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1. Introduction. In recent years, the computational power of graphics processing units
(GPUs) has surpassed that of central processing units (CPUs). Continuing the trend, the gap
between the two is expected to widen in the foreseeable future. With the introduction of
programming models, such as CUDA [8] and OpenCL [7], there are now more application
areas that benefit from the computational power of GPUs. These areas include scientific
computing, games, data mining, and computational finance [9]. In computational geometry,
GPUs have been used to solve problems in discrete as well as incontinuous space. An
example is the digital Voronoi diagram approximating the corresponding Euclidean structure,
which has a wide range of applications in image processing, computer vision, and graphics
[2]. Another is the digital Delaunay triangulation, which has applications in mesh generation
and scientific computing [5].

In Euclidean space, the Voronoi diagram and the Delaunay triangulation are but different
geometric expressions of the same combinatorial structure. In digital geometry, the transla-
tion from one to the other is made difficult by the need to approximate. Indeed, it is easy to
construct a digital Voronoi diagram, just by coloring the pixels or their higher-dimensional
analogues. Early work in this direction uses graphics hardware [6] and the texture unit of
the GPU [15]. More recent work takes the vector propagation approach [3], which leads to
algorithms whose running time depends solely on the image resolution and not on the number
of data points [1, 11, 13]. In contrast, computing the Delaunay triangulation with GPUs has
been more challenging. While Hoff et al. [6] mention the possibility to dualize the digital
Voronoi diagram, it was not until recently that a complete GPU algorithm for the Delaunay
triangulation has been described [12]. With the tremendouspower of GPUs, this algorithm
outperforms all traditional CPU algorithms, including theoptimized Triangle software of
Shewchuk [14]. The reason for the difficulty is the approximate character of digital Voronoi
diagrams, which may lead to unwanted artifacts when dualized, such as crossing edges and
missing triangles. However, there is experimental evidence suggesting that a careful imple-
mentation can avoid such artifacts.

In this paper, we present a detailed proof that dualizing thedigital Voronoi diagram gives
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a topologically and geometrically correct triangulation.Leaving the correction of unstable
diagonals to a postprocessing step, we call the result of thedualization thedigital Delaunay
triangulation. We base our proof on the recent improvement of the GPU Delaunay triangula-
tion algorithm described in [10]. Presenting a conceptual version of this algorithm in Section
2, we prove its correctness in Section 3. Specifically, we show that the digital Voronoi dia-
gram obtained by flooding the pixel array can be dualized to give a topologically as well as
geometrically valid triangulation in the plane. Our proof takes three steps to establish the va-
lidity of the digital Delaunay triangulation. The first steprationalizes the flooding algorithm
by proving that the pixels are colored in the order of distance from the data points. The sec-
ond step exploits this ordering to prove a technical topological result about loops. The third
step uses this result to establish the desired properties ofthe digital Delaunay triangulation.
We believe that our approach to proving the correctness of digital geometry algorithms by
progressive abstraction is of independent interest.

2. The Algorithm. In this section, we formally state the problem and give a conceptual
but precise description of the algorithmic solution first presented in [10].

Problem specification. The setting is a rectangular array of pixels. To talk about it, we
define apixelas the closed unit square centered at an integer point in the plane:A+[−1

2
, 1

2
]2,

with A ∈ Z
2. It has foursides: east, north, west, south, and fourcorners: north-east,

north-west, south-east, south-west. The decomposition ofthe plane into pixels is denoted
by Z

2 + [−1

2
, 1

2
]2. Since computers are finite, we consider only a finite rectangular piece of

the thus decomposed plane and call this piece thetexturewithin which all computations are
performed. Now suppose we are given a subset of the pixels in the texture. We call the center
of each such pixel aseed pointand writeS = {x1, x2, . . . , xn} for the set of seed points. We
assume that the points do not all lie on a single straight line. Equivalently, at least three of
the seed points span a proper triangle. The goal is to connectthe seed points inS with edges
and triangles to form a simplicial complex. It will be convenient to add adummyseed point,
x0, which we imagine at infinity and use as an additional vertex when we form the simplicial
complex. With this modification, we consider a simplicial complex avalid solutionto our
problem if it satisfies the following three conditions:

I. The set of vertices isS ∪ {x0}.
II. The simplicial complex triangulates the sphere.

III. Removingx0 gives a geometric realization in the plane.
Condition I prescribes the relationship between input and output. Condition II summarizes the
required topological properties. It includes the local requirements of a2-manifold, that every
edge belongs to two triangles and every vertex belongs to a ring of triangles. It also prescribes
the global topology of the simplicial complex to that of the2-dimensional sphere. Condition
III summarizes the required geometric properties, namely that the edges do not intersect other
than at shared vertices, and the triangles do not intersect other than along shared edges. Note
that Condition III applies only to the finite portion of the simplicial complex, obtained by
removing the star ofx0, that is,x0 together with all edges and triangles that connect tox0.
Since removing a single vertex star from a triangulated sphere keeps the rest connected, the
finite portion of the simplicial complex is thus required to be connected.

Digital Voronoi diagrams. Our approach to solving the problem mimics the computa-
tion of the Euclidean case. Recall that the (Euclidean) Voronoi regionof a pointxi is the set
of points for whichxi is the closest seed points, that is,

Vi = {x ∈ R
2 | ‖x − xi‖ ≤ ‖x − xj‖, ∀j}.

It is easy to see thatVi is convex. The collection ofVi is the (Euclidean) Voronoi diagramof
S. Finally, the (Euclidean) Delaunay triangulationis the dual of this diagram. Working with
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integer instead of real coordinates, we can only approximate this Euclidean construction. We
do this with two types ofdigital Voronoi diagrams. To construct the first, we color each pixel
with the index of the closest seed point:

Ei = {A ∈ Z
2 | ‖A − xi‖ ≤ ‖A − xj‖, ∀j}.

We assume a fixed tie-breaking rule so that each pixel receives only one color. Thebulk of
Ei is the componentBi that contains the seed point,xi. All the other pixels ofEi aredebris.
which exists only inside a sharp corner of the Euclidean Voronoi region; see Figure 2.1. The

Fig. 2.1: A region with a sharp corner. Its corresponding digital region consist of the bulk and one
debris pixel.

debris is a serious drawback as it makes it difficult to turn the decomposition into a valid
solution to our triangulation problem.

This difficulty is alleviated by introducing a second kind ofdigital Voronoi diagram. It
is obtained by growing the regions simultaneously until they run into each other. In other
words, we runn versions of breadth-first search in parallel, making sure they do not invade
each other’s territory. To make this process precise, we saya pixelA is eligible to be colored
i if A = xi or A has a neighboring pixel of colori. Here and throughout the paper, we
say two pixels areneighborsif they share a side or a corner, writingN(A) for the set of
pixels neighboringA. Initially, after s = 0 steps, all pixels are uncolored. WriteFi,s for
the set of pixels coloredi afters steps, andQs for the set of eligible pixel-color pairs. We
implementQs as a priority queue and allow it to contain additional pairs whose pixels are
already colored. These pairs do not interfere with the proper execution of the algorithm. Let
min(Qs) be the operation that removes and returns the pair with minimum distance between
the pixel center and the seed point of the color. We now state the algorithm more formally,
suppressing the counter for the number of steps, which is implicit. We initialize the regions
to Fi = ∅ and the queue to the set of pairs(xi, i), for all i.

repeat
(A, i) = min(Q);
if A is not coloredthen

Fi = Fi ∪ {A};
Q = Q ∪ {(B, i) | B ∈ N(A)};

end if
until Q = ∅.

It is easy to see that this algorithm succeeds in coloring allpixels. WritingFi for the set of
pixels coloredi after the last step of the algorithm, this is equivalent to saying that the union
of the Fi covers the entire texture. Indeed, in any other case there would be an uncolored
pixel neighboring a colored pixel and the algorithm could continue coloring.

An important aspect of the algorithm is its tie-breaking mechanism. Any total order of the
pixel pairs consistent with the Euclidean distance betweenpixel centers will do. For example,
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we may exploit the total order of the integers as follows. A pair of pixels is specified by four
coordinates, which we sort into a vector of length four and write (A, B) <lex (C, D) if the
vector obtained fromA, B ∈ Z

2 is lexicographically smaller than the vector obtained from
C, D ∈ Z

2. We say(A, B) hashigher prioritythan(C, D), denoted as‖A − B‖≺‖C − D‖,
if ‖A − B‖ < ‖C − D‖ or ‖A − B‖ = ‖C − D‖ and (A, B) <lex (C, D). Note that
‖A − B‖ ≺ ‖C − D‖ implies‖A − B‖ ≤ ‖C − D‖ but not always‖A − B‖ < ‖C − D‖.
This will be important in our analysis of the algorithm.

Digital Delaunay triangulation. Similar to the Euclidean case, we dualize the digital
Voronoi diagram, and in particular the regionsFi. The key concept is that of adigital Voronoi
vertex. This is a corner shared by four pixels that have either four different colors or three
different colors in which the two pixels sharing the color also share a side. Equivalently, a
digital Voronoi vertex is a2-by-2 array of the type which is shaded in Figure 2.2. We note
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Fig. 2.2: The seven types of colorings of a2-by-2 array of pixels. The first two are digital Voronoi
vertices.

that the third type of array, which is not a digital Voronoi vertex, is called a neck of the region
whose color is repeated. We will see in Section 3 that the fourth type, with two crossing
necks, does not arise. This is important when we dualize the colored regions as follows:

• For each digital Voronoi vertex with three different colors, i, j, k, we add the edges
xixj , xjxk, xkxi to E and the trianglexixjxk to T .

• For each digital Voronoi vertex with four different colors,i, j, k, ℓ ordered this way
around the square, we add the edgesxixj , xjxk, xkxi andxixk, xkxℓ, xℓxi to E
and the trianglesxixjxk, xixkxℓ to T .

Note that in the second case, we have a choice between the two diagonals, which we make
arbitrarily. Here,E andT are multisets. We will prove thatT is in fact a set andE contains
each edge exactly twice. Identifying the edges in pairs thusgives a simplicial complex; see
Figure 2.3 for an example. We call this thedigital Delaunay triangulationof S. Its finite
portion is obtained by removingx0 together with all edges and triangles that sharex0.

Fig. 2.3: The digital Delaunay triangulation superimposedon the digital Voronoi diagram obtained by
flooding.
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3. The Proof. In this section, we present the proof that the digital Delaunay triangula-
tion is a valid solution to our triangulation problem. It consists of three consecutive steps,
explained in the following three subsections.

3.1. Flooding Sorts. In this subsection, we rationalize flooding by proving some ba-
sic properties. Recall our tie-breaking mechanism and that‖A − B‖≺‖C − D‖ implies
‖A − B‖ ≤ ‖C − D‖.

Order by distance. The main technical result in this section is a proof that flooding
colors the pixels in the order of their distance from the seedpoints. This is plausible but
difficult to establish. We consider two versions of this claim, a weak version that claims the
ordering separately within each color, and a strong versionthat claims one order for the entire
collection of pixels. The proof is inductive, moving from the weak version afters steps to the
strong version afters steps to the weak version afters + 1 steps.

ORDERED COLORING LEMMA . For everys ≥ 0 and every two colorsi andj, we have
‖A − xi‖≺‖Y − xj‖ for all A ∈ Fi,s and all uncolored pixelsY that are eligible to be
coloredj afters steps.

Proof. This is the strong version of the claim and we get the weak version as a special
case, wheni = j. We begin by proving that the weak version implies the strongversion.
The only reason the latter is not trivial is that an uncoloredpixel can acquire new colored
neighbors and thus improve its priority in the queue. However, by the weak version after
s steps,Y cannot improve its priority beyond the priority of the newlyacquired colored
neighborA. By the strong version afters − 1 steps, the priority ofA is the lowest we have
seen so far for a colored pixel. This implies that even after the improvement, the priority of
Y is still lower than that of all colored pixels. Since we use a priority queue to selectA, all
other uncolored pixels have priorities lower than the priority of A and therefore of all colored
pixels. This implies the strong version afters steps.

We now prove that the strong version afters steps implies the weak version afters + 1
steps. To get a contradiction, we letY0 be the first uncolored pixel that violates the claimed
inequality for the weak version and we lets0 be the number of steps after which this violation
arises. We define apredecessorof a colored pixel as a neighboring pixel that received the
same color earlier. By assumption, afters < s0 steps, all predecessors of a pixel colored
i are at least as close toxi as this pixel. Afters0 steps,Y0 has a neighborA with color
i that satisfies‖Y0 − xi‖≺‖A − xi‖. Note thatA is the only neighbor with colori, else
Y0 would have contradicted the inequality before thes0 steps or it would have been colored
beforeA. There are two cases to consider: whenA andY0 share a side and when they share
only a corner. Both cases are further decomposed into subcases, and for each subcase, we
either derive a contradiction directly, or we reduce it to another subcase working our way up
a path of predecessors one pixel closer toxi. Since this path is finite, we get a contradiction
eventually. To discuss the two cases, we assume the positions ofA andY0 are as depicted in
Figure 3.1.

CASE 1. A is the neighbor to the west ofY0. Without loss of generality, assume thatxi

lies in the lower right quadrant ofY0. A has a predecessor at least as close toxi

but not neighboringY0. The only possibility is the south-west neighborB. This
further constrains the location ofxi to within a45◦ wedge. The neighborU to the
south ofA must have been colored beforeB, but with a different colork, else it
would have violated the claimed inequality beforeY0 did. By inductive assumption,
‖U − xk‖≺‖B − xi‖≺‖B − xk‖. Similarly,‖U − xk‖≺‖A − xi‖≺‖A − xk‖.
We now have two constraints that express thatA andB lie on the same side of the
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perpendicular bisector ofxi andxk, namely

‖A − xi‖ ≤ ‖A − xk‖,

‖B − xi‖ ≤ ‖B − xk‖.

SinceU lies inside the trianglexiAB but not on the edgeAB, the two inequalities
imply ‖U − xi‖ < ‖U − xk‖ and therefore‖U − xi‖≺‖U − xk‖. But this is only
possible ifU has no neighbor of colori at the time it is colored. We consider three
subcases:
CASE 1.1. The south-east neighborW of B is a predecessor ofB. Therefore,

U must have been colored beforeW . By inductive assumption, we have
‖U − xi‖ ≺ ‖U − xk‖ ≺ ‖W − xi‖. But this contradicts the inequality
‖W − xi‖ ≺ ‖U − xi‖, which we get from the restriction ofxi to the45◦

wedge.
CASE 1.2. The neighborV to the south ofB is a predecessor ofB, andW is

not. Therefore, we get‖U − xi‖ ≺ ‖U − xk‖ ≺ ‖V − xi‖ asU must have
been colored beforeV . This implies‖U − xi‖ ≤ ‖V − xi‖, which fur-
ther limits xi to within a narrow diagonal strip, as indicated in Figure 3.1
on the left. Let the color ofW be ℓ 6= i, and observe thatW must have
been colored beforeV , else it would have violated the claimed inequality
beforeY0 did. Therefore,‖W − xℓ‖≺‖V − xi‖≺‖V − xℓ‖, and similarly,
‖W − xℓ‖≺‖B − xi‖≺‖B − xℓ‖, which implies

‖B − xi‖ ≤ ‖B − xℓ‖,

‖V − xi‖ ≤ ‖V − xℓ‖.

Recalling thatxi lies inside the diagonal strip, we observe thatW lies inside
the trianglexiBV but not on the edgeBV . Hence, the two inequalities imply
‖W − xi‖≺‖W − xℓ‖. We now repeat the analysis of Case 1, substituting
V, W for B, U .

CASE 1.3. The south-west neighborC of B is a predecessor ofB, andV andW

are not. The neighborV to the south ofB must have been colored beforeC,
else it would have contradicted the claimed inequality beforeY0 did. We repeat
the analysis of Case 1, substitutingC, V, B for B, U, A.

We will shortly relax the condition onxi by adding the column of pixels belowA
to the quadrant that containsxi. Indeed, the only reason for not doing so right from
the start is the condition‖Y0 − xi‖≺‖A − xi‖, which is violated for pixels in that
column.

W

TB A

V U Y0

A

B

C V

Y0

U

Fig. 3.1: Illustration of Case 1 on the left and Case 2 on the right. In both cases, the shaded right-angled
wedge represents the possible locations ofxi.
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CASE 2. A is the north-west neighbor ofY0. Without loss of generality assume thatxi lies
in the lower quadrant ofY0; see Figure 3.1 on the right. Recall thatA is the only
neighbor ofY0 coloredi. The neighborU to the south ofA must therefore have
been colored beforeA, with a colork different fromi, else it would have violated
the claimed inequality beforeY0 did. Using the inductive assumption, we therefore
get ‖U − xk‖≺‖A − xi‖≺‖A − xk‖. There are only two possible predecessors
of A.
CASE 2.1. The south-west neighborV of A is a predecessor ofA. We consider two

subcases:
CASE 2.1.1. ‖U − xi‖≺‖V − xi‖. Here, U must have been colored be-

fore V , else it would have violated the claimed inequality beforeY0 did.
We therefore get‖U − xk‖≺‖V − xi‖≺‖V − xk‖. Sincexi lies in the
lower right quadrant ofA, we can now apply the analysis of Case 1, sub-
stitutingV, U, A here forB, U, A there. Indeed, all steps of the analysis in
Case 1 are valid forxi in that quadrant, except for‖Y0 − xi‖≺‖A − xi‖,
which now holds becauseY0 is the south-east rather than the east neighbor
of A, as it was in the original description of Case 1.

CASE 2.1.2. ‖V − xi‖≺‖U − xi‖. Notice‖A − xi‖≺‖Y0 − xk‖, elseY0

would have been colored beforeA. Together with‖Y0 − xi‖≺‖A − xi‖
and‖A − xi‖≺‖A − xk‖, we have

‖Y0 − xi‖ ≤ ‖Y0 − xk‖,

‖A − xi‖ ≤ ‖A − xk‖.

SinceU lies inside the trianglexiAY0 but not on the edgeAY0, the two
inequalities imply‖U − xi‖≺‖U − xk‖. Hence,U must have been col-
ored beforeV , else colori would have taken precedence over colork. But
this implies‖U − xk‖≺‖V − xi‖ and therefore‖U − xi‖≺‖V − xi‖,
a contradiction to the assumption.

CASE 2.2. The west neighborB of A is a predecessor ofA, andV is not. This
constrainsxi to lie within the same45◦ wedge considered in Case 2.1.2; see
Figure 3.1 on the right. Here,U must have been colored beforeB, else it
would have violated the claimed inequality beforeY0 did. We can now repeat
the analysis of Case 2, substitutingB, V for A, U .

An amendment to Case 2.1 is in order. The reason is that we may encounter Case 2.2
first, one or more times, and then reach Case 2.1. If we do,Y0 is no longer neigh-
bor of the newA, which is equal to the originalB or one of its predecessors. The
analysis in Case 2.1.1 is unaffected by this difference, regardless of the actual po-
sition of Y0, as Case 2.1.1 can reduce to Case 1 as long asxi lies in the lower
right quadrant ofA. However, in Case 2.1.2, we need to find a new argument for
‖U − xi‖≺‖U − xk‖. To this end, letT be the neighbor to the east of the newA.
Noting thatT lies on a path of predecessors from the original pixelA back toxi, we
get‖T − xi‖≺‖T − xk‖, else colork would have taken precedence over colori.
Together with‖A − xi‖≺‖A − xk‖, this gives

‖T − xi‖ ≤ ‖T − xk‖,

‖A − xi‖ ≤ ‖A − xk‖.

SinceU lies in the trianglexiAT but not onAT , the above two inequalities imply
‖U − xi‖ ≺ ‖U − xk‖, as desired.
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Let us reflect on the recursive structure of the inductive argument. Cases 1.2 and 1.3 reduce to
Case 1, but one pixel closer to the end along the path back toxi. Similarly, Case 2.2 reduces
to Case 2, also one pixel closer toxi. In contrast, Case 2.1 reduces to Case 1, without getting
closer toxi. But this reduction can happen only once throughout the recursive argument.
We thus see that there is no cycle and each sequence of recursive arguments must end with
a contradiction. This completes the case analysis and showsthat the uncolored pixels have
lower priority than the colored pixels throughout the algorithm. The claim follows.

Recall the weak version of the claim, namely that flooding colors the pixels in a region
Fi in the order of their distance fromxi. This implies that we can find amonotonicpath
from xi to each pixel inFi. We require that all pixels have colori and that the distance toxi

does not decrease along the path. We get such a path toA by tracing backward, fromA to a
predecessor to a predecessor of the predecessor and so on. Wesummarize:

MONOTONIC PATH LEMMA . For eachA ∈ Fi, there is a monotonic path fromxi to A

within the regionFi.
Necks. A neckis a pair of diagonally adjacent pixels of the same color whose two com-

mon neighbors both have colors that are different from that of the pair. We claim that the
colors of the two common neighbors are also different from each other. In other words, a
square of four pixels cannot have two necks. This property isuseful because it implies that
curves drawn within different color regions do not cross. Contradicting two necks is easy for
Euclidean coloring since the bisector of the two seed pointscannot separate the four pixel
centers according to their color. For flooding, we need a proof, which we now present.

ONE NECK LEMMA . Flooding produces a coloring in which every square of four pixels
has at most one neck.

Proof. Label the four pixelsA, B, U , andV . Assuming two necks, we have the algorithm
color the diagonally adjacent pixelsA andB with i and the other two diagonally adjacent
pixelsU andV with k 6= i. Consider the following two right-angled wedges,

WA = {x ∈ R
2 | ‖A − x‖ ≤ min{‖U − x‖, ‖V − x‖}},

WB = {x ∈ R
2 | ‖B − x‖ ≤ min{‖U − x‖, ‖V − x‖}}.

Without loss of generality, we may assume thatA gets colored first. Using the Ordered
Coloring Lemma, we have‖A − xi‖≺‖U − xk‖≺‖U − xi‖, elseU would be coloredi.
Similarly, ‖A − xi‖≺‖V − xk‖≺‖V − xi‖, which impliesxi ∈ WA. If B gets colored
second, beforeU andV , then we also havexi ∈ WB. But WB intersectsWA in a single
point, namely the corner shared by the four pixels, and we geta contradiction because this
point does not have integer coordinates. So we may assume that U gets colored beforeB
and beforeV . Therefore,‖B − xi‖≺‖B − xk‖, elseB would be coloredk. Together with
‖U − xk‖≺‖U − xi‖ and‖V − xk‖≺‖V − xi‖, this implies that the perpendicular bisec-
tor of xi andxk separatesB from U andV . Because the bisector is constrained to pass
betweenB on one side andU, V on the other, the half-plane that containsxi andB inter-
sectsWA in at most one point, namely the shared corner of the four pixels, which is again a
contradiction.

Bulk. When we remove a point fromS, the Euclidean Voronoi region of a remaining
point either stays the same or it grows. The same is true for the regionsEi obtained by
Euclidean coloring. Similarly, it is true for the bulk ofEi. However, it is not necessarily true
for the regions obtained by flooding. We prove a weaker statement for them, namely that they
contain the bulks of Euclidean coloring. It follows that thedeletion of a seed point can shrink
a region only by debris pixels, of which there are generally few.

BULK LEMMA . Each regionFi constructed by flooding contains the bulk ofEi.
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Proof. We prove that the prefixes of the bulk ofEi obtained by adding the pixels in order
from xi are connected. It follows that the pixels of the bulk are colored in this same order and
with the same color. LetBi,s contain thes pixels of the bulk ofEi closest to the seed point.
Thus

{xi} = Bi,1 ⊆ Bi,2 ⊆ . . . ⊆ Bi,m = Bi.

Suppose not all of the prefixes are connected and letBi,s = Bi,s−1 ∪ {A} be the first that
is not connected. Draw the line that passes throughA andxi, as in Figure 3.2. There are

xi

A

Fig. 3.2: The bulk ofEi after coloring the firsts pixels by flooding.

neighbors ofA on both sides of the line whose distance fromxi is less than‖A − xi‖. On the
other hand,A belongs to the bulk ofEi, which is connected, so we can find a path within the
bulk that connectsA with xi. Drawing it from pixel center to pixel center with straight edges
in between, the path belongs to the Euclidean Voronoi region, Vi, by convexity. Hence, the
region bordered by the path and the straight segment fromA to xi belongs toVi. This region
includes at least one neighborB of A with ‖B − xi‖≺‖A − xi‖. This neighbor precedesA
in the ordering of the pixels in the bulk ofEi and thus belongs toBi,s, a contradiction toA
being separated fromBi,s−1.

3.2. Lassos Go Empty.In this subsection, we prove two technical result about mono-
tonic paths which are instrumental in proving the lemmas needed for the validity of the digital
Delaunay triangulation.

Lassos. We begin by constructing a digital analog of a straight line.Given an oriented
line, a pixels belongs to the correspondingstaircaseif its interior intersects the line or its
boundary intersects the line and its center lies to the rightof the line. Note that the orientation
of the line induces an ordering of the pixels along the line. Given a seed pointxi and a pixel
A coloredi, a lassoconsists of a monotonic path fromxi to A and the staircase fromA back
to xi. We callxi andA thebase pointsand the line oriented fromA to xi thebase lineof the
lasso. Thesizeof the lasso is the distance between the two base points. Whenwe compare
the sizes of two lassos, we use the same tie-breaking mechanism as for the pairs of pixels.
The lasso decomposes the plane into two components, aninsideand anoutside. The inside
includes all pixels of the lasso. While the pixels in the monotonic path all have colori, by
definition, the pixels in the staircase are not necessarily all of the same color.

LASSO LEMMA . There is no seed point inside a lasso.
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Proof. To get a contradiction, assume the opposite. LetLi be the smallest lasso that
encloses one or more seed points, and letxi andA be its base points. Letxj be the enclosed
seed point that is furthest from the base line; see Figure 3.3. Consider the staircase defined by

xi

xj

B

U
AV

xℓLi

Lk

Lℓ

xk

Fig. 3.3: The first lasso consists of a monotonic path fromxi to A and the staircase back toxi. Inside
the first lasso, we see another seed point,xj . The second lasso defined byxk andB enclosesA. The
third lasso defined byxℓ andU also enclosesA.

the line that passes throughxj and is orthogonal to the base line ofLi. Traversing it fromxj

and moving away from the base line, we letB be the first pixel not coloredj. Because of the
choice ofB on the staircase orthogonal to the base line ofLi, we have‖B − xj‖≺‖B − xi‖.
It follows that B does not have colori either. Letk 6∈ {i, j} be the color ofB. By the
Monotonic Path Lemma, there is a monotonic path fromxk to B. We do a case analysis in
which every possibility leads to a contradiction. It will follow thatxj cannot exist.
CASE 1. xk andB lie on opposite sides of the line parallel to the base line ofLi that passes

throughxj . Then we get‖B − xj‖≺‖B − xk‖, contradicting thatB has colork.
CASE 2. xk andB lie on the same side of that line, as in Figure 3.3. By extremality of the

choice ofxj , the seed pointxk cannot lie inside the lassoLi. Let Lk be the lasso
consisting of a monotonic path fromxk to B and the staircase fromB back toxk.
By the One Neck Lemma, the monotonic path cannot cross the path from xi to A

and therefore must cross the base line ofLi. HenceLk encloses eitherxi or A. But
we have

‖B − xk‖ ≺ ‖B − xj‖ ≺ ‖B − xi‖,

and by drawing a line fromxi throughB, we get a pixel on the path fromxi to A

that is even further fromxi thanB. It follows that‖B − xi‖≺‖A − xi‖. Hence,
the size ofLk is less than the size ofLi, and by extremality of the choice ofLi,
Lk cannot enclosexi. The only remaining possibility is thatLk enclosesA, as in
Figure 3.3. The final contradiction will rest on the properties of two particular pixels
which we now describe. Traverse the staircase ofLi from A to xi and letU be the
first pixel whose color is noti. Let V be the predecessor ofU in the staircase. Such
pixelsU andV exist because the staircase crosses the monotonic path fromxk to
B, where it has pixels coloredk 6= i. However, we may reachU before crossing
the path. Letℓ 6= i be the color ofU . We haveU colored beforeV ; otherwise, the
coloring ofV would result in putting(U, i) into the priority queue, a contradiction
to the Ordered Coloring Lemma. So we have‖U − xℓ‖≺‖V − xi‖. This implies
‖U − xℓ‖≺‖A − xi‖. Let Lℓ be a lasso with base pointsxℓ andU . Because of the
extremal choice of the first lasso,Lℓ cannot enclose any seed points. There are three
cases to consider.
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CASE 2.1. ℓ = k. ThenLℓ enclosesV . We also have‖U − xk‖≺‖V − xk‖,
elseV would have been coloredk. But then we can draw a half-line fromxk

throughV and get a pixel on the path fromxk to U whose distance fromxk

exceeds‖U − xk‖. This contradicts the monotonicity of the path.
CASE 2.2. ℓ 6= k andxℓ andB are on opposite sides of the line parallel to the base

line of Li that passes throughxj . The lassoLℓ thus either enclosesxk or B.
If it enclosesB, it also enclosesxj because the two pixels are connected by a
piece of a staircase of colorj 6= ℓ. As mentioned earlier,Lℓ cannot enclose a
seed point so we have a contradiction in either case.

CASE 2.3. ℓ 6= k andxℓ andB are on the same side of the line passing throughxj .
Avoiding to enclosexi, the only possibility for the monotonic path fromxℓ to
U is as shown in Figure 3.3. Here we use‖U − xℓ‖≺‖V − xi‖≺‖V − xℓ‖.
But V is enclosed byLℓ, so we can draw a directed line fromxℓ throughV , as
in Case 2.1. This gives a pixel on the path fromxℓ to U whose distance from
xℓ exceeds‖U − xℓ‖, again a contradiction.

This implies thatxj does not exist, which proves the claim.
Spliced lassos. We extend the lasso to a slightly more elaborate construction. Let xi

andxℓ be two different seed points andA ∈ Fi, D ∈ Fℓ two pixels. For the construction,
we require thatA andD are neighbors sharing a common side or at least a common corner,
but in the latter case the remaining two pixels sharing the same corner must have colors that
are different from each other. Drawing a monotonic path of color i from xi to A, another
monotonic path of colorℓ from xℓ to D, and the staircase betweenxi andxℓ, we get what
we call aspliced lasso. We refer toxi andxℓ as itsbase pointsand the connecting line as
its base line. Similar to the lasso, a spliced lasso decomposes the plane into an inside and an
outside. Another monotonic path cannot cross the spliced paths. Indeed, the only weak point
is the corner at which the two paths are spliced, but because the adjacent pixels have different
colors, we cannot cross there either. The only possibility to go from outside to inside the
spliced lasso is therefore to cross the base line.

SPLICED LASSO LEMMA . There is no seed point inside a spliced lasso.
Proof. Assume to the contrary that we have a spliced lasso with basepointsxi andxℓ

that encloses other seed points. Letxj be the seed point that maximizes the distance from
the base line. Starting atxj , construct a piece of a staircase orthogonal to and moving away
from the base line. LetB be the first pixel not coloredj. As before, we argue that the color
of B is k 6∈ {i, j, ℓ} and we construct a lassoLk connectingxk to B and back. Ifxk andB

lie on opposite sides of the line passing throughxj and parallel to the base line of the spliced
lasso, then we get‖B − xj‖≺‖B − xk‖, contradicting the Ordered Coloring Lemma. On
the other hand, ifxk andB lie on the same side of the line then the extremal choice ofxj

prohibits thatxk be inside the spliced lasso. HenceLk encloses eitherxi or xℓ, contradicting
the Lasso Lemma.

3.3. The Triangulation is Valid. In this subsection, we use the two lasso lemmas to
show that the digital Delaunay triangulation is a valid solution to our triangulation problem.

No crossing edges. Recall thatE is the multiset of edges identified when we dualize
the digital Voronoi diagram obtained by flooding. We say two edgescrosseach other if the
endpoints of each lie on opposite sides of the line spanned bythe other. Here we require
implicitly that no three of the four endpoints lie on a commonline. In particular, two copies
of the same edge are not considered to cross each other.

NO CROSSINGLEMMA . No two edges inE cross each other.
Proof. Assume the opposite and letxixj andxpxq be two edges that cross. The four seed

points thus form a convex quadrilateral whose diagonals arethe two edges; see Figure 3.4 on
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the left. LetA, B andC, D be the corresponding pixels in the two digital Voronoi vertices
identifying the two edges. Connectingxi to A andxj to B by monotonic paths, we get a first
spliced lasso, which we denote asLij . Similarly, we construct a second spliced lasso,Lpq.
By the Spliced Lasso Lemma, the two cannot enclose any seed points. This implies that the
spliced paths ofLij cross the edgexpxq an odd number of times, and the spliced paths ofLpq

crossxixj an odd number of times. But then the two paths must cross, which is prohibited
by the One Neck Lemma.

xi xj

xk

xp xj

xqxi

Fig. 3.4: Left: the two edges cross and so do the two spliced paths. Right: one of the three lassos
encloses a seed point.

Consistent orientation. Recall thatT is the multiset of triangles in the digital Delaunay
triangulation. As we will see shortly,T is in fact a set. The sequence of the three vertices of
a triangle implies anorientation, which is either clockwise or counterclockwise. Assuming
xixjxk is in T , it has a dual digital Voronoi vertex that contains three pixels coloredi, j,
andk. By definition of digital Voronoi vertex, the color of the fourth pixel is different from
the color of the diagonally opposite pixel in the2-by-2 array; see Figure 2.2. We say the
orientation ofxixjxk is consistentwith the three corresponding pixels if both are clockwise
or both are counterclockwise.

CONSISTENTORIENTATION LEMMA . The orientation of each triangle inT is consistent
with the orientation of the corresponding pixels in the dualdigital Voronoi vertex.

Proof. Letxixjxk be a triangle inT with corresponding pixelsA, B, C in the dual digital
vertex. We connectxi with a monotonic path toA, xj to B, andxk to C; see Figure 3.4 on
the right. To get a contradiction, we suppose the orientation of xixjxk is not consistent with
that ofABC. In other words, the order in which the three paths connect tothe digital vertex
is different from the orientation ofxixjxk. On the other hand, if we connectxi, xj , andxk

with straight line segments to the vertex, we get a consistent order. This implies that one
of the monotonic paths reaches around another seed point, that is, the lasso defined by its
monotonic path and the straight line segment encloses that seed point, a contradiction to the
Lasso Lemma.

No nesting triangles. Using the consistent orientation between the triangles andthe
pixels in the dual digital Voronoi vertices, we now show thatno two triangles inT are nested.
This includes the case in which the two triangles are the same.

NO NESTING LEMMA . No two triangles inT are nested or the same.
Proof. Let xixjxk andxpxqxr be two triangles with different dual digital Voronoi ver-

tices. We first consider the case in which the second trianglehas at least one new seed point,
xr 6∈ {xi, xj , xk}. To show that the triangles are not nested, it suffices to prove thatxr does
not lie inside the trianglexixjxk. As usual, we draw the monotonic paths from the seed
points to the dual vertex; see Figure 3.5 on the left. Splicing the paths in pairs, we get three
spliced lassos. To complete the proof, we think of the insides of the three spliced lassos as
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the projection of the three faces of a tetrahedron built on top of the triangle. Observe that the
projections cover the triangle. Ifxr lies inside the triangle then it is enclosed by one of the
spliced lassos, a contradiction to the Spliced Lasso Lemma.

xk

xjxixi xj

xk

Fig. 3.5: Left: the insides of the three spliced lassos coverthe triangle. Right: Planar drawing of a
complete bipartite graph.

We consider second the case in which the two triangles are thesame. Of course, the dual
digital Voronoi vertices are different. Connecting the seed points with the dual vertices, we
get a complete bipartite graph with five vertices and six edges; see Figure 3.5 on the right.
We may assume that the drawing of the graph is plane, that is, the paths do not cross. Indeed,
two paths can only cross if they have the same color, and in this case we can cut and splice
the pieces to remove the crossing. Now observe how the three seed points connect to the
two Voronoi vertices. Ifxi, xj , andxk connect in a clockwise order to one vertex then they
connect in a counterclockwise order to the other vertex. It follows that one of the two triangles
contradicts the Consistent Orientation Lemma.

We have now completed the proof that the digital Delaunay triangulation satisfied Con-
dition III. It remains to prove that it has the right topology, that is, it satisfies Condition II.

Connectivity. If an edge inE belongs to three or more triangles then there are two that
are nested, the same, or have crossing edges. This would contradict the No Crossing Lemma
or the No Nesting Lemma, implying that each edge inE belongs to either one or to two
triangles inT . In the latter case, the two triangles lie on opposite sides of the edge. We argue
that each edge belongs to exactly two triangles. In other words, there are no holes in the
triangulation. We begin by proving that each regionFi is simply connected. In the plane this
is equivalent to being connected and having no holes.

SIMPLY CONNECTEDNESSLEMMA . All digital Voronoi regions constructed by flooding
are simply connected.

Proof. Suppose there is a regionFi that is not simply connected. By construction,Fi

is connected, so we can splice two monotonic paths to form a loop going around one of the
holes. If possible, we do the splicing along a shared side of two pixels. If this is not possible,
we splice the two paths at a shared pixel corner and recall from the One Neck Lemma that the
other two pixels sharing that corner have colors different from each other. The two spliced
paths both originate at the seed point, so we have a spliced lasso, one in which the staircase
consists of a single pixel. Drawing the piece of a staircase emanating from a presumed seed
point, xj , inside the lasso away from that pixel, the proof of the Spliced Lasso Lemma still
applies. It follows that the hole contains no seed points. But then the hole must be empty,
else we could construct a monotonic path connecting the holeto the outside.

Write∂Fi for the set of sides and corners shared between pixels inFi and pixels not inFi.
We can orient the sides so thatFi lies locally to the left and the resulting curve is connected
and goes around the region in a counterclockwise order. Thisconstruction is unambiguous
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except in one important special case. IfFi has a neck, there is a corner shared by four sides.
In this case, we duplicate the corner and we connect the sidesin pairs so that the curve
does not cross the neck. This gives a cyclic sequence in whicheach corner appears only
once. Replacing every corner by the four pixels around it, weget a cyclic sequence of2-by-2
arrays. Each such array contains at least one and at most three pixels fromFi. Since every
side is either vertical or horizontal, any two contiguous arrays overlap in exactly two pixels,
one coloredi and the otherj 6= i. As we walk along the sequence, the colorj can only
change when we pass through a digital Voronoi vertex. Indeed, the only other array with at
least three different colors is the neck, but it shares the color j with both its predecessor and
its successor along the sequence.

This observation allows us to interpret the information as we read along the sequence of
arrays. Specifically, the digital Voronoi vertices decompose the cycle intosegmentswithin
which the colorj 6= i of the shared pixels is constant. It follows that two contiguous digital
Voronoi vertices share one pair of colors. In other words, the segment gives rise to two
triangles sharing a common edge. It follows that each edge inE belongs to at least two
triangles inT . Because of the No Nesting Lemma, this number is at most two and therefore
exactly two. Because the regions are simply connected, we get exactly one cycle of arrays for
eachFi, which implies that the triangles incident to a vertexxi form a ring around the seed
point. Hence, the triangulation has the topology of a2-manifold. To conclude the argument,
we use the Nerve Theorem [4, Section III.2], which applies because each region is simply
connected and it intersects each other region in a point or a connected segment, if at all. This
theorem implies that the triangulation has the same homotopy type as the union of regions.
The outside region,F0, complements the texture to form a2-dimensional sphere, so the only
remaining possibility is that we have a triangulation of the2-sphere.

This completes the proof that the digital Delaunay triangulation satisfies Condition II and
is therefore a valid solution to our triangulation problem.

4. Discussion.The main contribution of this paper is a proof that the digital Delaunay
triangulation has the geometric and topological properties we usually expect from a triangula-
tion in the plane: its edges do not cross and after connectingthe boundary to a dummy vertex
at infinity, we get a triangulation of the2-dimensional sphere. We get these properties if we
dualize the collection of digital Voronoi regions colored by flooding. In contrast to coloring
by Euclidean distance to the seed points, flooding forms regions that are connected. We can
therefore think of flooding as a method to remove the topological noise caused by the digital
approximation of the real plane. The most interesting next question is the extension of our
correctness proof to3-dimensional voxel arrays.
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Appendix A. Overview of proof steps.
The proof consists of three major steps, each consisting of asmall number of lemmas.

In Figure A.1, we show the steps as three dashed boxes with implications in sequences;
they correspond to Sections 3.1, 3.2, and 3.3. Each smaller,shaded box is a lemma. The
most important are the Distance Separation Lemma, which encapsulates most of the digital
geometry reasoning, and the Lasso Lemma, which forms the primary topological tool used to
prove the rest.

No

No

Lasso

IIIII

Lasso

Consistent
Orientation Crossing

Simply
Connected

Nesting

Monotonic
Paths

One Neck

Ordered
Coloring

Spliced

Bulk

Fig. A.1: Steps in the proof and their dependencies.

Appendix B. Notation.
Table B.1 provides a list of notation used in this paper.

S = {x1, . . . , xn} data set, seed points
xixj , xixjxk edges, triangles
A, B, C, U, V, Y0 pixels
Vi, Ei, Fi Euclidean, digital Voronoi regions
Bi bulk
Fi,s, Bi,s, Qs region, bulk, queue afters steps
Li, Lij lasso, spliced lasso
S, E , T Delaunay vertices, edges, triangles

Table B.1: Notation for geometric concepts, sets, functions, vectors, variables.


