PROOF OF CORRECTNESS OF THE DIGITAL DELAUNAY TRIANGULATION
ALGORITHM *
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Abstract. We prove that the dual of the digital Voronoi diagram consted by flooding the plane from the data
points gives a geometrically and topologically correctldtiangulation. This provides the proof of correctness for
recently developed GPU algorithms that outperform treddl CPU algorithms for constructing two-dimensional
Delaunay triangulations.
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1. Introduction. In recent years, the computational power of graphics psiegainits
(GPUs) has surpassed that of central processing units (CRdstinuing the trend, the gap
between the two is expected to widen in the foreseeabledutbyith the introduction of
programming models, such as CUDA [8] and OpenCL [7], theeeremw more application
areas that benefit from the computational power of GPUs. dlaesas include scientific
computing, games, data mining, and computational financdf@omputational geometry,
GPUs have been used to solve problems in discrete as well @snimuous space. An
example is the digital Voronoi diagram approximating theresponding Euclidean structure,
which has a wide range of applications in image processiogypeiter vision, and graphics
[2]. Another is the digital Delaunay triangulation, whichshapplications in mesh generation
and scientific computing [5].

In Euclidean space, the Voronoi diagram and the Delaunamygtilation are but different
geometric expressions of the same combinatorial structardigital geometry, the transla-
tion from one to the other is made difficult by the need to apipnate. Indeed, it is easy to
construct a digital Voronoi diagram, just by coloring thegds or their higher-dimensional
analogues. Early work in this direction uses graphics hardv{6] and the texture unit of
the GPU [15]. More recent work takes the vector propagatmpra@ach [3], which leads to
algorithms whose running time depends solely on the imagm@ugon and not on the number
of data points [1, 11, 13]. In contrast, computing the Detguttiangulation with GPUs has
been more challenging. While Hoff et al. [6] mention the iy to dualize the digital
Voronoi diagram, it was not until recently that a completelGitgorithm for the Delaunay
triangulation has been described [12]. With the tremengmuger of GPUs, this algorithm
outperforms all traditional CPU algorithms, including tbptimized Triangle software of
Shewchuk [14]. The reason for the difficulty is the approxiengharacter of digital Voronoi
diagrams, which may lead to unwanted artifacts when dugligech as crossing edges and
missing triangles. However, there is experimental evidesuggesting that a careful imple-
mentation can avoid such artifacts.

In this paper, we present a detailed proof that dualizingltgeal Voronoi diagram gives
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a topologically and geometrically correct triangulatidreaving the correction of unstable
diagonals to a postprocessing step, we call the result adahézation thedigital Delaunay
triangulation We base our proof on the recent improvement of the GPU Dajatirangula-
tion algorithm described in [10]. Presenting a concepteadion of this algorithm in Section
2, we prove its correctness in Section 3. Specifically, wenvstiat the digital Voronoi dia-
gram obtained by flooding the pixel array can be dualized\e gitopologically as well as
geometrically valid triangulation in the plane. Our proakés three steps to establish the va-
lidity of the digital Delaunay triangulation. The first stegtionalizes the flooding algorithm
by proving that the pixels are colored in the order of distafiom the data points. The sec-
ond step exploits this ordering to prove a technical topiclgesult about loops. The third
step uses this result to establish the desired propertiggedfigital Delaunay triangulation.
We believe that our approach to proving the correctnessgifatigeometry algorithms by
progressive abstraction is of independent interest.

2. The Algorithm. In this section, we formally state the problem and give a ephwaal
but precise description of the algorithmic solution firsggented in [10].

Problem specification The setting is a rectangular array of pixels. To talk abquié
define gpixelas the closed unit square centered at an integer point ifdhe A + [—%, %]2,
with A € Z2. It has foursides east, north, west, south, and focorners north-east,
north-west, south-east, south-west. The decompositicheoplane into pixels is denoted
by Z2 + [—%, %]2. Since computers are finite, we consider only a finite rectemgiece of
the thus decomposed plane and call this piecedektirewithin which all computations are
performed. Now suppose we are given a subset of the pixaieitekture. We call the center
of each such pixel aeed poinand writeS = {z1, zs, ..., 2, } for the set of seed points. We
assume that the points do not all lie on a single straight Ilbguivalently, at least three of
the seed points span a proper triangle. The goal is to cotimeseed points i¥ with edges
and triangles to form a simplicial complex. It will be coniemt to add alummyseed point,
xg, which we imagine at infinity and use as an additional verteerwve form the simplicial
complex. With this modification, we consider a simpliciahgaex avalid solutionto our
problem if it satisfies the following three conditions:

I. The set of vertices i§' U {x(}.
II. The simplicial complex triangulates the sphere.

lll. Removingzx, gives a geometric realization in the plane.

Condition | prescribes the relationship between input arigat. Condition Il summarizes the
required topological properties. It includes the localuiegments of &-manifold, that every
edge belongs to two triangles and every vertex belongs tayaofitriangles. It also prescribes
the global topology of the simplicial complex to that of thelimensional sphere. Condition
[l summarizes the required geometric properties, nanelythe edges do not intersect other
than at shared vertices, and the triangles do not intergleet than along shared edges. Note
that Condition Ill applies only to the finite portion of thengilicial complex, obtained by
removing the star of, that is,x( together with all edges and triangles that connecitqto
Since removing a single vertex star from a triangulated sphkeeps the rest connected, the
finite portion of the simplicial complex is thus required @ ¢onnected.

Digital Voronoi diagrams Our approach to solving the problem mimics the computa-
tion of the Euclidean case. Recall that tili¢lidear) Voronoi regionof a pointz; is the set
of points for whichz; is the closest seed points, that is,

Vi={z € R?| [lo — ail| < ||z — =l|,Vs}-

It is easy to see thaf; is convex. The collection df; is the Euclidear) Voronoi diagramof
S. Finally, the Euclidear) Delaunay triangulatioris the dual of this diagram. Working with
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integer instead of real coordinates, we can only approxrtias Euclidean construction. We
do this with two types ofligital Voronoi diagrams To construct the first, we color each pixel
with the index of the closest seed point:

B;={AeZ?| A~z < |A— gV}

We assume a fixed tie-breaking rule so that each pixel rez@inly one color. Théulk of
E; is the componenB; that contains the seed point,. All the other pixels ofF; aredebris
which exists only inside a sharp corner of the Euclidean RNoroegion; see Figure 2.1. The
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Fig. 2.1: A region with a sharp corner. Its correspondingtdigegion consist of the bulk and one
debris pixel.

debris is a serious drawback as it makes it difficult to tura decomposition into a valid
solution to our triangulation problem.

This difficulty is alleviated by introducing a second kinddifjital Voronoi diagram. It
is obtained by growing the regions simultaneously untilythen into each other. In other
words, we rurn versions of breadth-first search in parallel, making sueg tho not invade
each other’s territory. To make this process precise, wagayel A is eligible to be colored
1if A = z; or A has a neighboring pixel of colar Here and throughout the paper, we
say two pixels areneighborsif they share a side or a corner, writifg(A) for the set of
pixels neighboringA. Initially, after s = 0 steps, all pixels are uncolored. Writg , for
the set of pixels colored after s steps, and), for the set of eligible pixel-color pairs. We
implement@, as a priority queue and allow it to contain additional paifsoge pixels are
already colored. These pairs do not interfere with the pregecution of the algorithm. Let
min(Q;) be the operation that removes and returns the pair with nuimrdistance between
the pixel center and the seed point of the color. We now skegealgorithm more formally,
suppressing the counter for the number of steps, which iidinpWVe initialize the regions
to F; = () and the queue to the set of pafrs, i), for all 4.

repeat
(A,i) = min(Q);

if A is not coloredhen

Q=QU{(B,i)| Be N(A)};
end if
until @ = 0.

It is easy to see that this algorithm succeeds in coloringiaéls. Writing F; for the set of
pixels colored after the last step of the algorithm, this is equivalent tgrgathat the union
of the F; covers the entire texture. Indeed, in any other case thetddvi® an uncolored
pixel neighboring a colored pixel and the algorithm couldtomue coloring.

An important aspect of the algorithm is its tie-breaking treadsm. Any total order of the
pixel pairs consistent with the Euclidean distance betvwesl centers will do. For example,
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we may exploit the total order of the integers as follows. & pépixels is specified by four
coordinates, which we sort into a vector of length four andenf4, B) <.x (C, D) if the
vector obtained fromd, B € Z?2 is lexicographically smaller than the vector obtained from
C, D € Z*. We say( A, B) hashigher prioritythan(C, D), denoted a§A — B|| < ||C — D||,

if |A—BJ| < ||C—-DJ or||A-DBJ| = ||C—DJ and (A, B) <ix (C,D). Note that
|[A—BJ| < ||C — D| implies||A — B| < ||C — D|| but not always|A — B|| < ||C' — D||.
This will be important in our analysis of the algorithm.

Digital Delaunay triangulation Similar to the Euclidean case, we dualize the digital
Voronoi diagram, and in particular the regiofis The key concept is that ofdigital Voronoi
vertex This is a corner shared by four pixels that have either faffierént colors or three
different colors in which the two pixels sharing the colss@akhare a side. Equivalently, a
digital Voronoi vertex is &-by-2 array of the type which is shaded in Figure 2.2. We note

Fig. 2.2: The seven types of colorings oRéy-2 array of pixels. The first two are digital Voronoi
vertices.

that the third type of array, which is not a digital Voronorte, is called a neck of the region
whose color is repeated. We will see in Section 3 that thetffotype, with two crossing
necks, does not arise. This is important when we dualizedlwed regions as follows:
e For each digital Voronoi vertex with three different colorsj, k&, we add the edges
;%5 ik, vE2; 10 € and the triangle;x;xy, t0 7.
e For each digital Voronoi vertex with four different coloisy, &, ¢ ordered this way
around the square, we add the edggs;, z;xy, vpz; andx;zy, L2y, Tez; 10 €
and the triangles;zxy, z;0,2, 10 7.
Note that in the second case, we have a choice between thaagondls, which we make
arbitrarily. Here £ and7 are multisets. We will prove thaf is in fact a set and contains
each edge exactly twice. ldentifying the edges in pairs tiuss a simplicial complex; see
Figure 2.3 for an example. We call this tHegital Delaunay triangulatiorof S. Its finite
portion is obtained by removing, together with all edges and triangles that shaye
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Fig. 2.3: The digital Delaunay triangulation superimposedhe digital Voronoi diagram obtained by
flooding.
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3. The Proof. In this section, we present the proof that the digital Detautmiangula-
tion is a valid solution to our triangulation problem. It gists of three consecutive steps,
explained in the following three subsections.

3.1. Flooding Sorts. In this subsection, we rationalize flooding by proving sorae b
sic properties. Recall our tie-breaking mechanism and |fiat- B|| < ||[C — D|| implies
A= B| <||C - DI|.

Order by distance The main technical result in this section is a proof that flogd
colors the pixels in the order of their distance from the speitits. This is plausible but
difficult to establish. We consider two versions of this elaa weak version that claims the
ordering separately within each color, and a strong vettsiahclaims one order for the entire
collection of pixels. The proof is inductive, moving frometiwveak version after steps to the
strong version aftes steps to the weak version after 1 steps.

ORDERED COLORING LEMMA. For everys > 0 and every two colors andj, we have
|A— ;|| <||Y —a;| forall A € F;, and all uncolored pixel§” that are eligible to be
colored;j afters steps.

Proof. This is the strong version of the claim and we get the weakiorras a special
case, when = j. We begin by proving that the weak version implies the streaggion.
The only reason the latter is not trivial is that an uncolopede! can acquire new colored
neighbors and thus improve its priority in the queue. Howelog the weak version after
s steps,Y cannot improve its priority beyond the priority of the newdgquired colored
neighborA. By the strong version after— 1 steps, the priority ofd is the lowest we have
seen so far for a colored pixel. This implies that even afterimprovement, the priority of
Y is still lower than that of all colored pixels. Since we useriaiity queue to selectl, all
other uncolored pixels have priorities lower than the ptyasf A and therefore of all colored
pixels. This implies the strong version aftesteps.

We now prove that the strong version aftesteps implies the weak version aftes- 1
steps. To get a contradiction, we gt be the first uncolored pixel that violates the claimed
inequality for the weak version and we kgtbe the number of steps after which this violation
arises. We define predecessoof a colored pixel as a neighboring pixel that received the
same color earlier. By assumption, aftex sy steps, all predecessors of a pixel colored
1 are at least as close tg as this pixel. Aftersy steps,Y, has a neighbor with color
i that satisfied|Yy — ;|| < ||A — z;||. Note thatA is the only neighbor with colot, else
Y, would have contradicted the inequality before thesteps or it would have been colored
before A. There are two cases to consider: wheandYj share a side and when they share
only a corner. Both cases are further decomposed into secasd for each subcase, we
either derive a contradiction directly, or we reduce it tother subcase working our way up
a path of predecessors one pixel closer.toSince this path is finite, we get a contradiction
eventually. To discuss the two cases, we assume the pasiifohandY, are as depicted in
Figure 3.1.

Case 1. A is the neighbor to the west df;. Without loss of generality, assume that
lies in the lower right quadrant df;. A has a predecessor at least as close;to
but not neighborindry. The only possibility is the south-west neighbBr This
further constrains the location af to within a45° wedge. The neighbdy to the
south of A must have been colored befois but with a different colork, else it
would have violated the claimed inequality befafedid. By inductive assumption,
U = ax]| < 1B — ]| <||B — x| Similarly, | — zx]| < [[A — 2] <[|A - 2.
We now have two constraints that express thatnd B lie on the same side of the
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perpendicular bisector af; andzy, namely

[A = zif| < [|A =2,
1B =il < |B = @xl|.

SinceU lies inside the triangle:;; AB but not on the edgel B, the two inequalities
imply |U — z;|| < ||U — x| and therefordl U — ;|| < ||U — z||. But this is only
possible ifU has no neighbor of colarat the time it is colored. We consider three
subcases:

Case 1.1. The south-east neighbd¥ of B is a predecessor aB. Therefore,

U must have been colored befol®. By inductive assumption, we have
U — ;|| < U —xk| < ||[W —a;]|. But this contradicts the inequality
|W —a;|| < ||U — x|, which we get from the restriction af; to the 45°
wedge.

Case 1.2. The neighbolV to the south ofB is a predecessor aB, and IV is
not. Therefore, we getU — z;|| < ||U — zx|| < ||V — ;|| asU must have
been colored beford. This implies||U — ;|| < ||V — ;||, which fur-
ther limits z; to within a narrow diagonal strip, as indicated in Figure 3.1
on the left. Let the color oV be ¢ # ¢, and observe that’ must have
been colored beford’, else it would have violated the claimed inequality
beforeY, did. Therefore)|W — x| < ||V — z:|| < |V — x|, and similarly,
|W — 2¢|| <||B — ]| <||B — x|, which implies

1B =il < [|B =,
IV = @ill <[V = 2e].

Recalling thate; lies inside the diagonal strip, we observe tHatlies inside
the trianglex; BV but not on the edg&V. Hence, the two inequalities imply
|W — ;|| < |W — z||. We now repeat the analysis of Case 1, substituting
V,W for B, U.

Caske 1.3. The south-west neighb6t of B is a predecessor dB, andV and W
are not. The neighbdr to the south ofB must have been colored befate
else it would have contradicted the claimed inequality lee¥y did. We repeat
the analysis of Case 1, substitutiagV, B for B, U, A.

We will shortly relax the condition on; by adding the column of pixels below

to the quadrant that contains. Indeed, the only reason for not doing so right from

the start is the conditiofiYy — ;|| < ||A — =;]|, which is violated for pixels in that

column.
Aly BlAlT
B|U VU,
c|viwh

Fig. 3.1: lllustration of Case 1 on the left and Case 2 on tijletriln both cases, the shaded right-angled
wedge represents the possible locations;of
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CAsSE 2. A is the north-west neighbor &f;. Without loss of generality assume thatlies
in the lower quadrant of}; see Figure 3.1 on the right. Recall thatis the only
neighbor ofY; colored:. The neighboiJ to the south ofA must therefore have
been colored beford, with a colork different fromi, else it would have violated
the claimed inequality beforg, did. Using the inductive assumption, we therefore
get||U — zi|| < ||A — ]| < ||]A — z&||. There are only two possible predecessors
of A.
CAse 2.1. The south-west neighbbrof A is a predecessor of. We consider two
subcases:
Case2.1.1. U — z;|| < ||V — z;||. Here,U must have been colored be-
fore V, else it would have violated the claimed inequality befigedid.
We therefore geftU — x| < ||V — ;|| < ||V — x]|. Sincex; lies in the
lower right quadrant ofd, we can now apply the analysis of Case 1, sub-
stitutingV, U, A here forB, U, A there. Indeed, all steps of the analysis in
Case 1 are valid far; in that quadrant, except fdiyy — ;|| < [|A — ]|,
which now holds becausg is the south-east rather than the east neighbor
of A, as it was in the original description of Case 1.
CASE2.1.2. ||V — z;]| < |[U — @;]|. Notice ||A — z;|| < ||Yo — x|, elseYy
would have been colored before Together with| Yy — ;|| < ||A — ;]|
and||A — z;]| < [|A — x|, we have

1Yo — | < [[Yo — x|,
[A =@l < |A =]

SinceU lies inside the triangle; AY; but not on the edgdlYy, the two
inequalities imply||U — ;|| < ||[U — x||. Hence,U must have been col-
ored beford/, else colori would have taken precedence over cdloBut
this implies||U — x|| < ||V — ;|| and thereforé|U — ;|| < ||V — x4,
a contradiction to the assumption.

CAsSeE 2.2. The west neighbaoB of A is a predecessor of, andV is not. This
constrainse; to lie within the samel5° wedge considered in Case 2.1.2; see
Figure 3.1 on the right. Herd/ must have been colored befofg else it
would have violated the claimed inequality befofedid. We can now repeat
the analysis of Case 2, substitutibg V" for A, U.

An amendmentto Case 2.1 is in order. The reason is that we ntayiater Case 2.2

first, one or more times, and then reach Case 2.1. If w&glds no longer neigh-

bor of the newA, which is equal to the originaB or one of its predecessors. The
analysis in Case 2.1.1 is unaffected by this differenceandigss of the actual po-
sition of Yy, as Case 2.1.1 can reduce to Case 1 as long; dies in the lower
right quadrant ofA. However, in Case 2.1.2, we need to find a new argument for
|U — x;|| < ||U — zx||. To this end, lefl” be the neighbor to the east of the new

Noting thatT" lies on a path of predecessors from the original pikdack tox;, we

get||T — z;|| < ||T — x|, else colork would have taken precedence over calor

Together with|| A — z;|| < || A — x|, this gives

1T = ail] < IT = xll;
[A = zif| <A = 2],

SinceU lies in the triangler; AT but not onAT, the above two inequalities imply
U — ;|| < ||U — x|, as desired.
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Let us reflect on the recursive structure of the inductivelargnt. Cases 1.2 and 1.3 reduce to
Case 1, but one pixel closer to the end along the path back t®imilarly, Case 2.2 reduces
to Case 2, also one pixel closeritg In contrast, Case 2.1 reduces to Case 1, without getting
closer tox;. But this reduction can happen only once throughout thersa@iargument.
We thus see that there is no cycle and each sequence of wecarguments must end with
a contradiction. This completes the case analysis and sti@tshe uncolored pixels have
lower priority than the colored pixels throughout the altfon. The claim follows. a

Recall the weak version of the claim, namely that floodingpcothe pixels in a region
F; in the order of their distance from;. This implies that we can find emonotonicpath
from x; to each pixel inf;. We require that all pixels have coloand that the distance tg
does not decrease along the path. We get such a patibyotracing backward, fromt to a
predecessor to a predecessor of the predecessor and so snmiarize:

MONOTONIC PATH LEMMA. For eachAd € Fj, there is a monotonic path from to A
within the regionF;. 0

Necks A neckis a pair of diagonally adjacent pixels of the same color wehog com-
mon neighbors both have colors that are different from tliahe pair. We claim that the
colors of the two common neighbors are also different frorheather. In other words, a
square of four pixels cannot have two necks. This propertiséful because it implies that
curves drawn within different color regions do not crossnttadicting two necks is easy for
Euclidean coloring since the bisector of the two seed paatsot separate the four pixel
centers according to their color. For flooding, we need afprmloich we now present.

ONE NECK LEMMA. Flooding produces a coloring in which every square of faxels
has at most one neck.

Proof. Label the four pixelsi, B, U, andV'. Assuming two necks, we have the algorithm
color the diagonally adjacent pixels and B with ¢ and the other two diagonally adjacent
pixelsU andV with & # . Consider the following two right-angled wedges,

Wa={z € R?* | |[A - 2| < min{||U — ||, |V - z|}},
Wp ={z € R*| | B — z| < min{|U — 2|, |V - =[|}}.

Without loss of generality, we may assume thgets colored first. Using the Ordered
Coloring Lemma, we havgA — ;|| < |U — z|| < ||U — z;||, elseU would be colored.
Similarly, [|A — z;|| < |V — 2| < ||V — 2|, which impliesz; € Wa. If B gets colored
second, beforé/ andV, then we also have; € Wg. But Wg intersectdl 4 in a single
point, namely the corner shared by the four pixels, and weagmintradiction because this
point does not have integer coordinates. So we may assurné& tgats colored beforé3
and beforé/’. Therefore||B — z;|| < | B — z||, elseB would be colored:. Together with
|U — x| < |U — ;|| and||V — x| < |V — a;]|, this implies that the perpendicular bisec-
tor of z; and x;, separated3 from U and V. Because the bisector is constrained to pass
betweenB on one side and/, V' on the other, the half-plane that containsand B inter-
sectsiV 4 in at most one point, namely the shared corner of the fourdgixéhich is again a
contradiction. |

Bulk. When we remove a point frorfi, the Euclidean Voronoi region of a remaining
point either stays the same or it grows. The same is true frregionsE; obtained by
Euclidean coloring. Similarly, it is true for the bulk &f;. However, it is not necessarily true
for the regions obtained by flooding. We prove a weaker statefior them, namely that they
contain the bulks of Euclidean coloring. It follows that theetion of a seed point can shrink
a region only by debris pixels, of which there are generaly. f

BuLK LEMMA. Each regiornF; constructed by flooding contains the bulkief.



PROOF OF CORRECTNESS OF THE DIGITAL DELAUNAY TRIANGULATIOMLGORITHM 9

Proof. We prove that the prefixes of the bulk Bf obtained by adding the pixels in order
from x; are connected. It follows that the pixels of the bulk are madan this same order and
with the same color. LeB; ; contain thes pixels of the bulk ofE; closest to the seed point.
Thus

{‘T'L} = Bi,l g Bi72 g oo g Bi,m = Bi'

Suppose not all of the prefixes are connected andjgt= B, ,_1 U {A} be the first that
is not connected. Draw the line that passes throdgind x;, as in Figure 3.2. There are

N\ o

A

[
o‘o

o

pd

T

Fig. 3.2: The bulk ofF; after coloring the first pixels by flooding.

neighbors of4 on both sides of the line whose distance fropis less thar|A — z;||. On the
other hand A belongs to the bulk of’;, which is connected, so we can find a path within the
bulk that connectst with ;. Drawing it from pixel center to pixel center with straighges

in between, the path belongs to the Euclidean Voronoi redipnby convexity. Hence, the
region bordered by the path and the straight segment ftdoz; belongs toV;. This region
includes at least one neighbBrof A with || B — z;|| < ||4 — z;]|. This neighbor precede$

in the ordering of the pixels in the bulk &; and thus belongs t®; ;, a contradiction tad
being separated frol¥; ,_;. 0

3.2. Lassos Go Empty.In this subsection, we prove two technical result about mono
tonic paths which are instrumental in proving the lemmagsladdor the validity of the digital
Delaunay triangulation.

Lassos We begin by constructing a digital analog of a straight li@ven an oriented
line, a pixels belongs to the correspondisigircaseif its interior intersects the line or its
boundary intersects the line and its center lies to the nftite line. Note that the orientation
of the line induces an ordering of the pixels along the lineve@ a seed point; and a pixel
A coloredi, alassoconsists of a monotonic path from to A and the staircase from back
to x;. We callz; and A thebase pointand the line oriented from to z; thebase lineof the
lasso. Thesizeof the lasso is the distance between the two base points. Waaerompare
the sizes of two lassos, we use the same tie-breaking mechas for the pairs of pixels.
The lasso decomposes the plane into two componenigssateand anoutside The inside
includes all pixels of the lasso. While the pixels in the monéc path all have colo#, by
definition, the pixels in the staircase are not necessdrtibf he same color.

LAsSsOLEMMA. There is no seed point inside a lasso.
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Proof. To get a contradiction, assume the opposite. Lebe the smallest lasso that
encloses one or more seed points, andJeind A be its base points. Let; be the enclosed
seed point that is furthest from the base line; see FigureCGh8sider the staircase defined by

Fig. 3.3: The first lasso consists of a monotonic path frgrto A and the staircase back 1g. Inside
the first lasso, we see another seed paint, The second lasso defined by and B enclosesA. The
third lasso defined by, andU also encloses!.

the line that passes through and is orthogonal to the base line bf. Traversing it from;;

and moving away from the base line, we Igbe the first pixel not colored. Because of the

choice ofB on the staircase orthogonal to the base ling give have| B — z;|| < || B — z;]].

It follows that B does not have colot either. Letk ¢ {i,j} be the color ofB. By the

Monotonic Path Lemma, there is a monotonic path frogrto B. We do a case analysis in

which every possibility leads to a contradiction. It willlfmwv thatx; cannot exist.

Case 1. x; andB lie on opposite sides of the line parallel to the base linéahat passes
throughz;. Then we gef| B — z|| < || B — ||, contradicting tha3 has color.

CASE 2. x;, and B lie on the same side of that line, as in Figure 3.3. By extréynaf the
choice ofz;, the seed point;, cannot lie inside the lassb;. Let L;, be the lasso
consisting of a monotonic path from), to B and the staircase from® back toxy.
By the One Neck Lemma, the monotonic path cannot cross thefpah x; to A
and therefore must cross the base lind.aofHenceL;, encloses either; or A. But
we have

1B — x| < |[B =l < [|B— il

and by drawing a line from; through B, we get a pixel on the path from; to A
that is even further fromy; than B. It follows that||B — z;|| < ||A — x;||. Hence,
the size ofL,, is less than the size df;, and by extremality of the choice df;,
Ly, cannot enclose;. The only remaining possibility is thdt; enclosesA, as in
Figure 3.3. The final contradiction will rest on the propestof two particular pixels
which we now describe. Traverse the staircasé,ofrom A to x; and letU be the
first pixel whose color is nat Let V' be the predecessor bfin the staircase. Such
pixelsU andV exist because the staircase crosses the monotonic pathrfram
B, where it has pixels colorell = i. However, we may reacti before crossing
the path. Let # i be the color ofU. We havell colored beford/; otherwise, the
coloring of V- would result in putting U, ¢) into the priority queue, a contradiction
to the Ordered Coloring Lemma. So we ha\é — z,|| < ||V — z;||. This implies
|U — x¢]| < ||A — 24]|. Let L, be a lasso with base pointg andU. Because of the
extremal choice of the first lassb, cannot enclose any seed points. There are three
cases to consider.
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Case2.1. ¢ = k. ThenL, enclosesV. We also have|U — x| < ||V — 4,
elseV would have been colorell But then we can draw a half-line from,
throughV and get a pixel on the path from), to U whose distance fron
exceedg|U — zx||. This contradicts the monotonicity of the path.

CASE 2.2. ¢ # k andx, and B are on opposite sides of the line parallel to the base
line of L; that passes through;. The lassal, thus either encloses;, or 5.

If it enclosesB, it also encloses; because the two pixels are connected by a
piece of a staircase of colgr# £. As mentioned earliet,, cannot enclose a
seed point so we have a contradiction in either case.

CAsE 2.3. { # k andz, andB are on the same side of the line passing thraugh
Avoiding to encloser;, the only possibility for the monotonic path from to
U is as shown in Figure 3.3. Here we UHE — z/|| < ||V — 2| < ||V — =]
ButV is enclosed by.,, so we can draw a directed line fram throughV’, as
in Case 2.1. This gives a pixel on the path fremto U whose distance from
x¢ exceedd|U — x|/, again a contradiction.

This implies that:; does not exist, which proves the claim. O

Spliced lassos We extend the lasso to a slightly more elaborate constmucticet x;
andz, be two different seed points amtl € F;, D € F, two pixels. For the construction,
we require thatd and D are neighbors sharing a common side or at least a commonrcorne
but in the latter case the remaining two pixels sharing timeeseorner must have colors that
are different from each other. Drawing a monotonic path dérco from z; to A, another
monotonic path of colof from z, to D, and the staircase betweepandz,, we get what
we call aspliced lasso We refer tox; andz, as itsbase pointsand the connecting line as
its base line Similar to the lasso, a spliced lasso decomposes the piéman inside and an
outside. Another monotonic path cannot cross the splicdtspéndeed, the only weak point
is the corner at which the two paths are spliced, but becéesadjacent pixels have different
colors, we cannot cross there either. The only possibititga from outside to inside the
spliced lasso is therefore to cross the base line.

SPLICED LASSOLEMMA. There is no seed point inside a spliced lasso.

Proof. Assume to the contrary that we have a spliced lasso with jpaisgsx; andx,
that encloses other seed points. ketbe the seed point that maximizes the distance from
the base line. Starting at;, construct a piece of a staircase orthogonal to and moviray aw
from the base line. LeB be the first pixel not colored. As before, we argue that the color
of Bisk ¢ {i,j,¢} and we construct a lasdg, connectingr, to B and back. Ifx, andB
lie on opposite sides of the line passing througland parallel to the base line of the spliced
lasso, then we gdtB — z;|| < || B — x||, contradicting the Ordered Coloring Lemma. On
the other hand, if:;, and B lie on the same side of the line then the extremal choice;of
prohibits thatz;, be inside the spliced lasso. Henkg encloses either; or x,, contradicting
the Lasso Lemma. [

3.3. The Triangulation is Valid. In this subsection, we use the two lasso lemmas to
show that the digital Delaunay triangulation is a valid $ioluto our triangulation problem.

No crossing edgesRecall that€ is the multiset of edges identified when we dualize
the digital Voronoi diagram obtained by flooding. We say twdgescrosseach other if the
endpoints of each lie on opposite sides of the line spannetidyther. Here we require
implicitly that no three of the four endpoints lie on a comniioie. In particular, two copies
of the same edge are not considered to cross each other.

No CROSSINGLEMMA. No two edges ir€ cross each other.

Proof. Assume the opposite and lgtr; andzx,z, be two edges that cross. The four seed
points thus form a convex quadrilateral whose diagonalshe&révo edges; see Figure 3.4 on
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the left. LetA, B andC, D be the corresponding pixels in the two digital Voronoi vest
identifying the two edges. Connectingto A andx; to B by monotonic paths, we get a first
spliced lasso, which we denote Ag;. Similarly, we construct a second spliced laskg,.
By the Spliced Lasso Lemma, the two cannot enclose any saetspdhis implies that the
spliced paths olL;; cross the edge,x, an odd number of times, and the spliced paths of
crossz;x; an odd number of times. But then the two paths must cross,hwaiprohibited
by the One Neck Lemma. 0O

z; Lq

Ty €Ty €Z; €j

Fig. 3.4: Left: the two edges cross and so do the two splicgkspaRight: one of the three lassos
encloses a seed point.

Consistent orientation Recall that7” is the multiset of triangles in the digital Delaunay
triangulation. As we will see shortlg is in fact a set. The sequence of the three vertices of
a triangle implies amrientation which is either clockwise or counterclockwise. Assuming
x;xxr 1S in 7, it has a dual digital Voronoi vertex that contains threeejsixcolored;, j,
andk. By definition of digital Voronoi vertex, the color of the fah pixel is different from
the color of the diagonally opposite pixel in tReby-2 array; see Figure 2.2. We say the
orientation ofz;x ;2 is consistenwith the three corresponding pixels if both are clockwise
or both are counterclockwise.

CONSISTENTORIENTATION LEMMA. The orientation of each triangle #his consistent
with the orientation of the corresponding pixels in the diigltal Voronoi vertex.

Proof. Letz;z;z; be atriangle ird” with corresponding pixeld, B, C in the dual digital
vertex. We connect; with a monotonic path tel, =; to B, andx;, to C; see Figure 3.4 on
the right. To get a contradiction, we suppose the oriemiaiifor;x ;x), is not consistent with
that of ABC'. In other words, the order in which the three paths connetttaaigital vertex
is different from the orientation of;x;x;. On the other hand, if we connect, z;, andxy,
with straight line segments to the vertex, we get a condigieger. This implies that one
of the monotonic paths reaches around another seed paattisththe lasso defined by its
monotonic path and the straight line segment encloses ¢l [soint, a contradiction to the
Lasso Lemma. 0O

No nesting triangles Using the consistent orientation between the trianglesthad
pixels in the dual digital Voronoi vertices, we now show thattwo triangles ir/” are nested.
This includes the case in which the two triangles are the same

No NESTING LEMMA. No two triangles ir7” are nested or the same.

Proof. Letz;z;x; andx,z,2, be two triangles with different dual digital Voronoi ver-
tices. We first consider the case in which the second trigdmageat least one new seed point,
x, & {x;,z;, 2, }. To show that the triangles are not nested, it suffices toeptioatz, does
not lie inside the triangler;z;z,. As usual, we draw the monotonic paths from the seed
points to the dual vertex; see Figure 3.5 on the left. Sgii¢ire paths in pairs, we get three
spliced lassos. To complete the proof, we think of the irsiolethe three spliced lassos as
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the projection of the three faces of a tetrahedron built @rofthe triangle. Observe that the

projections cover the triangle. if. lies inside the triangle then it is enclosed by one of the
spliced lassos, a contradiction to the Spliced Lasso Lemma.

Ty

Li L T T

Fig. 3.5: Left: the insides of the three spliced lassos cdivertriangle. Right: Planar drawing of a
complete bipartite graph.

We consider second the case in which the two triangles arsatine. Of course, the dual
digital Voronoi vertices are different. Connecting thedgeeints with the dual vertices, we
get a complete bipartite graph with five vertices and six efgee Figure 3.5 on the right.
We may assume that the drawing of the graph is plane, th&egdths do not cross. Indeed,
two paths can only cross if they have the same color, and $ncise we can cut and splice
the pieces to remove the crossing. Now observe how the tlee goints connect to the
two Voronoi vertices. Ifz;, «;, andz; connect in a clockwise order to one vertex then they
connectin a counterclockwise order to the other vertexllibdvs that one of the two triangles
contradicts the Consistent Orientation Lemma. O

We have now completed the proof that the digital Delaunangiulation satisfied Con-
dition Ill. It remains to prove that it has the right topologlyat is, it satisfies Condition II.

Connectivity If an edge in belongs to three or more triangles then there are two that
are nested, the same, or have crossing edges. This woulddbthe No Crossing Lemma
or the No Nesting Lemma, implying that each edgefibelongs to either one or to two
triangles in7 . In the latter case, the two triangles lie on opposite sidéiseoedge. We argue
that each edge belongs to exactly two triangles. In othedsyathere are no holes in the
triangulation. We begin by proving that each regigris simply connected. In the plane this
is equivalent to being connected and having no holes.

SiMPLY CONNECTEDNESSLEMMA. All digital Voronoi regions constructed by flooding
are simply connected.

Proof. Suppose there is a regidn that is not simply connected. By constructiar,
is connected, so we can splice two monotonic paths to forno@ ¢ming around one of the
holes. If possible, we do the splicing along a shared sideofiixels. If this is not possible,
we splice the two paths at a shared pixel corner and recati fhe One Neck Lemma that the
other two pixels sharing that corner have colors differeninf each other. The two spliced
paths both originate at the seed point, so we have a splised,lane in which the staircase
consists of a single pixel. Drawing the piece of a staircasarating from a presumed seed
point, «;, inside the lasso away from that pixel, the proof of the Sulitasso Lemma still
applies. It follows that the hole contains no seed pointst tBen the hole must be empty,
else we could construct a monotonic path connecting thethdlee outside. 0O

Write OF; for the set of sides and corners shared between pixélsand pixels not irf;.
We can orient the sides so th&t lies locally to the left and the resulting curve is connected
and goes around the region in a counterclockwise order. ddristruction is unambiguous
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except in one important special caseF}fhas a neck, there is a corner shared by four sides.
In this case, we duplicate the corner and we connect the gidpairs so that the curve
does not cross the neck. This gives a cyclic sequence in vgach corner appears only
once. Replacing every corner by the four pixels around itgetea cyclic sequence @fby-2
arrays. Each such array contains at least one and at mostgixels fromF;. Since every
side is either vertical or horizontal, any two contiguousgs overlap in exactly two pixels,
one coloredi and the otherj # i. As we walk along the sequence, the cojocan only
change when we pass through a digital Voronoi vertex. Ingdéedonly other array with at
least three different colors is the neck, but it shares thar gowith both its predecessor and
its successor along the sequence.

This observation allows us to interpret the information asread along the sequence of
arrays. Specifically, the digital Voronoi vertices decomsgohe cycle intasegmentsvithin
which the color; # i of the shared pixels is constant. It follows that two contigs digital
Voronoi vertices share one pair of colors. In other wordg, segment gives rise to two
triangles sharing a common edge. It follows that each edge lirelongs to at least two
triangles in7. Because of the No Nesting Lemma, this number is at most twdtaarefore
exactly two. Because the regions are simply connected, twexgetly one cycle of arrays for
eachF;, which implies that the triangles incident to a vertexform a ring around the seed
point. Hence, the triangulation has the topology @fmanifold. To conclude the argument,
we use the Nerve Theorem [4, Section I11.2], which appliesaose each region is simply
connected and it intersects each other region in a point onaected segment, if at all. This
theorem implies that the triangulation has the same homgdigge as the union of regions.
The outside regionk,, complements the texture to form2adimensional sphere, so the only
remaining possibility is that we have a triangulation of Phgphere.

This completes the proof that the digital Delaunay triaatioh satisfies Condition Il and
is therefore a valid solution to our triangulation problem.

4. Discussion.The main contribution of this paper is a proof that the digiialaunay
triangulation has the geometric and topological propg#tie usually expect from a triangula-
tion in the plane: its edges do not cross and after connetttsmgoundary to a dummy vertex
at infinity, we get a triangulation of th&dimensional sphere. We get these properties if we
dualize the collection of digital Voronoi regions coloreglftooding. In contrast to coloring
by Euclidean distance to the seed points, flooding formsregihat are connected. We can
therefore think of flooding as a method to remove the topakgioise caused by the digital
approximation of the real plane. The most interesting nexistjon is the extension of our
correctness proof t8-dimensional voxel arrays.
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Appendix A. Overview of proof steps.

The proof consists of three major steps, each consistingsafial number of lemmas.
In Figure A.1, we show the steps as three dashed boxes withcatipns in sequences;
they correspond to Sections 3.1, 3.2, and 3.3. Each smshiaded box is a lemma. The
most important are the Distance Separation Lemma, whicapmutates most of the digital
geometry reasoning, and the Lasso Lemma, which forms theapyitopological tool used to
prove the rest.
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Fig. A.1: Steps in the proof and their dependencies.

Appendix B. Notation.
Table B.1 provides a list of notation used in this paper.

S ={x,...,x,} dataset, seed points

TiTj, TiT; Tk, edges, triangles

A B,C,U V)Y, pixels

Vi, E;, F; Euclidean, digital Voronoi regions
B; bulk

Fis,Bis, Qs region, bulk, queue aftersteps

L, Ly lasso, spliced lasso

S, E,T Delaunay vertices, edges, triangles

Table B.1: Notation for geometric concepts, sets, funstioectors, variables.



