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Abstract

In recent years, the GPUs have been widely adopted in various general purpose computation
fields. In computational geometry field, many papers have proposed methods to utilize the GPUs
to solve traditional problems such as Discrete Voronoi Diagram and Delaunay Triangulation.
The latest GPU Delaunay Triangulation (GPU-DT) algorithm exploits the GPU to assist in
the computation of a Discrete Voronoi Diagram of a set of point S, from which a triangulation
T ′(S) can be constructed. Due to the discrete nature of the discrete Voronoi diagram, several
transformations need to be performed on T ′(S) to get the correct Delaunay triangulation T (S).
As these transformations are highly complicated, they were originally performed in the CPU.
When the number of sites goes up while the resolution of the discrete Voronoi diagram is fixed,
the necessary transformation work soon dominates the running time of GPU-DT. In this report,
we present a novel approach to transform T ′(S) into T (S) in parallel, running completely in the
GPU, using CUDA, the latest massively parallel programming model from NVIDIA. Using a
well designed multiple passes approach, our algorithm effectively improves the performance of
GPU-DT by up to two folds, and up to 180% faster when compared to Triangle, the well-known
fastest CPU Delaunay Triangulator. We will also present a rigorous proof of the correctness of
the construction of a triangulation from the discrete Voronoi Diagram which is used in GPU-DT.

Subject Descriptors:
I.3.1 Hardware Architecture - Graphics processors, Parallel processing
I.3.5 Computational Geometry and Object Modeling - Geometric Algorithm, Languages,

and Systems

Keywords:
Delaunay Triangulation, GPGPU, Computational Geometry, Voronoi Diagram

Implementation Software and Hardware:
Microsoft Windows XP Service Pack 3, Microsoft Visual Studio 2005, CUDA 2.0
Intel Core 2 Quad Q6600 2.4Ghz, NVIDIA GeForce GTX280 PCI-X 1024MB
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Chapter 1

Introduction

1.1 Background and Motivation

In a computer today, the Graphics Processing Unit (GPU) probably has the most powerful

computational capability. Researchers and developers are becoming more and more interested

in GPGPU - General Purpose computing on the GPU, an area in which the GPU is utilized

for many purposes other than graphics processing. There are many reasons behind this trend:

a GPU is a low cost hardware with tremendous memory bandwidth and processing power;

Graphics hardware is fast and getting faster quickly; and the programmability of the GPU

is getting better and better (Owens, Luebke, Govindaraju, Harris, Krger, Lefohn, & Purcell,

2005). Figure 1.1 compares the computational power and memory bandwidth of the GPU and

CPU (NVIDIA, 2008). A single GeForce GTX280 can perform more than 900 GFLOPS and

has the memory bandwidth of 140GB/s, which is almost ten times faster than the latest CPU.

This is because the GPU is designed for highly data-parallel computing intensive tasks. GPU

devotes most of its transistors to arithmetic computational purpose. As a result, the GeForce

GTX280 with 240 stream processors capable of performing floating point operations has a much

higher computational capability compared to the CPU.

Together with the advances in hardware performance, the programmability of the GPU

has also significantly improved with the introduction of Fragment Shader, Vertex Shader and

Geometry Shader. Recently, NVIDIA has introduced the Tesla unified architecture and CUDA,
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Figure 1.1: Computational power and memory bandwidth of the CPU and GPU

an easy to learn, easy to use scalable parallel programming model (NVIDIA, 2008), letting

developers fully utilize the horsepower of the GPUs for many complicated tasks. As such,

GPU has been adopted in many general purpose applications ranging from numeric computing

operations, physical simulation and game physics to datamining and computational geometry

(Owens et al., 2005).

In the field of Computational Geometry, the GPU has been employed to construct Discrete

Voronoi Diagram and Delaunay Triangulation of millions of sites. Delaunay triangulation is

one of the fundamental problem in computational geometry and is often used to build meshes

for the finite element method. Delaunay Triangulation has been throughly studied for many

years in traditional computational geometry field. The best known Delaunay triangulation

implementation on CPU is Triangle, a robust and fastest software that won his author the

2003 James Hardy Wilkinson Prize in Numerical Software (Shewchuk, 1996b). Recently, Rong,

Tan, Cao, and Stephanus (2008) proposed GPU-DT, a hybrid method that utilizes both CPU

and GPU in the process of constructing 2D exact Delaunay triangulation. GPU-DT is the first

algorithm that employ the enormous computing power of the new generation GPU to compute a

Discrete Voronoi Diagram of the point set and construct a valid triangulation from that. Later,

several transformations are performed on the CPU to convert the constructed triangulation into

the correct Delaunay triangulation.

Since GPU-DT still heavily rely on the CPU to perform necessary fixing on the approxi-
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mated triangulation, depending on the quality of the approximated triangulation, more work

will be performed on the CPU. With the limited size of the discrete Voronoi diagram, when the

number of sites increases, the initial triangulation obtained from the Voronoi diagram becomes

less accurate, thus the work on the CPU soon becomes the bottleneck of the algorithm. Mo-

tivated by the rapid increase of the performance of the GPU and the flexibility of the parallel

programming model CUDA, we want to further employ the GPU on the rest of the GPU-DT

algorithm, minimizing the workload on the CPU, making GPU-DT the world’s fastest Delaunay

Triangulator.

1.2 Related works

There are two commonly used principles for the construction of the Delaunay triangulation:

the incremental construction and the incremental insertion. In the incremental construction

method, a starting triangle is created and then the triangulation is built by adding new triangles

adjacent to the existing triangles (Figure 1.2). This method is often used together with the

Divide and Conquer strategy to construct partial Delaunay triangulations and these are then

combined together in the merge phase. This method is used in Triangle and is considered the

fastest algorithm. However, parallel construction of Delaunay triangulation using this strategy

(a) (b) (c)

Figure 1.2: The incremental construction in E2: (a) initial two triangles, (b) construction of

next triangles and (c) partial triangulation (Kohout et al., 2005)

often suffers from two drawbacks. Firstly, the merge phase is usually very complicated, involving

not only the building of triangles on the boundary and fixing existing triangles; Secondly, the

merge phase usually can only be done by one processor. One example is the algorithm of
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Aggarwal et al. (1988). There are some other algorithms that try to reduce the work in the

merge phase, but that makes the triangulation phase more complicated and not suitable for

implementation on the GPUs.

In the incremental insertion method, we start by constructing a simple triangle mesh that

contains all the sites. Then sites are inserted into that triangle mesh by subdividing the trian-

gles containing them, and then in-circle tests are performed recursively on adjacent triangles

and flipping are performed if necessary (Figure 1.3). Kohout, Kolingerová, and Žára (2005) give

detailed information about several algorithms for parallel construction of the Delaunay trian-

gulation on computers with shared memory and several processors using this method. Those

algorithms employ a randomized incremental insertion approach and rely on the fact that when

inserted randomly, the chance of dead-lock (e.g. two sites inserting in the same triangle) is

small. However, these algorithms are not suitable for the GPU with hundreds of processors and

the auxiliary data structures used are hard to be efficiently maintained in the GPU. Recently,

(a) (b) (c)

inserted
point

p1

T2
T1

Figure 1.3: The incremental insertion in E2. Edges that should be flipped are think: (a)

subdivision, (b) propagation of flips and (c) resulting triangulation (Kohout et al., 2005)

Rong et al. (2008) proposed a method to compute the Delaunay triangulation using the GPU,

which is somewhat similar to the incremental insertion approach. First, they construct the

discrete Voronoi diagram of the point set in the GPU, from which they construct a valid tri-

angulation. Due to the nature of the discrete Voronoi diagram, sites can go missing and there

can be crossing problems when moving the sites back to their continuous coordinates. As such,

shifting from discrete to continuous world needs careful adjustment. Having a triangulation
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which is a good approximation of the Delaunay triangulation, missing sites are then inserted

back, and flipping are then performed to correct all violation of the in-circle criterion. Due to

the complexity of performing these adjustments, the authors perform them in the CPU.

The advantage of this approach is that the triangulation initially constructed is already very

close the the correct Delaunay triangulation, and it contains enough triangles so that the chance

of conflict while inserting back missing sites in parallel is negligible. As such, in this report, we

will propose a method to perform all the necessary adjustment to the initial triangulation in

the GPU in parallel using the CUDA parallel programming model. The main contributions of

our project are:

• A new and efficient approach for computing exact 2D Delaunay triangulation completely

in parallel in the GPU based on GPU-DT (Rong et al., 2008). This work has been released

on the web (Cao et al., 2009).

• A more rigorous proof of the correctness of the triangulation constructed from the discrete

Voronoi diagram compared to the one prodivided in (Rong et al., 2008). This work is done

in collaboration with Professor Herbert Edelsbrunner.

The rest of the report is organized as follows. Chapter 2 describes in detail the GPU-DT

algorithm proposed in (Rong et al., 2008). After that, Chapter 3 discusses the challenges in

performing the fixing steps of GPU-DT in parallel in the GPU, our proposed solutions for these

problems, and the implementation details. The experiment results with detailed analysis are

given in Chapter 4. Chapter 5 will continue the discussion with a rigorous proof of correctness

of GPU-DT. Finally, Chapter 6 concludes the report and overviews some possible future works.
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Chapter 2

GPU-DT: A 2D GPU Delaunay

Triangulator

In this chapter, we will study GPU-DT, a 2D Delaunay triangulation algorithm which utilize

both GPU and CPU. We will first start with some background of Voronoi diagram and Delaunay

triangulation. After that we will carefully describe the GPU-DT algorithm in Rong et al. (2008).

Not only looking at the steps in the algorithm, we will also look at the detail of each step to

get the necessary insight before we discuss the challenges in performing them in parallel in the

next chapter.

2.1 Background

Let S = {x1, x2, ..., xn} be a set of n distinct sites in the plane. The Voronoi Diagram V (S)

of S is the subdivision of the plane into n cells, one for each site. A point A lies inside the cell

corresponding to a site x if and only if it is closer to x than to any other sites in S. A point B

lies on a Voronoi edge between two sites xi and xj if and only if the largest circle centered at B

containing no other sites in S touches exactly two sites xi and xj . If such circle touches three

sites or more, B is called a Voronoi vertex.

The Delaunay Triangulation of a set of sites S is a triangulation T (S) such that no sites

in S is inside the circumcircle of any triangle in T (S). It has been proven that the Delaunay
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triangulation of S is the dual graph of its Voronoi Diagram.

In the discrete version of the Voronoi diagram, instead of a continuous plane, we only

consider the set of all integer grid points. A grid point A belongs to the set Ei if A lies inside

the Voronoi region of the site xi, and we say that A is colored by xi. In case A is in equal

distance from xi and xj and i < j, we color A by xi. The set of colored grid points form the

discrete Voronoi diagram D(S) of S. We call this procedure Euclidean coloring.

Note that Ei need not be connected. The bulk of Ei is the connected component of Ei that

contains the seed point, xi. Other pixels of Ei are its debris. Debris exists only inside a sharp

corner of the corresponding Voronoi region (Figure 2.1). There are other coloring procedure

(a)

v0

v1

v2

(b)

Figure 2.1: A region with a sharp corner. (a) Its corresponding digital region consists of bulk

and one debris pixel. (b) Debris pixels can generate duplicate triangle

that can guarantee that the regions stay connected. In order to do so, we only color a pixel

A by xi if by the time we consider A, either A = xi or A has a neighboring pixel colored by

xi. The Standard Flooding algorithm is as follow: We store eligible pixel-color pairs (A, xi) in a

priority queue sorted by ||A− xi||. At each step, remove the pair with smallest distance, color

the pixel A by xi if A is not yet colored, update the queue, and repeat until the priority queue

is empty.

The algorithm described in (Rong et al., 2008) consists of two phases. In the first phase, we

compute the discrete Voronoi diagram D(S) of the set of sites S. This will help us construct a

valid triangulation T ′(S) which is an approximation of the actual Delaunay triangulation T (S).

Note that we use the D(S) that is equivalent to what produced by standard flooding, i.e. no
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debris pixels.

In T ′(S), all sites are in the discrete space. We need to shift back these sites into their

original continuous space. Due to the discrete nature of the discrete Voronoi diagram, multiple

sites can be mapped into one grid point. We can only keep one of them in the discrete Voronoi

diagram. Other duplicated sites are considered missing, and we have to insert them back to our

triangulation. In the end, we perform recursive flipping on the triangulation to get the final

Delaunay triangulation. During the transformation from T ′(S) to T (S), we need to perform

counterclockwise tests and in-circle tests. These tests are done robustly using the method

proposed by Shewchuk (1996a).

2.2 Discrete Voronoi Diagram

GPU-DT starts by computing the discrete Voronoi diagram of the input point set. The diagram

will be computed in a texture, so the first step is to scale the continuous space containing the

point set into the same size of the discrete space - the texture, and then render all the sites

into the texture. Due to the discrete nature of the texture, multiple sites can be mapped to the

same texel. In this case, as discussed above, we only keep one site, and treat others as missing

sites. They will be inserted back into the triangulation later.

There are various ways to generate the discrete Voronoi diagram. The authors suggested

using the Jump flooding algorithm (Rong & Tan, 2006, 2007). This method gives us the best

performance, although it does introduce some errors in the diagram. These errors, however,

does not change the topology of the diagram, thus do not have any effect on the algorithm

(Rong et al., 2008).

The next step would be to construct a triangulation from the discrete Voronoi diagram.

First, we need to locate all the Voronoi vertices. A corner shared by four pixels is defined

as a Voronoi vertex if these four pixels are of three or four different colors. For each corner

surrounded by pixels of three different colors, we add one triangle into our triangulation, and

for one that is surrounded by pixels of four colors, we add two triangles into our triangulation.

The result of JFA, however, is equivalent to the Euclidean coloring of the texture, and thus
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can contain debris points (Figure 2.1). When this happens, we might be able to identify more

than one corner that can generate the same triangle. As such, we need to remove all debris

points. For each pixel that is disconnected from the bulk of its site, we color it by the closest

sites among those that have colored its neighbors. This process will give us a Voronoi diagram

equivalent to the result of the Standard flooding algorithm.

Rong et al. (2008) also notes about the case of missing triangles due to Voronoi vertices

lying outside the texture, although the sites themselves are all inside the texture (Figure 2.2).

To fix that problem, the authors suggest we traverse along the boundary of the texture with

the idea similar to the Graham’s scan algorithm (Graham, 1972), using the counterclockwise

test to decide whether to add more triangles into the triangulation. Note that we exclude the

Figure 2.2: Missing triangles due to Voronoi vertices lying outside the texture. (Rong et al.,

2008)

case where two diagonally opposite pixels have the same color. Section 5.1.3 will prove that this

case will never happen. We will also prove that from the Voronoi diagram computed, we can

generate a correct triangulation, i.e. without crossing, overlapping, duplication, and no holes

(section 5.2).

To facilitate the next stage of fixing the triangulation, we need to maintain a few important

datastructures. First of all, for each triangle, beside their vertices, we also need to know their

neighbors. Each triangle will store the index of its three neighboring triangles. With this, we
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can walk from triangle to triangle easily. Secondly, for each site, we need to maintain a list

of triangles that have that site as a vertex. This information together with the neighborhood

information let us easily walk around the triangle fan surrounding a site.

2.3 Delaunay Triangulation Construction

After the previous stage, we have obtained a triangulation T ′(S) which is very close to a

Delaunay triangulation, with just some remaining issues to fix. First of all, sites in T ′(S)

are in discrete space, they need to be shifted back to the continuous space. Secondly, there are

some missing sites that are not recorded in the discrete Voronoi diagram. We need to insert

them back to our triangulation. Lastly, we need to perform some edge flipping if necessary to

guarantee that the triangulation we obtained is the Delaunay triangulation. In the next three

sections, we will discuss in detail the work needed in performing these three steps: Shifting,

Inserting missing sites, and Flipping. Note that these steps proposed in (Rong et al., 2008)

are to be performed in the CPU. These detail discussions will give the foundation from which

we continue to discuss the challenges and our solution to perform these steps in parallel in the

GPU.

Shifting

In this step, we need to shift each site x′ from the discrete space back to its original position x

in the continuous space. After shifting x′ back to x, we may have some crossing triangles. Rong

et al. (2008) have identified all possible shifting situations (Figure 2.3), and proposed methods

to deal with each situation. These situations can be categorized into two cases: good case and

bad case. In a good case (Figure 2.3a), there is no crossing after we shift x′ to x, and we are

still in the triangle fan of x′. In this case, we can simply update the coordinate of x′ and do not

need to update the triangulation structure. This is the ideal case, and in practice it happens

more than 90% of the time. The reason is because the shifting distance from x′ to x is small

compared to the distance among sites in the discrete space.

In a bad case, shifting x′ to x causes crossing triangles. In this case, we need to update

10



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Different cases for shifting sites. Solid edges are original edges, dotted edges are

new edges.

the triangle mesh to fix these crossing. For each of the situation, we either have to delete some

triangles and then subdivide another triangle, or remove x′ from the mesh first, triangulate the

triangle fan of x′ and then insert x into the triangulation. In case x falls outside the triangulation

(i.e. outside the convex hull of the triangulation), we will need to add some triangles to fix the

convex hull as well. This task is very complicated.

Inserting Missing Sites

This step handles missing sites resulted due to the mapping of multiple sites into one discrete

position. At the beginning of this step, we have a triangulation of a subset of the set of sites

S. Those that are missing will be inserted one by one into the triangulation. To insert a site

into the triangulation, we first try to locate a triangle that contains this site. There are several

cases that need to be considered. If we can find a triangle that contains the missing site inside,

we can simply delete this triangle, subdivide it into three triangles, and insert them into the

triangulation. In case that the missing site lies on an edge between two triangles, we will have

to delete both of these and insert four corresponding triangles. If we cannot find a triangle that

contains the missing site, we can safely assume that it lies outside the triangulation, because we

can guarantee that there is no hole in the triangulation. In this case, we need to fix the convex

11



hull.

Flipping

After the inserting missing sites step, we have a full triangulation of S that is close to the

correct Delaunay triangulation. The reasons for the inaccuracy are: The previous two steps

fix the triangulation without worrying about the in-circle criterion; The triangulation obtained

from the discrete Voronoi diagram is not guaranteed to be a Delaunay triangulation. In order

to convert our triangulation into a Delaunay triangulation, we traverse all the edges in the

triangulation, perform the in-circle test among the two corresponding adjacent triangles, and

possibly do an edge-flip. If we perform an edge-flip on an edge, we will recursively check the

nearby edges. After all the edges have passed the test, the triangulation is guaranteed to be

a Delaunay triangulation. Rong et al. (2008) claimed that this step will not take long as the

triangulation constructed from the discrete Voronoi diagram in the first stage should already

be very close to the Delaunay triangulation.

12



Chapter 3

GPU Parallel Construction of

Delaunay Triangulation

In this chapter, we will first discuss some challenges that we will encounter when performing

Shifting, Inserting missing sites, and Flipping in the GPUs. This includes some robustness

issues and synchronization problems. We will also give our solution to efficiently solve these

problems, together with detailed discussion on the implementation in CUDA.

3.1 Challenges and Solution

During the process of transforming the triangulation obtained from the discrete Voronoi diagram

into the Delaunay triangulation, we need to keep modifying our triangle mesh. On the other

hand, in order to fully utilize the GPU, we will need hundred thousands of threads running

together. We will need to consider the synchronization problem when two threads trying to

modify the triangle mesh, for example the same triangle, at the same time. The more threads

we have, the more severe this problem becomes. On the other hand, due to the hardware design

of the GPU, if we keep using synchronization primitives such as atomic operations, the thread

executions will basically be serialized, which will directly affect the performance. In order to

solve this problem, we repeatedly use one simple strategy. We break the set of threads into

several groups. Within a group, threads do not conflict with one another. In other words,
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threads in the same group can be executed concurrently without doing any synchronization.

The question is now how to put threads into groups quickly while keeping the number of groups

as small as possible. The strategy will vary depending on the task that we need to do.

A second design principle that we have to keep in mind is that GPU is a SIMD architecture.

In order to fully utilize the parallelism of the hardware, we need threads to have as similar

execution as possible. Because of that, the GPU is very bad at branching. If two threads run

on two different branches in the same processor, their execution will be serialized. As such, we

need to make our code as simple and as uniform as possible.

With these two design principles in mind, we will now discuss the challenges in performing

each of our three steps in the GPU, and how we solve the problems.

3.1.1 Shifting

Robustness issues

When we shift a site, there are two cases: Good case and Bad case. When we encounter a bad

case, the authors suggest that we categorize it further into five different cases in which we can

carefully fix the triangle mesh appropriately. One problem with this approach is that it is very

difficult to handle cases when there are collinear sites. For example, in Figure 3.1a, shifting G

to G′ can be very troublesome. We have to make sure not to create triangle CBG′ or BAG′.

Detecting such situations is already very difficult, not to say performing a correct fix.

(a) (b)

Figure 3.1: Shifting (a) With collinear points (b) Ear cutting

One solution for the above problem is to break it into two simpler problems. We can first
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remove G and patch the polygon formed by the triangle fan around G. After that, we can treat

this site as a missing site and add it back in the later stage. There are several reasons for this

method to be simpler and more robust:

• Patching the polygon is easy. Note that this polygon is a star-shape one, every points can

be seen by the original site G. As such, a simple way to triangulate this polygon is to

repeatedly remove an ear that does not contain G from the polygon (Figure 3.1b). Doing

so we are guaranteed that the result after each step will still be a polygon with similar

properties, so we can repeat the process until there are only three or four points left which

can be handled easily.

• Inserting a missing site is simple. Now we do not have to worry about shifting a site

outside the triangulation, onto the boundary, on an edge, etc. because they will be taken

care of automatically by the Inserting missing site step, and we will see later that that

step can be very efficiently and robustly performed in parallel.

Parallel processing challenges

To perform this shifting step in parallel, it is easier to first detect all sites that are good cases

to shift them first, then handle the bad cases. One difficulty is that whether or not shifting a

site is a good case or not depends on the coordinates of the sites on its triangle fan. As such,

when we have an edge AB and we want to check if shifting A and B are good case or bad case,

we cannot check concurrently, because when we check A, we do not know whether to use the

discrete coordinate of B or its original coordinate.

Following our first design principle, we will break the shifting of good cases into multiple

rounds. In each round, consider a site A that has not been decided, we check all the the sites

on its triangle fan. If these sites are already decided in an earlier round, we can use either their

discrete coordinate or continuous coordinate based on their previous decision, i.e. if good case,

it should be shifted already, if not, it will be shifted later. However, if a site B on the triangle

fan of A is not decided, then only if the index of A is smaller than that of B, we will let A

continue, using the discrete coordinate of B, while B will have to wait till the next round and
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check again. We will have to repeat this process until all the sites are processed. With this

protocol, in each round, we will be able to decide and shift a set of good cases where the sites

are not affecting one another.

After the above process, we have been able to shift a huge portion of good cases sites. We

are left with those that we considered bad case shifting. As discussed earlier, for each bad case,

we will remove the site, patch the polygon formed by the triangle fan of that site, and record

the site as a missing site. For two sites that are neighbors (i.e. there is an edge between them),

if we process them concurrently, we might run into the case where they want to delete the same

triangle at the same time (the triangle that has both of them as vertices). In order to avoid

this racing problem without using any explicit lock or synchronization primitive, we employ our

first design principle, breaking the process into multiple rounds, each consists of the following

steps: Detect the bad case sites that can be processed concurrently using the same protocol

that we use when detecting good case shifting sites; Delete all triangles on the triangle fan of

each site and patch the hole produced; Mark the site as a missing site.

3.1.2 Inserting Missing Sites

Simplification

We are very concern about the performance of this step. First of all, when the number of sites

is huge, there will be a lot of missing sites due to the limited texture size. Secondly, the shifting

stage should have introduced a few more sites as missing sites. Soon when the number of sites

increase, this step will dominate the running time of GPU-DT.

Fortunately, inserting a site into the triangle mesh is much simpler than shifting a site,

because the effect it can cause to the triangulation is very local. There are only several cases

that can happen. In the good situation, we can find a triangle which contains the site. This is

the simplest case since we only need to triangulate that triangle into three triangles. In case

the site we want to insert into lies on an edge between two triangles, we need to subdivide

these two triangles into four. The most troublesome case is when our newly inserted site lies

outside the triangulation. In this situation, we fail to locate the position of the site, and we
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have to patch the convex hull in order to maintain the triangulation. Not only that the process

of fixing the convex hull is much more complicated than the work to handle other cases, but

it can possibly affect a large region of the triangulation, thus the work to avoid conflicts while

we fix the triangulation is much more complicated. Due to our second design principle that we

discussed earlier, we want to avoid such situation as far as we can.

(a) (b)

Figure 3.2: Fake boundary (a) A simple 3 new sites (b) More sites to make new triangles bigger

In order to remove such a problem, we want to somehow guarantee that each and every sites

we want to insert will lie inside the triangulation. In order to do that, we add a fake boundary

that is big enough into the triangulation, to make sure that the boundary of the triangulation

covers all sites, including all those missing ones. The idea is that we will insert a few more

points far enough onto S such that they form a big boundary containing all the sites in S. We

will add these points and new triangles before inserting missing sites, and we can easily remove

them after this step. The most trivial way to create the fake boundary is to add three sites very

far away such that the triangle formed by these sites covers the whole texture, thus contains all

sites. One disadvantage of this method is that when we connect these fake sites to the convex

hull of S to form a big triangle mesh, we may end up with a series of very thin triangles, and

any shifting of the sites on the convex hull of S will end up being a bad case (Figure 3.2a).

The second disadvantage is that let k be the number of sites on the convex hull of S, each of

the three fake sites will on average be connected with k
3 sites in S, thus making walking around
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these sites very slow. To improve this situation, we add
√

k new sites into S (Figure 3.2b). This

not only reduces the number of triangles per site and makes these triangles bigger, but when

we want to remove these sites, we can efficiently do that in parallel.

Parallel insertion

For each missing site, we have to locate the triangle that contains it. The insertion of a site can

now affect at most two triangles in the triangulation. However, there are still several problems

that can happen when we do this in parallel. First of all, when two missing sites try to insert

themselves into the same triangle, we cannot let both of them do that concurrently. Secondly,

when a missing site in inserted into an edge, it will change two triangles in our triangulation,

and we need to make sure that no other thread is trying to update these triangles. In order to

avoid all these problems, we employ our first design principle and break the insertion of sites

into several rounds. At each round, our goal is to be able to insert as many sites as possible

without any conflict. Every round will consist of the following steps:

• Step 1: For each unprocessed missing site xi, we first try to locate the triangle that it

lies in. Note that except the first round, in every subsequent rounds, we can resume the

search from the triangle that previously we have found to contain xi, but because of some

conflicts, we have postponed the insertion of xi until this round. If xi lies in the triangle

a, we write X[a] = i. If this site lies on an edge shared between two triangles a and b, we

atomically set X[a] = min(X[a], i) and X[b] = min(X[b], i).

• Step 2: Using the array X, we will decide whether to insert a missing site in this round

or not. For each missing site, it can only be processed in this round if all the tags written

by it into X (either one or two tags) are not overwritten.

In CUDA, when several threads try to write to X[a], it is guaranteed that one of the write will

succeed. Since the chance for a site to lie on an edge is rather small, using the atomic operation

is not very costly. We use the min() function when we write two tags onto X because we want

to avoid possible livelock. In Figure 3.3a, site A will try to set X[a] = A and X[c] = A; site

B set X[c] = B and X[b] = B; site C set X[a] = C and X[b] = C. If the result is X[a] = A,

18



(a) (b)

Figure 3.3: Possible conflicts in parallel processing of (a) Inserting missing sites and (b) Flipping

triangles

X[b] = c and X[c] = B then none of the three sites can be inserted and we can get into a

livelock. Using the min() function, we are guaranteed that in each round, at least the missing

site with the smallest index will be inserted. In practice, when sites are uniformly distributed,

they are unlikely to conflict with one another, and thus we need very few rounds. even in the

case where a lot of sites fall into one triangle, after the first few insertions, that triangle should

be subdivided further, and thus the congestion is reduced.

3.1.3 Flipping

After the inserting missing site step, we need to remove the fake boundary introduced earlier.

We can easily perform this step in parallel. Each thread can handle one fake site, removing

all triangles connected to it and then fix the corresponding part of the convex hull of S. Since

we do not want two threads to try to remove the same triangle, we will also break this process

into several rounds and make sure that in each round, no two fake sites that are connected are

being deleted. We can employ the same strategy as when we detect good case shifting. Since

one fake site is connected to exactly two other fake sites, if we randomize the index of the fake

sites, on average we need only two to three rounds. Note that the number of fake sites as well
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as fake triangles are quite small (proportional to the number of sites on the convex hull of S),

thus this process takes just a small amount of time.

The process of flipping triangles is necessarily done in multiple rounds, because after flipping

one edge, another edge might need to be flipped as well. In each round, we will let one thread

handle one triangle, checking three neighbors of that triangle to detect possible flipping. Since

each flip will affect two triangles, we need to employ similar strategy as inserting missing site

stage to avoid possible conflicts (Figure 3.3b).

We note that performing flipping in multiple rounds like this is very expensive. In the

shifting stage or inserting missing site stage, the number of threads that need to run in a round

decreases rapidly as those that are already able to be executed need not do anything in the

later round. Unfortunately it is possible for a triangle to be flipped several time, as long as

its neighbors are changed. Fortunately, there is a way to reduce the work as our triangulation

converge to the Delaunay triangulation. We notice that if in one round we have already decided

that a triangle need not be flipped with any of its three neighbors, then we do not need to

process that triangle again unless its neighbors are updated in some later round. We can easily

detect the triangles that are flipped in each round, and mark the neighbors of these triangles.

In the next round we will only need to reprocess those triangles that are marked. This method

can significantly reduce the total work of this step.

3.2 Implementation details

In this section, we will discuss some important implementation detail of our new GPU-DT

algorithm. Although most key aspects have already been discussed in the previous section,

there are some implementation issues that need to be handled efficiently in order to utilize the

power of CUDA and the GPU.

The most important concern is how to update the triangulation. In the GPU, we cannot

allocate memory dynamically while threads are running. We always have to preallocate memory

and then carefully assign memory regions that will be used by each thread so that they do not

overwrite one another. For example, we know that a triangulation of n sites cannot have more
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than 2n triangles, thus we can preallocate a list of 2n items to store the triangle list. However,

during the three fixing steps, sometimes we need to delete triangles, and sometimes adding

more triangles. We have to carefully maintain the list so that we can utilize the gaps caused by

deleted triangles, and not to overflow the triangle list.

A second concern is the datastructure. Throughout the steps, we need to frequently walking

from triangle to triangle, or around the triangle fan of a vertex. As such, we have to maintain

two datastructures. First, for each triangle we always maintain the link to its three neighbors.

Second, for each site, we maintain a link list of all triangles that has that site as a vertex.

During the process of deleting and inserting triangles into the mesh, we have to keep updating

these datastructure. A better strategy would be to separate this process: We let all threads

update the triangle list first, and then we update our two datastructures. We will discuss about

these more carefully in the three separate sections below.

3.2.1 Shifting

First step in the shifting stage is to detect good cases. In each round, we let one thread

take care of one site. The thread will travel through the triangle fan of the site and use the

counterclockwise test to check whether shifting this site will cause any crossing or not. If on

our way we find out a neighbor of this site which has a smaller index, we will mark this site as

invalid, so that we will not process it in this round. Otherwise, in the end we will mark this

site as valid, and decide whether it is a good case or a bad case. If it is a good case, we will

also shift its coordinate.

We use an array A[] to track the processed sites. There is one issue that we have to be

careful. If a thread i processes site i and mark it as processed, another thread j in the same

round might think that that site has already been processed in a previous round, and this can

possibly lead to a conflict. That is if i and j are neighbors, and i < j, i will assume that j will

not be shifted in this round, thus it decides that it is a good case. On the other hand, j seeing

i as processed can go ahead and shift itself. In order to avoid this problem, in our array A[], we

keep the index of the round that processes each site, and we can easily detect whether a site
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was shifted in an earlier round, or it was just shifted by someone in the same round.

This process will stop when we perform one round of checking, and we cannot process any

more site (which mean we have processed all sites). It is possible to count the number of sites

processed in each round and add them up until we reach n, but this requires a slow reduction

operation. Instead, we use a globally shared flag. At the beginning of each round, the flag is set

to 0. Each thread that can shift a site in the round will overwrite this flag with 1. In CUDA if

multiple threads try to write into one global variable, exactly one thread will succeed, and no

serialization will be performed. Thus, we do not have to worry about a performance hit. In the

end of the round, we check this flag and stop if the flag is 0.

The second step in the shifting stage is to shift bad cases. We have already detected the bad

cases in the previous step, so in this step we only have to delete them and fix the holes that are

left. Since we do not want to delete two neighboring sites at the same time, we will also do this

in multiple rounds. We use our familiar strategy to get a set of separating sites to process in

one round. What we need to do with each site is to delete the site and all triangles around it,

and re-triangulate the hole. Note that for each site, the number of new triangles to be inserted

will always be less than the number of triangles deleted, thus we can use the deleted slot to

store the new triangles, and mark those unused ones. In order to perform ear-cutting algorithm

on a star-shape hole, we need a stack to keep the sites on the polygon. The stack size needed

is no more than the number of sites on the polygon, so we can easily preallocate the stack for

all threads. Since we never process to neighboring sites, no site can appear in more than one

stack, thus the total size of the stacks are safely bounded by n. We repeat the round until all

bad case sites are deleted. The steps involved in each round are as follow:

• Detect sites that can be processed in this round. While doing this, we need to travel

around the triangle fan of each site, so we will also count the number of vertices around

the triangle fan, and compute the stack size needed if we can process this site in this

round.

• Having the stack size needed for each thread, we perform a parallel prefix sum computation

to compute the offset for each stack in our preallocated array.
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• For each sites that can be processed, travel around its triangle fan and mark those triangles

as deleted. We also push the sites on the polygon onto the stack of the thread.

• Fix the Vertex array. Each thread will handle one site. We travel the linked list of

triangles that has this site as a vertex, and if a triangle was marked as deleted, we fix

the list accordingly. To speed up this step, in the previous step, when deleting triangles,

we will also mark those sites that are affected, so that in this step we do not have to go

through the list of all sites.

• Patch the holes. Each thread handle one hole, we use the stack created before to perform

ear-cutting. Since each site already has a list of triangles that has been deleted by it, it

can use these newly available slots to store the new triangles.

• Update the links among triangles. For each newly created triangle, we find its three

neighbors by traveling the vertex array of its three vertices. Since the link is bidirectional,

we update the the link from the neighboring triangle to these new triangles as well. Note

that we do not have to delete the link to the deleted triangles. This is because when we

patch the hole, any edge that is adjacent to a deleted triangle would now be adjacent to

a new triangle, thus the link will be overwritten.

3.2.2 Inserting Missing Sites

Before we insert missing sites, we need to construct the fake boundary as discussed earlier. This

can be done as early as when we finish fixing the convex hull of our triangulation. Having the

convex hull, we can easily connect them to some fake sites to form the fake boundary. We just

have to take note not to waste time shifting these sites. As discussed, we will insert
√

k fake

sites where k is the number of sites on the convex hull. This gives the balance between the

number of new sites added into the triangulation, and the number of triangles that are adjacent

to each new site. The new sites can be positioned evenly around a circle centered at the center

of the texture and with big enough radius to cover all sites in S. After that, the new sites will

be connected to the convex hull and new triangles will be added to the end of the triangle list.
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Since this takes minimal amount of time, it is easier done in the CPU.

Having the fake boundary, inserting sites into the triangle mesh is much easier. One difficulty

is that each time we insert one site into the mesh, we either delete one triangle and add three

more, or delete two triangles and add four. This means that for each site we need two more slot

in the triangle list to store the new triangles. We need to reuse the previously unused deleted

slots in the shifting step, or else we might overflow the triangle list. Thus in the beginning of

the inserting missing site step, we try to gather all the available slots in the triangle list, either

used or deleted slots. To do that, we perform one kernel execution to mark all the unused slots

in the triangle list, and then do a stream compaction to have all the index of the unused slots

stored in an array.

The insertion of missing sites will then be performed in multiple rounds. Similar to the

shifting stage, we will repeat until all sites are processed. Each round will consist of the following

steps:

• For each site to be inserted, locate the triangle that contains it. In this step we will also

use the strategy discussed in the previous section to detect conflicts.

• For each site that can be inserted in this round, it will need two slots for two new triangles.

A parallel prefix sum will help us get the index in the unused triangle list that each thread

which will handle a site insertion can use to get two unused slot.

• For each new site, depend on whether it lies inside a triangle or on a triangle edge, delete

old triangles and add new triangles into the list. We also mark the sites that are adjacent

to a deleted triangle to help speed up the next step.

• Fix the vertex array, similar to the shifting stage.

• Fix the link between triangles, also similar to the shifting stage.

In the end of this stage, we need to remove the fake boundary. Since there are very few sites

and triangles to be handled, this step can easily be done.
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3.2.3 Flipping

Before we perform this step, there is one important task we need to perform. In the previous

steps, we have introduced holes into our triangle list. Since the Flipping step will not delete or

insert triangles (or it actually inserts exactly the same amount of triangles that it deletes), we

can first pack the triangle list to remove all holes. We can perform a simple stream compaction

to pack the triangle list. However, after that the index of the triangles in the list will be changed,

and that affects the link between triangles as well as the vertex array. Thus while packing the

list, we also note down the new index of each triangle. After that, we can perform one round

of fixing the indices of all triangles in the vertex array as well as the link between triangles.

The flipping step will be performed in multiple rounds, and it will end when no more edge

can be flipped. In each round, we need to perform the following tasks:

• Detect flippable edge. In this step, each thread process one triangle in the triangle list.

Each triangle will check with its three neighboring triangles and perform in-circle test to

find flippable pair of triangles. In order to avoid double flipping (two threads flip the same

pair of triangles), a triangle will only try to flip with a neighbor if its index is smaller than

the neighbor’s.

• After using the strategy discussed earlier to avoid possible conflicts, flipping of edges will

be performed in parallel. The link between triangles and the vertex array will need to be

updated.

As already discussed in the previous section, to speed up, after the first round, later round

will only work with triangles that were not flipped in the previous round due to conflicts, and

those that are adjacent to a triangle that was flipped in the previous round. There are two

other issues that we need to look into. The first one is robustness issue. In order to perform

the in-circle test robustly, we need to use the algorithm in (Shewchuk, 1996a). However, that

algorithm is too complicated to be performed in the GPU. As a workaround, we use a simple

in-circle test for our GPU implementation. In case four sites are almost co-circular, we will note

down the triangles, and in the end we will perform recursive flipping on just those triangles on
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the CPU using the robust in-circle test.

Figure 3.4: Flipping two edges that have adjacent pair of edges

The second issue is how to fix the link between triangles and the vertex array after a flipping

round. We ignore the fixing of the vertex array, since we do not need this datastructure anymore.

However, that means we cannot fix the triangle neighborhoods by finding neighbors of the newly

inserted triangles. Refer to Figure 3.4. Let say edge AC want to flip, and after that triangle a

will be 4ABD while triangle b will be 4BCD. If edge ED is not flipping in this round then the

problem is simple to solve. Triangle ABD knows that previously the triangle that is adjacent

to triangle ACD at edge AD is c, so it can record c as its neighbor. However, it will be more

troublesome when edge ED also want to flip in this round, and triangle c becomes 4AFE and

triangle d becomes 4ADF . In this case, the neighbor of 4ABD on edge AD would be d, not

c. To resolve this situation, we break the flipping of triangles into three steps:

• First, each pair of triangles to be flipped by a thread in the current round will update the

vertices of the triangles.

• Second, each thread handling two triangles to be flipped will update the link from its four

neighboring triangles with the new triangle indices. For example, in Figure 3.4, thread

flipping ED will update the neighbor of triangle b on edge AD with the new index d.
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Note that this update is done on a temporary array, not the actual datastructure.

• Third, each thread handling two triangles will now try to update their actual links. Tri-

angle b knowing the new neighbor d on edge AD will pass this information to the new

triangle a (4ABD). Similar thing happens to triangle c and its new neighbor a. If there

is no update on the neighbor on edge AD of triangle b (i.e. ED is not flipped in this

round), b will pass the old information (triangle c) to the new triangle a.

With the above update strategy, only triangles that are flipping in the current round need

to update the link between triangles, and the updating process is simple and does not require

any explicit synchronization.
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Chapter 4

Experiment results

In this chapter, we will highlight some experiments performed with the newly implemented

GPU-DT and compare with the old implementation in (Rong et al., 2008). We will also do

some careful analysis to see the effectiveness of our CUDA implementation of Shifting, Inserting

missing sites and Flipping. All the tests are performed on a machine with an Intel Core2 Quad

Q6600 2.4Ghz and an NVIDIA GeForce GTX280 PCI-X with 1024MB memory. All programs

are compiles on Microsoft Visual Studio 2005 and CUDA 2.0 with all optimization options

enabled. For each test case, we run on 50 uniformly distributed random input sets and average

the running time.

4.1 CPU vs GPU Implementation Stepwise

Figure 4.1 clearly demonstrates the benefit of our CUDA implementation of the Shifting, Insert-

ing missing sites and Flipping steps. The graph shows the comparison between the original CPU

and our new GPU implementation using 5122 texture with number of sites ranging from 10,000

to 1,000,000. We use small textures because on big textures the initial triangulation would be

more accurate, thus the time needed for the fixing steps becomes too small. Figure 4.1a shows

up to 5x speed up for our new implementation. Note that we have delayed the insertion of the

bad case shifting sites until the inserting missing site step. Note also that when the number

of sites is more than the number of pixels in the texture, the number of missing sites increases
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Figure 4.1: Performance comparison between the old CPU and our new GPU implementation
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Figure 4.2: Performance of three fixing steps on different texture size
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rapidly. Every single pixels in the texture represents a site, so the initial triangulation is very

simple. As such, we have more good case shifting and thus the time needed for the shifting step

reduces.

Figure 4.1b shows up to 5x speed up for our GPU implementation, with the gradient much

smaller than that of the old CPU implementation. This is the result of our use of fake boundary

making the inserting missing sites very straightforward. Note that in this step we also have to

cover all the bad case shifting sites that were removed in the previous step. The significantly

lower growth rate of the running time of this step indicates that our algorithm will work well

on bigger input size where there are more missing sites.

Figure 4.1c however only shows a small speed up of up to 3x. One of the reason for the

inefficiency of the CUDA implementation of this step is because we need a lot of rounds before

our triangulation converges into the Delaunay triangulation. Most of the flippings are done in

the first few rounds, while most later rounds can only flip few triangles. This is because when

we are near the actual Delaunay triangulation, each time we can only flip a few pair of triangles,

and these will cause a few more pairs that need to be flipped. In theory, this behavior should be

fine, since the total work needed is still small. However, when we have very few triangles to flip,

we can only utilize a few processors in the GPU. One more thing is that in the current CUDA

programming model, the overhead of executing a kernel is very high, thus when we run too

many rounds, the kernel execution overhead would actually dominate the total running time.

This would be improved in the later releases of CUDA.

In Figure 4.2, we try to analyze the performance of our new GPU implementation of three

last fixing steps on different texture size. Interestingly enough, the shifting step is almost

unaffected by the texture size (Figure 4.2a). Only on the smallest texture 5122, from about

300K sites onward, the shifting time is almost constant. The reason is because with such huge

number of sites, only about 200K sites can actually be recorded in the texture and processed

in this step. In this case, the triangulation we obtained is almost the same, since almost every

pixel has one site. On a bigger texture, the running tine of this step is about the same, because

most of the sites are shifted as good cases anyway, and thus can be shifted at about the same
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speed.

Figure 4.2b on the other hand clearly demonstrates the advantage of having big textures.

A big texture means that you will have very few missing sites. Also, when we can generate

more triangles in earlier steps, we will have less conflict while inserting missing sites, thus it can

run faster. Figure 4.2c also show the advantage of using bigger texture. Bigger texture means

we can have more accurate discrete Voronoi diagram, thus the initial triangulation would be

closer to the Delaunay triangulation, and we need less flipping to transform it to the Delaunay

triangulation.

4.2 Overall Comparison

In order to see how our parallel implementation of GPU-DT in CUDA improves the total

running time of the algorithm, we compare the total running time of the new implementation

with the old implementation using the GPU + CPU hybrid approach. We also compare with

Triangle (Shewchuk, 1996b), the best known Delaunay triangulation implementation on CPU.

Figure 4.3 shows the running time of Triangle and GPU-DT on different input size and texture

size. Clearly we can see a significant speed up with our new implementation. With small texture

such as 5122 (Figure 4.3a), we can see up to 4x speed up compared to the old GPU-DT. Note

that when the texture is bigger (Figure 4.3d), the improvement is much lower. This is because

when the texture is small, the two steps of Inserting missing sites and Flipping consume a big

portion of the total running time. Our new implementation boosts up these steps by several

time, thus the total running time is much lower. On the other hand, when the texture is big,

the two steps consume a much smaller amount of time, so in total the running time we saved is

small. Note that even on 40962 texture, if we keep increasing the number of input sites, we will

see huge running time difference between the old and the new GPU-DT implementation. This

will be highlighted when we look at the improvement over Triangle of our new algorithm. Note

also that when the texture is small, previously GPU-DT runs almost 2x slower than Triangle.

On the other hand, our new GPU-DT runs almost 2x faster than Triangle.

To test the robustness of our new implementation and also to get a full picture of the perfor-

31



1 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Total time (512x512)

Triangle

Old

New

# Sites (10K)

Ti
m

e 
(s

)

(a)

1 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Total time (1024x1024)

Triangle

Old

New

# Sites (10K)

Ti
m

e 
(s

)

(b)

1 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Total time (2048x2048)

Triangle

Old

New

# Sites (10K)

Ti
m

e 
(s

)

(c)

1 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Total time (4096x4096)

Triangle

Old

New

# Sites (10K)

Ti
m

e 
(s

)

(d)

Figure 4.3: Comparison between Triangle, old GPU-DT, and our new CUDA implementation

mance of our new GPU-DT implementation compared with Triangle, we performed experiments

with the number of input sites goes up to 6 millions. Figure 4.4 show the running time of Trian-

gle and our new GPU-DT using different texture size. A clear impression is that our GPU-DT

runs significantly faster than Triangle if we can use a big texture. To see how much faster we

are, see Figure 4.5. We compute the improvement of our GPU-DT with Triangle by computing

the difference in running time divide by the faster running time. Thus, if our running time is 5s

and Triangle’s running time is 10s, we are 2x faster than triangle, and the improvement is 100%

(faster). Overall, our new GPU-DT runs up to 180% faster than Triangle. Compared to just

about 50% reported in (Rong et al., 2008), we have made a big improvement. Note also that

the improvement curve of GPU-DT is now almost always above 0% (except when we run on

5122 texture and the number of input is ridiculously big). On the other hand, the old GPU-DT

cannot be compared with Triangle when such small texture is used.
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Figure 4.4: Performance comparison between Triangle and our new CUDA implementation
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Figure 4.5: Improvement of our new CUDA implementation over Triangle
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Chapter 5

Proof of Correctness

The main concern of the GPU-DT algorithm is the correctness of the triangulation constructed

from the discrete Voronoi diagram. The discrete Voronoi diagram used by GPU-DT algorithm

is equivalent to that generated by the standard flooding algorithm. In this chapter, we will

provide a more rigorous proof showing that the triangulation generated from the discrete Voronoi

diagram does not have any crossing, overlapping or hole. This work is done in collaboration

with Professor Herbert Edelsbrunner.

5.1 Standard Flooding and Ordered Flooding

We first consider a strengthened version of the standard flooding algorithm, in which a grid

point is eligible for coloring only if it is further from the seed point than its neighbors of that

color. Induction implies that the pixels are colored in order of distance from the seed point.

The algorithm can be reformulated as follows:

Ordered Flooding Algorithm: Sort the entire set of pixel-color pairs by Euclidean distance

between pixel and seed point. Scanning the list in order, we let (x, i) be the current pair. If x

is yet without color and x = xi or it has a neighbor pixel with color i then color x with i. Else

skip the pair and continue with the next pair.

It is not so easy to see that this algorithm succeeds in coloring all pixels. However, we will

prove that ordered flooding is equivalent to standard flooding. It thus follows that also ordered
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flooding colors all pixels. This proof was done by Professor Herbert Edelsbrunner. After that,

we can use some properties of ordered flooding to show the correctness of GPU-DT.

5.1.1 Euclidean Coloring and Standard Flooding

When we remove a point from S, the Euclidean Voronoi region of a remaining point either

stays the same or it grows. The same is true for the regions Ei obtained by Euclidean coloring.

Similarly, it is true for the bulk of Ei. However, it is not necessarily true for the regions

obtained by flooding. We prove a weaker statement for them, namely that they contain the

bulks of Euclidean coloring. It follows that the deletion of a seed point can shrink a flood region

only by debris pixels, of which there are generally few.

Bulk Lemma. Each region Fi constructed by the Standard Flooding Algorithm contains

the bulk of Ei.

Proof. We prove that the prefixes of the bulk for Ei obtained by adding the pixels in the order

of distance from xi are connected. It follows that the pixels of the bulk are colored in this same

order and with the same color. Let Bi,j contain the j pixels of the bulk of Ei closest to the seed

point. Thus

{xi} = Bi,1 ⊆ Bi,2 ⊆ . . . ⊆ Bi,m = Bi.

Suppose not all of the prefixes are connected and let Bi,j = Bi,j−1 ∪ {x} be the first that is not

connected. Draw the line that passes through x and xi, as in Figure 5.1. There are neighbors

of x on both sides of the line whose distances from xi are less than ‖x− xi‖. On the other

hand, x belongs to the bulk of Ei, which is connected, so we can find a path within the bulk

that connects x with xi. Drawing it from pixel center to pixel center with straight edges in

between, the path belongs to the Euclidean Voronoi region, Vi, by convexity. Hence, the region

surrounded by the path and the straight segment from x to xi belongs to Vi. This region

includes at least one neighbor y of x with ‖y − xi‖ < ‖x− xi‖. This neighbor precedes x in

the ordering of the pixels in the bulk of Ei and thus belongs to Bi,j , a contradiction to x being

separated from Bi,j−1.
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xi

x

Figure 5.1: The bulk of Ei after coloring the first j pixels by flooding.

5.1.2 Distance Invariant

The Bulk Lemma implies that ordered flooding colors all bulk pixels. We extend this result to

all pixels, including debris. We do this by proving that standard flooding colors the pixels of

each region in order of distance from the seed point.

Let Fi,j be the set of pixels colored i after j steps of the algorithm. We use standard

flooding and thus define Ci,j as the set of yet uncolored pixels neighboring at least one pixel

in Fi,j . Furthermore, let Cj be the set of pixel-color pairs (x, i) with x ∈ Ci,j over all i. We

let argmin Cj be the pair in the set that minimizes the Euclidean distance between the pixel

and the seed point of the color, breaking ties when we need. The index j counting the steps is

implicit in the restatement of the algorithm using the above notation.

Set j = 0; Fi = ∅ ∀i; C = {(xi, i) | ∀i};

repeat j = j + 1; (x, i) = argmin C;

Fi = Fi ∪ {x}; update C

until C = ∅.

We now have all the notation available to formally state the property maintained throughout

the algorithm.

Distance Invariant. We have ‖x− xi‖ < ‖y − xi‖ for all x ∈ Fi,j , all y ∈ Ci,j , and all i

and j.
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Proof. We use induction over j. Let y0 be the first pixel that violates the claimed inequality

and let j0 be the step this violation arises. A predecessor of a colored pixel is a neighboring

pixel that received the same color earlier. By assumption, at a step j < j0 all predecessors of

a pixel colored i are closer to xi than this pixel. At step j0, y0 has a neighbor with color i as

well, but this neighbor, A, is further from xi, that is, ‖xi −A‖ > ‖xi − y0‖. It follows that A is

the only neighbor with color i, else y0 would have contradicted the inequality before step j0 or

it would have been colored before A.

Case 1. A is the W-neighbor of y0. Without loss of generality, assume that xi lies in the lower

right quadrant of y0; see Figure 5.2a. A has a predecessor that is closer to xi but not

neighboring y0. The only possibility is the SW-neighbor B. This further constrains the

location of xi to within a 45◦ wedge; see Figure 5.2a. The S-neighbor U of A must have

y0A

B

C

U

V

U
A

B
xi

(a)

A

U

B

V

U
B

y0

xi

0y

(b)

Figure 5.2: Illustration of (a) Case 1 and (b) Case 2, with shaded wedge indicating the possible

locations of the seed point, xi.

been colored before B, else it would have violated the claimed inequality before y0 did.

Hence, ‖xk − U‖ < ‖xi −B‖ < ‖xk −B‖. Similarly, ‖xk − U‖ < ‖xi −A‖ < ‖xk −A‖.

Furthermore, we have ‖xi −A‖ < ‖xk − y0‖, else y0 would have been colored before step

j0. We now have two circle constraints for xk, namely,

‖xk −A‖ > ‖xi −A‖, (5.1)

‖xk −B‖ > ‖xi −B‖, (5.2)

37



and since U is between A and B as viewed from xi, this implies ‖xk − U‖ > ‖xi − U‖.

But being closer to xi than to its own seed is only possible if U has no predecessor in Fi

at the time it is colored.

Case 1.1. The predecessor of B is its S-neighbor, V . Then U must have been colored

before V , else color i would have taken precedence over color k. Hence, ‖xi − U‖ <

‖xk − U‖ < ‖xi − V ‖ < ‖xk − V ‖. The half-plane constraint for xi limits the point

xi within a narrow diagonal strip drawn dark in Figure 5.2a. Similarly, the half-plane

constraint for xk together with ‖xk − U‖ < ‖xk − y0‖ obtained earlier constrains xk

to a strip only twice as wide and containing the strip of xi. In addition to the circle

constraint (5.2), we get

‖xk − U‖ < ‖xi − V ‖.

The new constraint can be drawn by translating the circle centered at V to center

U . This is a translation along the main diagonal, which leaves only a skinny region

of possibilities for xk. This region contains no integer point other than xi, hence we

arrive at a contradiction.

Case 1.2. The predecessor of B is its SW-neighbor, C. This further shrinks the wedge of

xi to a diagonal strip twice as wide as the one discussed in Case 1.1. The S-neighbor,

V , of B must have been colored before C else it would have contradicted the claimed

inequality before y0 did. But then we can substitute C, V, B for B, U,A and use

the same case analysis. We end with a contradiction or repeat the argument again,

adding another step to the SW-staircase. The staircase must end too since it leads

to xi.

Case 2. A is the NW-neighbor of y0. Without loss of generality assume that xi lies in the lower

quadrant of y0; see Figure 5.2b. Recall that A is the only neighbor of y0 colored i and it

has a chain of predecessors leading back to xi. Now we have two possible predecessors of

A not adjacent to y0, its W- and its SW-neighbor.
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Case 2.1. A has its W-neighbor, B, as predecessor in Fi. This further constrains xi

to a 45◦ wedge. The S-neighbor, U , of A must have been colored before B, else

it would have violated the claimed inequality before y0 did. Hence, ‖xk − U‖ <

‖xi −B‖ < ‖xk −B‖ and similarly ‖xk − U‖ < ‖xi −A‖ < ‖xk −A‖. We also have

‖xi −A‖ < ‖xk − y0‖, else y0 would have been colored before step j0. This gives two

circle constraints for xk, namely

‖xk −B‖ > ‖xi −B‖,

‖xk − y0‖ > ‖xi − y0‖,

which imply ‖xk − U‖ > ‖xi − U‖ because U is between B and y0 if viewed from xi.

But being closer to xi than to its own seed point, xk, is only possible if U has no

predecessor in Fi at the time it is colored.

Case 2.1.1. The S-neighbor, V , of B is predecessor of B. Then ‖xk − U‖ < ‖xi − V ‖ <

‖xk − V ‖. Thus we have ‖xk − U‖ smaller than ‖xk − V ‖ as well as ‖xk − y0‖,

which limits xk to the vertical strip defined by A. The only integer points in

this strip lie on the vertical line passing through U . The difference between the

squares of the distances from xk to V and to y0 on the one hand and to U on the

other hand is only one. Both ‖xi − V ‖2 and ‖xi −A‖2 are inside this interval of

length one, but this is impossible because the difference between the two squares

of distances exceeds one. We reached the desired contradiction.

Case 2.1.2. V is not predecessor of B. Then substitute V for U and repeat the

same case analysis. It either ends at a contradiction or repeats again, building

another step on the street to the west. But this street must end also because it

leads to xi.

Case 2.2. A has its SW-neighbor, V , as predecessor. In this case, we may assume that

B is not in Fi else we would be in Case 2.1.1. We still have ‖xk − U‖ < ‖xi − V ‖ <

‖xk − V ‖ and ‖xk − U‖ < ‖xi −A‖ < ‖xk − y0‖ and hence xk on the vertical line

passing through U . We get the same contradiction as in Case 2.1.1.
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Equivalence Corollary. The Standard Flooding Algorithm is equivalent to the Ordered

Flooding Algorithm, that is, their outputs agree on every input.

Since standard flooding colors all pixels, the equivalence of the two algorithms implies that

ordered flooding does too.

5.1.3 Necks and planarity

A neck is a pair of diagonally adjacent pixels of the same color whose two common neighbors

both have colors that are different from that of the pair. In this section, we prove that it’s

impossible for our discrete Voronoi diagram to have two diagonally opposite pixels have the

same color. This property is useful because it implies that curves drawn within different regions

do not cross. We prove this property in the ordered flooding algorithm.

One Neck Lemma. The Ordered Flooding Algorithm produces a coloring in which every

square of four pixels has at most one neck.

Proof. Label the four pixels A, B, U , and V . Assuming two necks, we have the algorithm color

the diagonally adjacent pixels A and B with i and the other two diagonally adjacent pixels U and

V with k 6= i. Without loss of generality, we may assume that A gets colored first and that U gets

colored before V . The first assumption implies ‖xk − U‖ < ‖xi − U‖ and ‖xk − V ‖ < ‖xi − V ‖,

else U and V would be colored i. The second assumption implies ‖xk − U‖ < ‖xk − V ‖, else we

would have a contradiction to ordered flooding. Similarly, ‖xi −A‖ < ‖xi −B‖ because A gets

necessarily colored before B. The assumptions leave three possible sequences, which we discuss

in two cases.

Case 1. U is colored before B. Then ‖xi −B‖ < ‖xk −B‖, else B would be colored k. It

follows that the perpendicular bisector of xi and xk separates B on xi’s side from U and

V on xk’s side. But this implies that A is further from xi than U is from xk, a contradiction

to ordered flooding.

Case 2. B is colored second. Ordered flooding implies ‖xi −A‖ < ‖xi −B‖ < ‖xk − U‖ <

‖xk − V ‖. It follows that xi is closer to A and B than to U and the same for V . But
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there is no integer point with this property, again a contradiction.

5.2 Correctness of GPU-DT

The Distance Invariant has one more interesting consequence.

Order Corollary. The Standard Flooding Algorithm colors the pixels of each Fi in the

order of distance from the seed point, xi.

This implies that we can draw paths from the seed point to every pixel whose Euclidean

distance to the seed point increases monotonically along the path.

A monotonic path from a seed x till some pixel xi is a path Pxxi formed by connecting the

centers of pixels x = x0, x1, x2, . . . , xi in the digital Voronoi diagram where each xj , j = 1, 2, . . . , i

has the same color as and is 8-connected to xj−1, and ||x− xj−1|| < ||x− xj ||.

Property 1 Given a seed x ∈ S and a monotonic path Pxxi from x till some pixel xi, the

(finite) region(s) enclosed by Pxxi and xix does not contain any other seed of S.

Proof. Suppose on the contrary that the finite region R formed by Pxxi and xix encloses a

  

R

s

x

z

x
i

H

H C

y

Figure 5.3: A seed s ∈ S enclosed by a monotonic path Pxxi from x till xi.

seed s ∈ S. Refer to Figure 5.3. Let the line passing through x and s be `, and let the closed

half-space defined by ` containing xi be H. The complement open half-space of H is denoted as

Hc. Without loss of generality, we choose s such that R ∩ Hc does not contain any other seed

of S. Consider a column of unit width containing s and orthogonal to `. Let the intersection

of this column with R ∩Hc be Rs. By our choice of unit width, Rs contains a continuous path

41



of pixel centers. Rs cannot be of one color since it has to cross Pxxi . Let y be a pixel in Rs,

closest to s but not colored the same as s. y cannot have the same color as x as y is closer to

s than to x and it has a predecessor of color s. So, we have y that is colored differently from x

and s.

Let y be colored the same as the seed z ∈ S. Again, y is closer to s than to any other seed

in H, so z has to be a seed in Hc. We can find a monotonic path Pzy from z till y. Since Pzy

cannot cross Pxxi , Pzy from z must first enter into H and then R to reach y. We consider two

cases. Case 1, the region R′ enclosed by Pzy and yz contain some seed, possibly x. In this case,

we have reached the same configuration as the given assumption of the claim to be proven but

with ||z − y|| < ||x− xi||. We are done by extremal property on the length ||x− xi||.
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Figure 5.4: No seed enclosed by the monotonic path Pzy.

Case 2, R′ does not enclose any seed; In this case, R′ contains xi. Consider the set of pixels

in R such that any of those has a neighbor not in R and the segment connecting the pixel with

such neighbor crosses xxi. Those pixels form a path Ps from x to xi, possibly of different colors.

Any path that want to cross xxi to enter R must contain at least one pixel in Ps. Let Pzy

contains a pixel yi of Ps. Consider yj of Ps be farthest from x (possibly the same as yi), and

its successor x′ in Ps (Figure 5.4 (i)). Let yj be colored by a seed z′ possibly be the same as

z. yj must be colored before x′ or else when we color x′ with x we will see one of its uncolored

neighbors closer to x than itself, which is impossible. As such, ||z′− yj || < ||x−x′|| < ||x−xi||.

If z′ is inside the region enclosed by zy and Pzy then we can use the same argument as case 1

and we are done. Since z′ cannot be in R ∩H, it must either go around y or xi to reach yj .
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If z′ go around y then the region enclosed by z′yj and Pz′yj
contains a seed s and by the

same argument as in case 1, we are done. If Pz′yj
goes around xi then it must enclose x′ as well.

Since yj is colored before x′, we have ||z′ − yj || < ||z′ − x′||, so z′ and x′ lies on different sides

of the perpendicular bisector of yjx
′. Consider the predecessor yj−1 of yj in Pz′yj

. For Pz′yj

to enclose x′, we need ∠z′yjyj−1 > ∠z′yjx
′, thus ∠z′yjyj−1 > 90o (Figure 5.4 (ii), (iii)). This

implies that ||z′ − yj−1|| > ||z′ − yj ||, contradicts to the fact that Pz′yj
is a monotonic path. As

such, we are again done and the proof is complete.

Property 2 Any two edges generated by the algorithm do not intersect.

Proof. Suppose on the contrary that edge ac intersects bd where a, b, c, d ∈ S are in clockwise

  a
d

c

b

e
H C

H

R

U
f

Figure 5.5: ac crosses bd, and we thus have a Pbd with db form an enclosed region containing c.

convex positions. Without loss of generality, we show in the following that bd is not generated.

By the existence of ac, we can find a pixel ai of color a and a pixel cj of color c such that

ai and cj are connected. Thus, we have a monotonic path from a till ai, and a monotonic path

from c till cj . Let us join these two paths together as a path Pac from a to c. Similarly, by the

existence of bd, we have a path Pbd from b to d. By the One Neck Lemma, these two paths Pac

and Pbd do not cross. (The case where colors a, b, c, d form a 4-color corner is handled separately

and is guaranteed not to create any crossing edges.) Without loss of generality, we assume that

Pac crosses bd. As such, Pbd cannot cross but to avoid ac. Now Pbd together with db form an

enclosed region, say R. This region contains the seed c (or similarly, a). Refer to Figure 5.5.

From Property 1, such a situation is impossible and we are thus done.
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Property 3 A corner formed by colors a, b, c in counter-clockwise order also means that seeds

a, b, c are in counter-clockwise order.

Proof. Let the corner be formed by pixels a′, b′, c′ with colors a, b, c, respectively. Suppose on

  

a'

b' c'

a
b

c

Figure 5.6: A corner of colors a, b, c in counter-clockwise order while a, b, c in clockwise order.

the contrary that a, b, c are in clockwise order. Refer to Figure 5.6. We again use the existence

of monotonic paths from seeds here. In other words, we have monotonic paths from a, b, c to

a′, b′, c′, respectively, and path Pac by joining some two monotonic paths a till a′ and c till c′.

A monotonic path Pbb′ from b till b′ must not cross Pac. As such, Pbb′ with b′b forms a region

enclosing either a or c. Again, with Property 1, such a scenario is impossible and we are done.

Property 4 No two triangles generated by the algorithm overlap in area.

Proof. Because edges of the constructed mesh do not cross, we only need to consider two cases

of possible overlapping triangles.

First case, we have two same triangles abc formed by three seeds a, b, c. From the result in

the previous section, these two triangles must both be oriented counter-clockwise when a, b, c

are oriented counter-clockwise. We must now show that it is impossible to have two different

corners generated by a, b, c where these three colors are oriented counter-clockwise. Refer to

Figure 5.7. Let one such corner be formed by pixels a′, b′, c′ and the other be a′′, b′′, c′′. We
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Figure 5.7: Two corners of the same three colors of a, b, c.

have a monotonic path Paa′ from a till a′, monotonic path Pbb′ from b till b′, and monotonic

path Pcc′ from c till c′. Similarly, we must have monotonic paths Paa′′ , Pbb′′ , and Pcc′′ . Note

that Paa′ and Paa′′ cannot be an extension of each other as a corner formed by four pixels of

colors a, b, a, c in order does not generate a Voronoi vertex. Likewise, the previous sentence

holds for those monotonic paths involving b, b′, b′′ and c, c′, c′′. As specified, Paa′ , Pbb′ , Pcc′ meet

at a corner where color a, b, c are in counter-clockwise order. As such, for Paa′′ , Pbb′′ , Pcc′′ to

meet at a corner where color a, b, c are in counter-clockwise order, there exists an intersection

among these six monotonic paths, which is not possible. We are done for this case.

  b

a

d

fe

c
R

Figure 5.8: Two overlapping triangles abd and cef with possibly b = e and/or f = d.

Second case, we have two triangles abd and cef where cef lying within abd (possibly with

two identical vertices between them). We just need to consider one configuration and the other

cases can be done with the analogous argument. Refer to Figure 5.8. The three monotonic
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paths originated from c, e, f are drawn in the figure. Also, the monotonic paths from a, b, d

must meet as shown too. Then, the path Pbd formed by joining the monotonic paths from b and

d, together with c and line segment bd is exactly the same configuration as that in Property 2.

With the same argument as in the proof of that property, Pbd does not exist, and we are done

too.

Property 5 Each edge generated by the algorithm is shared by at most two triangles.

Proof. When there are more than two triangles sharing an edge, we have the case of overlapping

triangles or crossing edges. This is thus impossible by the above properties, and we are done.

Theorem 1 The proposed algorithm computes the Delaunay triangulation of S.

Proof. From the previous properties, we know that the triangulation constructed from our

discrete Voronoi diagram has no crossing, overlapping or holes. The Shifting step transforms

all the sites back to their original coordinate while maintaining a valid triangulation. Inserting

missing sites step adds all missing sites into the triangulation so that we have a complete

triangulation of S. Finally, the Flipping step guarantees that our final triangulation is the

Delaunay triangulation.
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Chapter 6

Conclusion and Future Works

In this Honour Year Project, we have discussed the GPU-DT algorithm (Rong et al., 2008) to

compute the Delaunay triangulation of a set of points using both the GPU and the CPU. From

a discrete Voronoi diagram computed in the GPU using JFA, we construct a triangulation that

is the approximation of the Delaunay triangulation. Subsequently, using the CPU, GPU-DT

fixes the triangulation by three steps to eventually obtain the correct Delaunay Triangulation.

We have revealed many challenges in performing these three fixing steps in parallel in the GPU.

While shifting or inserting sites into the triangulation in parallel, it is possible for threads to try

to modify the same triangle, thus causing conflicts that can possibly lead to the corruption of the

triangle mesh and the failure of the program. We have proposed our solution to efficiently use

CUDA to perform these complicated tasks. Our solution is designed based on two principles:

Subdivide the work into multiple rounds to avoid implicit synchronization; and simplify the

work, possibly breaking it into multiple simpler steps so that it is more suitable to be done in

parallel in the GPU. Overall, we have been able to speed up the individual steps several times

and in total up to 180% faster than Triangle, the best known CPU Delaunay Triangulator.

Not only that our improvement makes GPU-DT a lot faster, it also helps GPU-DT running

more robust, being able to handle difficult cases that sometime can cause problems to the old

GPU-DT implementation.

There are still some weaknesses in our new GPU-DT algorithm. One of which has introduced

some performance penalty to our program. Since we want to avoid synchronization, we break
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our work into many rounds. The overhead of creating threads and executing kernels at each

round seriously affect the performance of our algorithm. This is a limitation of the CUDA

programming toolkit, and it will eventually be fixed, potentially improving the performance of

our program further. Another limitation of our algorithm is the use of atomic operations in

the Inserting missing sites step. Excessive use of atomic operations will reduce the parallelism

of our program, thus limit the potential speed up. Our future work would be to design a new

strategy to avoid conflict while not relying on atomic operations at all. Also, we will explore the

possibility of using OpenCL to replace the CUDA programming paradigm. OpenCL provides a

more flexible thread creation and inter-operation, thus can potentially improves the performance

of our algorithm.
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