallel
with one thread handling one missing point.

To avoid concurrent modification of the same tri-
angle during the parallel execution, this phase is also
done in multiple iterations; see Algorithm 3. In each
iteration, each thread handling an insertion first uses
the index of the point to be inserted to mark on the
triangles in its container (line 2–5). Next, each thread
checks the marks on these triangles and only performs
the insertion if its marks are not overwritten by any
other threads (line 7). A global synchronization, which
is fairly cheap on the GPU, is required to make sure
that all the markings are done before any check is
performed. The marking is done using the atomic
minimum operation [21], which is readily available
on the GPUs. This guarantees the termination of the
algorithm, since in each iteration at least the missing
point with the smallest index can be inserted. This also
means many iterations may potentially be needed to
complete the insertions, since many points may fall
into the same triangle. Nevertheless, in practice, after
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Algorithm 3 Inserting missing points
1: repeat
2: for each yet-to-be-inserted missing point pi do

in parallel
3: locate the container of pi;
4: mark the triangle(s) containing pi with i using

atomic minimum;
5: end for
6: for each yet-to-be-inserted missing point pi do

in parallel
7: if its container is still marked as i then
8: mark pi as active;
9: mark its container as deleted;

10: else
11: record one triangle containing pi for latter

point location;
12: end if
13: end for
14: for each q incident to a deleted triangle do in

parallel
15: Fix q’s linked list in the vertex array
16: end for
17: for each p marked as active do in parallel
18: Insert p into its container to create new trian-

gles and update the vertex array;
19: end for
20: for each new triangle t do in parallel
21: Compute t’s 3 neighbors and update the links

between t and its neighbors;
22: end for
23: until all missing points have been inserted;

the first few iterations, such a triangle is subdivided
into many triangles, and the missing points are dis-
tributed across them. Thus, the number of iterations
is usually small.

For each missing point that can be inserted, we
mark its container as deleted (line 8–9). Otherwise,
we record its container for later search (line 11).
After that, we fix the vertex array of points that are
incident to some deleted triangles (line 14–16). Then,
we generate new triangles, update their neighbors
correspondingly, and update the vertex array of points
that are incident to some new triangles (line 17–22),
similar to the process in Phase 3. One small imple-
mentation note is on the insertion of new triangles
into the triangle list in parallel. We have to re-use all
the deleted slots in the previous phase to make sure
that we do not have to resize the triangle list. This
can be done by first collecting the list of deleted slots
using parallel stream compaction. Each missing point
being inserted needs up to two new slots. We can use
parallel prefix sum to allocate the available slots in
the triangle list to each thread.

At the end of this phase, we can remove the fake
boundary introduced in Phase 2. This is done in the

same manner as deleting a bad case in Phase 3, except
that each hole created when deleting a boundary point
is an open polygon (still star-shaped). After the fake
boundary is removed, we compact the triangle list
to remove all deleted slots that are not used. This
changes the index of the triangles, so we have to
update all the references to them.

3.5 Phase 5: Edge flipping

This phase transforms the current triangulation into
the DT. We verify the empty circle property of each
edge in our triangulation in parallel. For an edge ab
of triangle abc, we check if the point d of the adjacent
triangle adb is inside the circumcircle of abc. If so,
an edge flipping is performed to replace abc and adb
with adc and cdb. This process is done in multiple
iterations, and the same strategy as in the previous
phase is used to avoid concurrent modification of a
triangle by multiple threads. We use one thread to
process one triangle, and we mark those that do not
need any flipping so we do not need to check them
again in the subsequent iterations. Note that when
a pair of triangles is flipped, the new triangles are
not marked. Another optimization for this phase is
that a triangle ti only performs the in-circle test with
its neighbor tj if i < j, since each pair of triangles
should only be checked at most once in each iteration.
However, the implementation needs to make sure that
as long as one of the triangles in a pair is not marked,
the pair should be checked in the next round.

To perform the in-circle test, we use the exact pred-
icate introduced by Shewchuk [27] which is adaptive
and robust. Besides the exact predicate, Shewchuk
also provides a fast check that is only approximate
but fast. We use the fast check on the GPU, while
marking the edges that have numerically inaccurate
in-circle results (those almost co-circular cases). After
all possible flips are done, we perform the checking
and flipping of those few marked edges on the CPU
using the exact predicate. This is faster than using
the exact predicate on the GPU since we transfer the
triangulation back to the CPU as output anyway. In
case the output DT need not be transfered back, the
exact predicate can be done directly on the GPU.

One difficulty during this phase is the updating
of the links between the triangles after each flipping
iteration. Two adjacent triangles can participate in
two different flips, thus directly updating the adjacent
triangles after flipping can cause conflicting memory
access. Instead, the update is performed in two steps,
each is done in parallel, with a global synchronization
in between. Each triangle has a temporary storage
for updating its links. In the first step, each pair of
triangles that is just flipped updates the temporary
storage of its neighbors. In the second step, each pair
of triangles mentioned above inspects its temporary
storage and updates its own links. Note that if a



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X XXXX 7

neighbor of this pair is not flipped in this iteration,
that neighbor is not processed by any thread. Thus,
the thread processing this pair needs to update that
neighbor’s links directly.

4 COMPUTING THE CDT ON THE GPU
To introduce constraints into the DT computation, we
use the approach of constructing a triangulation T of
the point set first before incorporating the constraints.
This is because considering constraints earlier in the
digital VD computation makes the dualization much
more difficult, and the correctness of the resulting
triangulation might not be guaranteed.

A naı̈ve approach is to have one thread han-
dling one constraint, deleting triangles that it pierces
through and re-triangulating the created region. This,
however, is not ideal because each constraint can
intersect a different number of triangles in T , resulting
in unbalanced workloads. Furthermore, two different
constraints may intersect some common triangles, and
the threads handling them cannot proceed without
some sort of locking, a costly operation on the GPU.

To achieve good parallelism, we employ the flip-
ping approach to insert constraints. Multiple pairs
of triangles intersected by the same constraint can
possibly be flipped in parallel. Also, when multiple
constraints intersect some common triangles, we can
still possibly flip some of them. To regularize work
among different threads, this flipping is done before
Phase 5 of the DT algorithm in Section 3, so that we
can focus on inserting the constraints first before wor-
rying about the empty circle property. Our algorithm
can be summarized as follows:

Step 1. Compute a triangulation T for all points
(Phases 1 to 4);

Step 2. Insert constraints into T in parallel;
Step 3. Verify the empty circle property for each

edge (that is not a constraint), and perform
edge flipping if necessary.

Step 3 is similar to Phase 5 of the DT algorithm,
with some slight modifications to not flipping con-
straints. Our proposed Step 2, with an outer loop
and an inner loop, is given in Algorithm 4. The idea
is to identify intersections between constraints and
triangles, i.e. constraint-triangle intersections, in the
outer loop, and to use edge flipping to remove them
in the inner loop, all in parallel using multiple passes.

4.1 Outer loop: Find constraint-triangle intersec-
tions
For each triangle in the triangulation, we find the
index of one constraint intersecting it, if any. Let
ci = ab be the ith constraint in the input, we go
through the triangle fan of a to identify the triangle A
intersected by ci. If ci is an edge of A, the constraint

Algorithm 4 Inserting constraints into the triangula-
tion

1: repeat /* outer loop */
2: for each constraint ci do in parallel
3: mark triangles intersecting ci with i using

atomic minimum;
4: end for
5: repeat /* inner loop : see Algorithm 5 */
6: do edge flipping to remove intersections to

constraints;
7: until no edge is flippable;
8: until all constraints are inserted;

is already there in the triangulation and no further
processing is needed. Otherwise, from A we start
walking along the constraint towards b, visiting all
triangles intersected by ci. For each triangle found, we
mark it with the index i using the atomic minimum
operation. Letting the minimum index remain as the
marker is necessary for our proof of correctness. Since
we do not modify anything in the triangulation in
this step, no locking is needed. The work done in this
outer loop achieves coarse-grained parallelism on the
GPU, with one thread processing one constraint.

4.2 Inner loop: Remove intersections

The inner loop of Algorithm 4 performs edge flipping
to reduce the number of constraint-triangle inter-
sections. Here, the parallelism is fine-grained with
each thread processing a triangle. Consider a pair of
adjacent triangles that are both marked by the same
constraint. There are four kinds of configuration for it;
see Figure 4. A pair is classified as a zero intersection,
single intersection or double intersection configuration if
flipping it results in a new pair having zero, one or
two intersections with the constraint, respectively. If
the flipping is not allowed as its underlying space is a
concave quadrilateral, the pair is classified as a concave
configuration.

It might seem good to avoid flipping a double
intersection configuration since flipping does not “im-
prove” the situation and thus possibly leading into
an infinite loop. However, we note that restricting
flipping to only zero and single intersection is not

(a) (b) (c) (d)

Fig. 4. Configurations of a triangle pair intersecting a
constraint (drawn in dashed line). (a) Zero intersection.
(b) Single intersection. (c) Double intersection. (d) Con-
cave.
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(a)

(b)

(c)

(d)

(e)

Fig. 5. Flipping consideration of a triangle pair involv-
ing A. The constraint pq intersects the triangles from
left to right. (a) Case 1a. (b) Case 1b. (c) Case 2. (d)
Case 3a. (e) Case 3b.

sufficient to get rid of all the constraint-triangle in-
tersections. To overcome this dilemma, we propose a
one-step look-ahead strategy. Consider a triangle A
in the chain of triangles intersected by a constraint,
from one end point to the other, and let B and C be
the previous and the next triangle in that chain. The
triangle pair (A,C) is flippable in one of the following
cases: (Figure 5)

Case 1. (A,C) is a zero or single intersection.
Case 2. (A,C) and (B,A) are both double intersec-

tions, and flipping (A,C) would result in B
with its new next triangle forming a single
intersection.

Case 3. (A,C) is a double intersection and (B,A)
is concave, and flipping (A,C) would result in
B with its new next triangle no longer being
concave.

Note that Case 2 is equivalent to (B∪A∪C) being a
convex polygon. We perform the flipping in multiple
iterations; see Algorithm 5. In each iteration, we first
identify the triangle pairs and their configurations

Algorithm 5 Processing of constraint-triangle intersec-
tions

1: repeat
2: for each triangle A intersecting a constraint do

in parallel
3: if C is also marked by the same constraint as

A then
4: determine the case of (A,C);
5: end if
6: end for
7: for each triangle A intersecting a constraint do

in parallel
8: if (A,C) is flippable then
9: mark A,C (and B for Case 2 and Case 3)

using atomic minimum;
10: end if
11: end for
12: for each triangle A intersecting a constraint do

in parallel
13: if A,C (and B for Case 2 and Case 3) retain

the same mark then
14: flip (A,C) and update the links between

the new triangles and their neighbors;
15: end if
16: end for
17: until no edge is flippable;

(line 2–6). Then for any flippable pair (A,C) as de-
scribed above, we mark A, C, and possibly the previ-
ous triangle of A (which is B in our discussion), with
the index of A using the atomic minimum operation
(line 7–11). Lastly, we flip (A,C) only if the marks on
A and C (and also B for Case 2 and Case 3) remain
(line 12–16). This prevents the possible conflicts when
updating the triangulation, and allows the one-step
look-ahead to be achieved. We also introduce extra
weights into the labels used in the marking. Case 1 is
given the highest weight, followed by Case 2 and then
Case 3. For each step to be done in parallel, we assign
one thread to process one triangle. As an optimization,
after each iteration, we maintain a compact list of
active triangles, i.e. those that are still intersected by
the constraints. As such, in later iterations, we do not
have too many idle threads handling triangles that no
longer active.

In practice, the repeat-until loop in Algorithm 5 is
only executed a few times per outer loop iteration
instead of repeating until no edge is flippable. The
reason is as the algorithm progresses, there is a drastic
reduction in the number of flippable cases, and thus
the parallelism reduces. By switching to the outer loop
after a few (say 5 to 10) iterations of the inner loop,
the algorithm can discover more flippable cases to
improve the parallelism and as a result improving
the performance, without compromising on the cor-
rectness proven in the next section.
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4.3 Proof of correctness

We show that Algorithm 4 terminates with all con-
straints inserted into the triangulation. Consider one
iteration of the outer loop, and let ci = ab be the
constraint with the smallest index i that still inter-
sects some triangles in our triangulation. By using
the atomic minimum operation, we ensure that all
triangles intersecting ci are marked with i. It thus
suffices to prove the following:

Claim 1. The inner loop always successfully inserts
one constraint into the triangulation.

Proof. Consider the chain of triangles intersecting ci
from a to b. Among these triangles, if there are one or
more triangle pairs that are single or zero intersection,
then the claim is true as the marking favors each of
these cases and flipping is indeed carried out, reduc-
ing the number of triangles intersecting ci. Otherwise,
consider the chain of triangles having only double
intersection or concave configurations. We argue that
there exists a triangle pair (A,C) among them that is
flippable, and each flip is a step closer to removing
the intersections of the triangles with ci.

If we would remove all triangles intersecting ci, a
polygonal hole is created with points p1, p2, . . . as its
upper part and q1, q2, . . . as its lower part, excluding
a and b; see Figure 6(a).

Any polygon has an ear. Let qk−1qkqk+1 be the ear
such that the triangle C = qkqk+1pj incident to qkqk+1

and intersected by ab is the earliest one in the chain.
We exclude a and b themselves to be qk. Let A be
the previous triangle of C and B be the previous of
A. We have A = qkpjpj−1 since if it were qkpjqk−1,
(A,C) would have been a single intersection pair. The
triangle pair (A,C) is a double intersection, since the
two angles pj−1pjqk+1 and pj−1qkqk+1 are both less
than π.

We claim that (A,C) is flippable by considering
3 cases of B as follows. If B = qkpj−1pj−2, (B,A)
is a concave pair; see Figure 6(b). pj−2pj−1qk+1qk is
convex by the choice of qk, thus triangles B,A,C fulfill
Case 3a, and (A,C) is flippable. If B = qkpj−1qk−1
and (B,A) is a double intersection (see Figure 6(c)),
the union of triangles B,A,C is a convex polygon
as needed in Case 2, so (A,C) is flippable. If B =
qkpj−1qk−1 and (B,A) is a concave configuration (see
Figure 6(d)), the union of triangles B,A,C fulfill
Case 3b, so (A,C) is also flippable. As long as there
is one flippable triangle pair, the marking in the inner
loop in Algorithm 4 will successfully mark one for
flipping, and flipping is indeed performed in each
pass.

We next show that our inner loop does not go on
forever. Let us assign to each pair of triangles a value
of 0, 1 or 2. A pair of triangles that is zero or single
intersection is assigned value 0; a double intersection,
value 1; and a concave, a value 2. As a result, we have
a base 3 number, N , to record the cases of the chain of

(a)

(b)

(c)

(d)

Fig. 6. (a) When the triangle pairs intersecting the
constraint ci = ab are only either double intersection
or concave, there exists a flippable pair (A,C). (b) B,
A and C fulfill Case 3a. (c) B, A and C fulfill Case 2.
(d) B, A and C fulfill Case 3b.

triangles intersecting ci. A flip due to Case 1 deletes
a digit in N ; Case 2 turns 11 into 01; and Case 3 turns
21 into 11 (Case 3a) or 01 (Case 3b). In other words,
each flip decreases the value of N . Since N is finite,
our algorithm clearly terminates, and a constraint is
inserted as claimed. �

4.4 Complexity analysis
Claim 1 concludes that our proposed algorithm com-
putes the CDT correctly. In this subsection, we show
that no flip is wasteful. We first analyze the number
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of flips needed to insert one constraint, followed by
a bound on the total number of flips needed to insert
all the constraints.

Claim 2. The total number of flips performed by the
inner loop in order to insert one constraint is O(k2),
where k is the number of triangles intersecting the
constraint.

Proof. Flipping due to Case 1 cannot be done more
than k times since each flipping removes an intersec-
tion. Flipping due to Case 2 immediately gives rise to
a flipping of Case 1 (with highest priority), and thus
also cannot be done more than k times.

The initial number of concave pairs is bounded by
O(k). A flip due to Case 1 (or Case 2) introduces
at most two (or one) concave pairs, thus at most
O(k) concave pairs can be introduced by these two
flipping cases. Flipping due to Case 3 either eliminates
a concave pair or pushes it towards one end of the
constraint, thus it can be performed no more than
O(k2) times. As a result, the total number of flips is
O(k2). �

Figure 7(a) shows that the worst case of Claim 2
can happen. In this example, among all the triangles
intersected by the constraint, there is a particular
chain of triangles with k successive concave pairs
followed by k double intersection pairs, such that
none of the double intersection pairs fulfill Case 2. The
only flippable case in this situation is due to Case 3a
with two triangles sharing the edge ef . Flipping this
pair of triangles and moving on with another k − 1
flippings due to Case 3a, the algorithm produces Fig-
ure 7(b). The concave pair on the left of the k double
intersections has been ”removed” and ”introduced” in
the right at the edge st. In other words, the concave
pair is pushed towards one end of the constraint. As
such, for each concave pair, O(k) flips are needed to
remove it, and since there are k concave pairs being
removed in parallel, we need O(k) iterations of the
inner loop and O(k2) flips are performed.

One technicality remains in the above construction.
We add an extra O(k) concave pairs on the left and
O(k) double intersection pairs on the right of the
chain of triangles shown in Figure 7(a). This is to
make sure that the triangle pairs incident to a and
b can be flipped O(k) times in the O(k) inner loop
iterations without affecting the chain of concave and
double intersection pairs shown in the figure. The
total number of triangles intersecting the constraint
is O(k), so our O(k2) bound on the number of flips
needed is tight.

Following the previous claim, in the worst case
the total number of flips performed to insert all the
constraints may reach O(n3). However, this bound is
not tight. In the next claim, we show that the total
work for inserting all constraints is Θ(n2).

Claim 3. The total number of flips performed by
Algorithm 4 is Θ(n2), where n is the number of input
points.

(a)

(b)

Fig. 7. A bad case for inserting one constraint.

Fig. 8. Push the concave pair towards the right end of
the constraint using a flipping due to Case 3a.

Proof. For any constraint ci, if all triangles intersect-
ing it are deleted, a polygonal region is left with si
points in its upper part and ti points in the lower
part, excluding the endpoints of ci. The number of
triangles intersecting ci is k = si + ti.

According to Claim 2, flipping due to all cases
except Case 3a can only be done O(k) times. Flipping
due to Case 3a either eliminates a concave pair or
pushes it towards the right end of the constraint.
When a concave pair is pushed, it moves one step
to the right end in both the upper boundary and the
lower boundary of the polygonal region (Figure 8),
thus each concave pair can only be pushed min(si, ti)
times. As such, the total number of flips to insert ci
is O(k + k min(si, ti)) ⊂ O(siti). The total number of
flips performed for m constraints is thus O(

∑m
i=1 siti).

Each time a constraint ci is inserted, any edge piqj
can never appear later in the triangulation. Not only
that, such an edge also cannot be inside the polygonal
region of any other constraint, otherwise that region
would have intersected ci. The number of edges that
can possibly be formed by the n input points is O(n2),
so O(

∑m
i=1 siti) ∈ O(n2). This, together with the worst

case example shown above, concludes our proof of
Claim 3. �
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Fig. 9. A synthetic dataset (left) and its constrained
Delaunay triangulation (right).

In our experiment in Section 5, we observe that
the total number of flips performed to insert all
constraints is actually proportional to the number of
constraint-triangle intersections.

5 EXPERIMENT RESULTS

Our algorithm is implemented using the CUDA pro-
gramming model by NVIDIA. All the experiments are
conducted on a PC with an Intel i7 2600K 3.4GHz
CPU, 16GB of DDR3 RAM and an NVIDIA GTX
580 Fermi graphics card with 3GB of video memory.
Visual Studio 2008 and CUDA 4.0 Toolkit are used
to compile all the programs, with all optimizations
enabled. To achieve exact and robust result during
our computation, we only use orientation and in-circle
predicates from the exact predicates of Shewchuk [28].

The input to the program is a PSLG containing
possibly no edges. All numbers and computations
are done in double precision. To assess the efficiency
of our gCD program, we compare its running time,
on both synthetic and real-world data, with that of
the most popular computational geometry software
available, Triangle and CGAL version 3.9. According
to our tests, CGAL runs faster than Triangle for the
DT computation. However, when constraints are in-
troduced, Triangle runs much faster than CGAL. Here,
we only show the result of the faster one between the
two.

5.1 Synthetic Dataset

To generate synthetic data, we first randomly generate
constraints of different lengths such that none of them
intersect each other. Then, we randomly generate
points that do not lie on any constraint. Figure 9
shows one small synthetic data generated.

5.1.1 Comparison on DT results
This is the case where the input has no constraints.
For different number of input points, our approach
achieves 4 to 4.5 times speedup over CGAL; see
Figure 10. The results on grid sizes 10242 and 40962

are omitted in all figures for clarity. As a side note, we
also verify that our work is superior to the prior work
reported by Rong et al. [25] for the DT computation.

Fig. 10. The running time of CGAL and the speedup
of gCD over CGAL on DT computation time.

Fig. 11. The running time of different phases of the DT
computation with 10M points.

Different grid sizes used for the digital VD com-
putation significantly affect the running time of our
program. This can be analyzed more thoroughly from
Figure 11 which shows the running time of different
phases for computing DT with 10M points. A larger
grid has some penalty on the digital VD computation
time in Phase 1, and leads to more points (that can
be mapped onto the grid) to be shifted in Phase 3.
However, it gives a better approximation and less
missing points, thus Phase 4 and Phase 5 run faster,
contributing to a faster running time overall. All in
all, as a general guideline, given a larger set of input
points, a larger grid is preferable.

The same conclusion is also true when the input
points are from a Gaussian distribution. For small
grid sizes, the speedup achieved is slightly lower due
to having more points concentrated in the center of
the grid and became missing points. The speedup
increases quickly when we move to a larger grid.
However, this is no longer true on extreme cases such
as when points are co-circular, since our uniform digi-
tal VD is not a good approximation of the continuous
one in this case.

5.1.2 Comparison on CDT results
When constraints are introduced, we observe a sub-
stantial speedup, of up to an order of magnitude, com-
pared to both Triangle and CGAL (with CGAL being
much slower than Triangle). Triangle inserts constraints
one by one on the DT of the point set while also
using an edge flipping method. We compare the time
for constraints insertion by subtracting the time for
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(a) (b)

Fig. 12. The running time of Triangle and the speedup of gCD over Triangle when computing the CDT, (a) with
1M constraints and varying the number of points, and (b) with 10M points and varying the number of constraints.

(a) (b)

Fig. 13. The total number of constraint-triangle inter-
sections when using different grid sizes, (a) with 1M
constraints and varying the number of points, and (b)
with 10M points and varying the number of constraints.

the DT computation from the total time for the CDT
computation on the same point set.

Running time: Figure 12(a) and 12(b) show the
performance comparison of Triangle with gCD on dif-
ferent number of points and constraints, with different
grid sizes. Clearly, the more constraints there are, the
higher is the speedup we achieve. This is because only
a small part of our constraints insertion algorithm is
done with coarse-grained parallelism, while the ma-
jority of the processing has fine-grained parallelism.
As a result, our algorithm scales well with the amount
of work available. Note that we achieve better per-
formance for constraints insertion when using bigger
grid sizes because the number of constraint-triangle
intersections decreases (see Figure 13(a) and 13(b)).
This is possibly due to the fact that the triangulation
produced by Step 1 is closer to the DT when the grid
size gets bigger.

Running time of different phases: Figure 14(a)
and 14(b) shows the running time of different steps
of gCD using 81922 grid size. Similar behavior is also
observed for other grid sizes. The time our program
spent on inserting constraints occupies less than 20%
of the total time. On the same datasets, Triangle spends
most of its time for that task. For example, given
10M points and 1M constraints, Triangle spends 62
seconds for constructing the CDT, of which 46 seconds

(a) (b)

Fig. 14. The running time of different steps of the CDT
computation, (a) with 1M constraints and varying the
number of points, and (b) with 10M points and varying
the number of constraints.

(a) (b)

Fig. 15. The number of flips required given different
number of constraint-triangle intersections when in-
serting constraints, (a) with 1M constraints and varying
the number of points, and (b) with 10M points and
varying the number of constraints.

are spent on constraints insertion. In contrast, gCD
spends 3.2 seconds for constructing the CDT, of which
only 0.47 seconds are for inserting constraints. As
such, when comparing the total running time of our
program with that of Triangle, we achieve significant
speedup, ranges from 10 to 49 times.

Number of flips: We compare with Triangle on
the number of flips needed to insert constraints. To
get a fair comparison, we follow Triangle’s approach
by modifying our implementation to insert the con-
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TABLE 1
Running time on the contour datasets.

Set Data Size Constraints Insertion (s) SpeedupTriangle gCD
a 1.2M 0.665 0.046 14×
b 3.2M 1.982 0.071 28×
c 4.5M 2.526 0.097 26×
d 5.7M 3.181 0.133 24×
e 8.5M 4.755 0.245 19×
f 9.5M 6.036 0.244 24×

straints after we have obtained the DT. The flips
needed by gCD to insert constraints include both
those to make the constraints appear in the triangu-
lation and those to make the triangulation a CDT.

Figure 15(a) and 15(b) shows the comparison with
different number of points and constraints. The num-
ber of flips is plotted against the number of constraint-
triangle intersections to highlight that the relationship
between the two is linear in practice. This is much
lower than the worst case complexity analyzed in
Section 4.4. Note that we perform slightly less edge
flippings than Triangle, possibly due to our algorithm
giving extra weights to Case 1 and Case 2, which are
the cases that lead to an immediate removal of some
constraint-triangle intersections.

5.2 Real-world datasets

To compare gCD and Triangle on real-world datasets,
we use the contour maps freely available at
https://www.ga.gov.au/. Figure 1(a) shows an exam-
ple of the contour maps we use in our experiment,
together with its CDT. For such a contour map, the
number of constraints is approximately the same as
the number of points. Here we use the number of
points to denote the data size of a contour map. Ta-
ble 1 shows the running time comparison for several
different datasets.

Generally, gCD runs faster than Triangle. In these
real-world datasets, most constraints are very short
and do not intersect many triangles (if at all). Fig-
ure 16 shows the distribution of the number of in-
tersections per constraint, collected by our program
for the Dataset f (with about 9.5M points and 9.5M
constraints) and for a synthetic dataset (with 10M
points and 1M constraints). The maximum number

Fig. 16. The distribution of the number of intersections
per constraint.

of intersections per constraint is 51 for the contour
dataset as compared to 7073 for the synthetic dataset.

In both cases, the total number of constraint-triangle
intersections is around 6M. Triangle inserts constraints
much slower when the constraints are long, i.e. one
constraint intersects many triangles. It takes 46 sec-
onds for the synthetic dataset, while only 6 seconds
for the contour dataset where constraints are mostly
short. On the other hand, due to our fine-grained
approach, our program can easily process the syn-
thetic dataset consisting of both long and short con-
straints. The parallelism achieved is similar to when
processing the contour dataset having all constraints
being very short. Our running time for synthetic and
contour dataset are 0.47 and 0.25 seconds respectively,
showing a significant speedup over the sequential
approach.

5.3 Image vectorization
As mentioned earlier, the CDT can be used in many
applications. Prasad and Skourikhine [22] present a
framework for transforming a raster image into a
vector image comprised of polygons that can be sub-
sequently used in image analysis. Their algorithm
consists of the following steps. First, edges are recog-
nized using some standard edge detection algorithm.
Second, contiguous edge pixel chains are extracted
and an edge map consisting of many straight line
segments is constructed. Third, the CDT of the edge
map (which is actually a PSLG) is computed. Finally,
adjacent trixels (triangles) are merged based on some
certain grouping filters, and the connected compo-
nents of the trixel grouping graph yield polygons that
represent the image. Figure 1(b) shows a raster image
and the result after computing the CDT of its edge
map. In practice, depending on the resolution of the
image, the edge map might consist of hundreds of
thousands of line segments (constraints) of different
lengths, thus using our gCD help speed up the com-
putation. The constraints here are similar in nature to
those in the contour datasets, so the performance of
gCD is also similar.

6 CONCLUDING REMARKS

This paper presents a new, efficient and robust parallel
approach to construct the 2D constrained Delaunay
triangulation on the GPU. Our approach is scalable
and is capable of maximizing the parallelism to utilize
the computing power of the GPU. That has been
shown in our experiment with both synthetic and real-
world data. Our implementation achieves an order
of magnitude better performance than the best CPU
libraries available. A limitation of our approach is that
we construct the DT using the digital VD computed
on a uniform grid. As a result, our algorithm is
fast when the input points are uniformly distributed,
while performing less efficiently when the input point
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distribution is highly skewed. Nevertheless, we be-
lieve our approach is useful for many practical appli-
cations.
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APPENDIX A
OUR FLOODING ALGORITHM

Phase 1 of our proposed algorithm is to compute a
digital VD of a collection of points (or seeds) in a grid.
Technically, we want and will prove in the remaining
part of this appendix that the output of this phase is
the same as that of the Standard flooding mentioned
in [1]. Then, we can apply their result to conclude
that Phase 2 of our algorithm indeed produces a
triangulation.

In our gCD algorithm, we use the efficient Parallel
Banding Algorithm (PBA) [2] on the GPU to start
the coloring, which results in an Euclidean coloring.
Each of the Voronoi region obtained has a connected
component called bulk which is path-connected to its
seed, and debris (if any) which are disconnected from
the seed (see Figure A.1). Cao et al. [1] show that bulks
are subsets of the result of the Standard flooding.

Fig. A.1. Illustration for one seed and its debris and
bulk.

Therefore, our challenge is to identify and recolor
the debris to be the same as in the Standard flooding
result. Since there are very few debris in general, the
recoloring is done on the CPU and the result is copied
to the GPU to complete Phase 1. Algorithm A.1 shows
our proposed approach. We use Q to refer to a priority
queue, N(A) the set of grid points neighboring grid
point A, and pi a seed with color i. The operation
min(Q) on Q removes and returns the pair with mini-
mum distance between the grid point and the seed of
its color; ‖A−pi‖ ≺ ‖B−pj‖means ‖A−pi‖ < ‖B−pj‖,
or ‖A − pi‖ = ‖B − pj‖ with consistent tie breaker
(using, for example, the coordinates of the points).

We now show by contradiction that Algorithm A.1
indeed produces the same output as that of the
Standard flooding. We just need to argue for those
grid points that are identified as debris since bulks
are shown to be the same already [1]. Consider the
very first instance when our algorithm colors a debris
A with color r (inside the while-loop) whereas the
Standard flooding produces grid point A with color
s 6= r. There are two situations to consider but both
lead to a contradiction and thus no such debris exists:

Case 1: ‖A− pr‖ ≺ ‖A− ps‖.
From Algorithm A.1, there exists a neighbor B of
A colored by r earlier, and ‖B − pr‖ ≺ ‖A− pr‖.

Algorithm A.1 Our Flooding Algorithm
1: Compute coloring with PBA;
2: Identify all debris as uncolor;
3: Q← ∅;
4: for each debris A do
5: Q ← Q ∪ {(A, i) | ∃B ∈ N(A) having been

colored i and ‖B − pi‖ ≺ ‖A− pi‖};
6: end for
7: while Q 6= ∅ do
8: (A, i)← min(Q);
9: if A is not colored then

10: Color A with color i;
11: Q ← Q ∪ {(C, i) | C ∈ N(A) and ‖A − pi‖ ≺

‖C − pi‖};
12: end if
13: end while

It follows that ‖B − pr‖ ≺ ‖A − pr‖ ≺ ‖A − ps‖.
According to our choice of A, the grid point B
is colored by r in the Standard flooding. By the
Ordered Coloring Lemma [1], (A, r) must have
been considered in the Standard flooding before
(A, s) and A should thus have been colored by
r, a contradiction.

Case 2: ‖A− ps‖ ≺ ‖A− pr‖.
In the result of the Standard flooding, there is
a monotonic path from ps to A. A part of this
path has been colored the same (with s) in our
flooding algorithm when we are about to color
A. Let C be the grid point closest to ps in that
path that is not yet colored by our flooding
algorithm. With the previous grid point before
C having been colored with s, (C, s) must have
been added to Q in our flooding algorithm. Since
‖C − ps‖ ≤ ‖A − ps‖ ≺ ‖A − pr‖, we must have
(C, s) inside Q to be extracted before (A, r), a
contradiction.

The argument in Case 2 also implies that the algo-
rithm colors all grid points. This concludes our claim
of correctness of our flooding algorithm.

APPENDIX B
TRANSFORMING THE POINT SET

To work on points with floating point coordinates,
Phase 1 needs to map them to an m × m grid. We
want precise computation so that the triangulation
computed with respect to points mapped to the grid
remains a triangulation when we do a part of the
inverse mapping to the original coordinates of the
points. We discuss below that precise computation can
be achieved by representing the scale and translation
used in the mapping with a certain number of bits.

We just consider the 1D coordinate in the x-axis;
the discussion can be generalized to 2D with scale be
the larger one calculated from each dimension, while
translation is simply a vector of two components. Let
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the points be such that their minimum and maximum
x-coordinates are xmin and xmax, respectively. Let x
be the original coordinate of a point. The coordinate
of the point mapped to the grid is thus x̄ = b(x −
translation)/scalec where translation = xmin and scale =
(xmax−xmin)/m. The computation of a triangulation in
Phase 1 and Phase 2 is performed using these integer
coordinates.

Then, Phase 3 shifts all points in the grid back
to their positions given in the input. To maintain
as many shifting of good cases as possible, we first
perform the inverse scaling and shifting for the whole
bounding box with all the points. Specifically, we have
x′ = (x̄× scale + translation) as the new coordinate of
the point before shifting it to the original coordinate
x. The later shifting is only to negate the effect of
the truncation to integer coordinate. To ensure we still
have the same triangulation with x′ in place of x̄, we
must compute the floating point number x′ with no
rounding error.

Let (pMax + 1) be the maximum number of bits
available for the mantissa in our floating point rep-
resentation. Note that the explicit mention of “+1”
here is a provision for possible overflow of (x̄ ×
scale+ translation). As x̄ is a non-negative integer with
maximum value of (m−1), it needs pM = (logm) bits
to represent. Let the number of bits used to represent
the mantissas of the two constants scale and translation
be pS and pT , respectively. We keep pT = pMax, and
mention pS in the next paragraph.

We are ready to discuss how to set scale and transla-
tion before doing the actual mapping to the grid. First,
the result of the (x̄ × scale) is accurately represented
using no more than pMax bits, as long as we do
some necessary rounding up on scale such that its
mantissa is representable by pS = (pMax− pM) bits.
The rounding up can just increase scale by a little
bit at its least significant bits and thus we are still
able to spread out the mapping of points on the grid.
Second, the addition of (x̄ × scale) with translation
can result in rounding error as translation can be
much smaller or much larger than (x̄ × scale). Let
range = (xmax − xmin) = (m × scale). We consider
two cases to guarantee that the computation of x′ is
accurate:

Case 1: translation ≤ range.
Let 2t be the largest term in the binary represen-
tation of range. We reduce translate by removing
all terms in its binary representation that are
smaller than 2t−(pMax−1).

Case 2: translation > range.
We round up the scale a little bit as follows.
Let 2r be the largest term in the binary repre-
sentation of translation. We round up all terms
that are smaller than 2r−(pMax−1)+pM in the
binary representation of scale. Because range =

xmax − xmin ≥ 2r−(pMax−1), we always have

that scale, represented by pS bits, is larger than
2r−(pMax−1)+pM for any meaningful input and
is thus non-zero. Also, the rounding up does not
increase the value of scale more than twice, and
thus we are still able to spread out the mapping
of points on the grid.
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