
CONSTRUCTING REGULAR TRIANGULATION VIA

LOCAL TRANSFORMATIONS:

THEORETICAL AND PRACTICAL ADVANCES

MINGCEN GAO

NATIONAL UNIVERSITY OF SINGAPORE

2015

CONSTRUCTING REGULAR TRIANGULATION VIA

LOCAL TRANSFORMATIONS:

THEORETICAL AND PRACTICAL ADVANCES

MINGCEN GAO

B.Eng., Northeastern University (China), 2009

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2015

Declaration

I hereby declare that this thesis is my original work and it has been written by

me in its entirety.

I have duly acknowledged all the sources of information which have been used

in the thesis.

This thesis has also not been submitted for any degree in any university pre-

viously.

Mingcen Gao

February 10, 2015

Acknowledgment

I sincerely thank my supervisor Tan Tiow Seng, who guided me to computational

geometry. Tiow Seng's critical thinking, patient encouragement, and broad research

network are invaluable to me. His hard working inspires me to learn hard and improve

my skill continuously. Also I really appreciate the freedom of doing the research that

I am interested in during these years.

I would like to thank Low Kok-Lim for his courses on GPU programming and on

computer graphics. I learned a lot from his class and laid a good foundation in GPU

programming.

I want to thank Cheng Ho-lun for his computational geometry course, where I found

the interest of research on computational geometry and determined to learn more in

this area.

I would like to thank Huang Zhiyong for the opportunity of working with him as a

teaching assistant. I learned to use various 3D modelling tools during that time.

I would like to thank Cheng Siu-Wing for inviting me to do an internship in Hong

Kong University of Science and Technology. It was a great pleasure to discuss with

Siu-Wing about the local transformation problems in computation geometry.

I would like to thank Herbert Edelsbrunner for the inspiring discussion on various

geometric problems and the valuable suggestions on this thesis. I am grateful to Herbert

for giving me the chance to visit the Institute of Science and Technology Austria.

I would like to thank Leong Hon Wai for his valuable comments on my thesis.

I want to thank my colleagues in G3 lab. I am grateful to Cao Thanh-Tung for the

continuous help and collaboration. His optimism encouraged me a lot to overcome the

research di�culties during my Ph.D. I like to thank Ashwin Nanjappa and Qi Meng

for their discussion and moral support to reduce my stress of being a graduate student.

February 10, 2015

To Mom, Dad and Wei

iii

iv

Contents

Summary x

List of Tables xi

List of Figures xv

1 Introduction 1

1.1 Convex Hull and Its Algorithms . 2

1.2 Regular Triangulation and Its Algorithms 4

1.3 Local Transformation . 5

1.4 Outline of the Thesis . 6

2 Geometric Background 9

2.1 Convex Hull and Triangulation . 10

2.2 Delaunay and Regular Triangulation . 13

2.3 Flip on Triangulation . 16

3 Algorithms of Local Transformation 19

3.1 Overview . 20

3.2 Framework . 21

3.3 Examples . 24

3.3.1 Lawson's Flip Algorithm . 24

3.3.2 Star Splaying Algorithm . 25

4 Parallel Flip Algorithms for 2D Convex Hull 29

4.1 Flip-pop . 30

4.2 Parallel Graham's Scan . 32

4.3 Parallel Graham's Scan via Insertion . 34

4.4 Experiment . 36

5 Flip Algorithm for 2D Regular Triangulation 41

5.1 Flip-�op for 2D Regular Triangulation 42

5.2 Proof of Correctness . 44

v

5.3 Compute Regular Triangulation of a Point Set 46

5.4 Experiment . 47

6 Flip Algorithm for 3D Convex Hull 51

6.1 Star-Shaped Polyhedron . 52

6.2 Flip-�op for 3D Convex Hull . 55

6.3 Proof of Correctness . 56

6.4 Compute Convex Hull of a Point Set . 61

6.4.1 GPU Implementation . 63

6.4.2 Exact Computation and Robustness 64

6.5 Experiment . 65

7 Algorithm using Splaying for 3D Convex Hull 71

7.1 The gHull Algorithm . 72

7.2 Implementation Details . 74

7.3 Digital Approximation Issues . 78

7.3.1 Digital Depth Test . 79

7.3.2 Convex Hull Approximation . 80

7.4 Experiment . 81

8 Local Transformation to Star-Shaped Polytope 87

8.1 Coherent Orientation . 88

8.2 Twist and Flip on Coherently Oriented Triangulation 89

8.3 Local Transformation to Star-Shaped Polygon 91

8.4 Local Transformation to Star-Shaped Polyhedron 93

8.4.1 Special Case . 94

8.4.2 General Case . 103

9 Flipping in Higher Dimensions 111

9.1 Literature Review . 112

9.2 Instant Flipping between Regular Triangulations 117

9.2.1 The Monotonic Instant Flip Algorithm 118

9.2.2 Computing and Comparing Failure Time 120

9.2.3 Finding Perturbation Order . 122

9.3 Extended Moving Model . 124

10 Conclusions 131

10.1 Local Transformation Revisit . 131

10.2 Dimensional Dependency of Geometric Structures 133

10.3 Concluding Remarks . 134

Bibliography 137

vi

List of Publications 144

vii

Summary

This thesis studies transformation between geometric structures via geometric opera-

tions that act on some simplices of a geometric structure. Such a transformation is

termed local transformation as an operation utilizes only information local to some

neighboring simplices but nothing about other attributes or con�gurations global in

nature to the structure. One famous algorithm of local transformation is Lawson's �ip

algorithm to construct the Delaunay triangulation from an arbitrary 2D triangulation.

Local transformation is simple to be implemented in practice and has been shown to

be powerful and e�cient to transform among various important fundamental geometric

structures. Such a transformation is also useful to repair geometric structures due to

small adjustment to their simplices. For today's many-core architecture such as that of

the GPU, local transformation is particularly attractive if it can be executed in parallel

to gain good speedup at a low cost.

Besides Lawson's �ip algorithm, this thesis investigates Shewchuk's star splaying

algorithm, and presents the �ip-�op algorithm and the twist algorithm in relation to

constructing convex hull and regular triangulation, two structures that are geometri-

cally related to Delaunay triangulation.

The thesis starts with a simple and yet non-trivial problem: 2D convex hull. We

design a parallel version of the famous Graham's scan, re-casting its scanning stage as a

series of �ip operations from a star-shaped polygon to the resulting convex hull. In order

to avoid the numerical inexactness in constructing star-shaped polygon of the original

Graham's scan, we construct the upper and the lower half of the convex hull separately

from two star-shaped chains. Such a novel approach is easily realized with the GPU to

gain more than 40 times speedup over well-known convex hull implementations.

Next, the thesis examines local transformation to compute Delaunay triangulation,

and its generalization of regular triangulation. It is known that one can incrementally

construct such triangulation using �ips by adding one vertex at a time. That approach,

however, strictly alternates between one operation of inserting a vertex and a series of

�ips to regular triangulation. This dependency of operations limits its use in parallel

computation. We discover a novel �ip algorithm called �ip-�op without such de�ciency.

This algorithm allows non-restrictive insertion of many vertices into an arbitrary 2D

triangulation before transforming it to the regular triangulation. This can also be used

to construct the convex hull from a 3D star-shaped polyhedron. Such an approach

implemented on the GPU has up to 50 times speedup over existing CPU algorithms.

The thesis continues with examining star splaying, another local transformation

that is used to repair convex hull. We propose the gHull algorithm that uses star

splaying to construct the 3D convex hull of a point set, and evaluate it against the �ip-

�op algorithm. It is noted that star splaying is more e�cient when its input is close

to the convex hull. Along this line, we exploit the relation between Voronoi diagram

and convex hull to build an approximation from the restricted digital Voronoi diagram

before employing star splaying. As a result, gHull runs very well on the GPU with up

to 30 times faster than the best CPU implementation. However, gHull still does not

perform as well as �ip-�op especially for points in non-uniform distributions.

Understanding from the above studies, we note that star-shaped polytope plays

an important role as the only legitimate input for �ipping to 2D and 3D convex hull.

The thesis then investigates the possibility of obtaining a star-shape polytope from an

arbitrary, possibly self-intersecting, one through local transformation. Towards this

end, in the 2D setting, we design a novel twist algorithm to transform an arbitrary

polygon to a star-shaped one w.r.t. any chosen point inside its convex hull. In the 3D

setting, we discover that a series of �ip and twist operations can reach the goal for the

special case of a polyhedron that has an extreme vertex connecting to all the other

vertices. As for general polyhedrons, the problem remains open.

Excited by the discovery of �ip-�op, one wonders what other compromises to the

traditional �ip algorithm, which is hill-climbing in nature, are possible to compute

regular triangulation and convex hull in higher dimensions. The thesis tackles this

question by investigating the local transformation from one regular triangulation to

another of the same point set in arbitrary dimensions. We discover interesting ways

to characterize �ipping when the triangulation is cast into a time line. These might

be useful to solve the open problem of �nding a �ip algorithm, free of restrictively

sequential execution order, to derive from one regular triangulation to another.

ix

x

List of Tables

3.1 Existing algorithms of local transformation and their features 21

6.1 Performance of �Hull on 3D models . 67

7.1 Performance of gHull on 3D models . 82

9.1 Vertices of a 3D triangulation where the arbitrarily monotonic �ip algo-

rithm gets stuck . 114

10.1 Algorithms of local transformation and their features 136

xi

xii

List of Figures

1.1 An illustration of convex hull . 2

1.2 An example where CudaQuickHull outputs a wrong result 4

1.3 An illustration of constraint Delaunay triangulation 5

2.1 An example of convex hull . 10

2.2 Examples of simplex . 10

2.3 Examples of complex . 11

2.4 Examples of triangulation . 12

2.5 An extended triangulation . 13

2.6 An example of Delaunay triangulation 14

2.7 Relation between regular triangulation and convex hull 15

2.8 Induced-subcomplex and �ippability of edges 17

2.9 Flips in 1D, 2D, and 3D triangulation 18

3.1 A sequential work�ow for algorithm of local transformation 23

3.2 A parallel work�ow for algorithm of local transformation 24

3.3 A 2D triangulation which cannot be transformed to its regular triangu-

lation by the hill-climbing �ip algorithm 25

3.4 Three cases of inserting point into convex star in star splaying 26

4.1 A 2-1 �ip on a star-shaped polygon . 30

4.2 An illustration of parallel Graham's scan 32

4.3 Implementing parallel Graham's scan with and without shared memory . 34

4.4 Four distributions of tested data for 2D convex hull 36

4.5 Performance of parallel Graham's scan for the four distributions of points 37

4.6 Performance of parallel Graham's scan for a circle distribution of di�er-

ent thicknesses . 38

4.7 Time breakdown of parallel Graham's scan 39

4.8 Performance of the �ipping stage with and without shared memory . . . 40

5.1 Removing a non-redundant vertex by �ips 42

5.2 A 2-2 un�ippable edge indicates a redundant vertex 45

5.3 An illustration of �RT . 46

xiii

5.4 Regular triangulations of 20,000 points 47

5.5 Performance of �RT . 48

5.6 Time breakdown of �RT . 49

6.1 A 3D star-shaped polyhedron where the hill-climbing �ip algorithm gets

stuck . 52

6.2 The cone of a triangle w.r.t. a point . 52

6.3 Re�ex and convex edges on star-shaped polyhedron 53

6.4 An illustration for the proof of Theorem 6.2 54

6.5 All the vertices are �convex�, but the polygon is not 54

6.6 Illustrations for the proofs of Lemma 6.4 and Lemma 6.5 57

6.7 Two cases that a vertex of a star-shaped polyhedron cannot be removed

by �ipping its incident edges . 58

6.8 Vertices that are locally covered and not locally covered 58

6.9 An illustration for the proof of Lemma 6.8 59

6.10 An illustration for the proof of Lemma 6.9 60

6.11 An illustration for the proof of Lemma 6.11 61

6.12 Four distributions of tested data for 3D convex hull 65

6.13 Performance of �Hull for the four distributions of points 66

6.14 Performance of �Hull for a sphere distribution of di�erent thicknesses . . 68

6.15 Time breakdown of �Hull for the four distributions of points 69

6.16 Time breakdown of �Hull for a sphere distribution of di�erent thicknesses 69

6.17 Number of �ips performed by �Hull on the CPU 70

7.1 An approximation of convex hull obtained from a digital restricted

Voronoi diagram . 72

7.2 Data structures for stars and edges in gHull 74

7.3 The digital depth test in gHull . 79

7.4 Three problems associated with the computation in the digital space . . 80

7.5 Performance of gHull for the four distributions of points 82

7.6 Performance of gHull for a sphere distribution of di�erent thicknesses . . 83

7.7 Performance of gHull for various numbers of extreme and non-extreme

vertices . 84

7.8 Time breakdown of gHull . 85

8.1 Examples of coherently oriented simplices in R1 and R2 88

8.2 Examples of coherently oriented polytope 89

8.3 Twist on a polygon . 90

8.4 Twist on a 2D triangulation . 90

8.5 Flip on coherently oriented triangulation 90

8.6 An illustration of the criterion of the twist algorithm 91

xiv

8.7 An illustration of the twist algorithm . 93

8.8 Project the star and the link of the topmost vertex into a plane 95

8.9 Three cases of �ipping a fold in the projected triangulation 97

8.10 The containing and opposite regions of a triangle 98

8.11 An illustration for the proof of Lemma 8.5 100

8.12 An illustration for the correctness and time complexity of the twist-�ip

algorithm . 102

8.13 An extended projected triangulation . 104

8.14 The link of each vertex in the extended projected triangulation is a

coherently oriented polygon . 105

8.15 An illustration for the proof of Lemma 8.11 106

8.16 An illustration for the proof of Theorem 8.12 108

8.17 Flips to a projected triangulation that has no negative triangles 109

8.18 Flipping to remove a sink may create a new sink 110

9.1 A locally non-Delaunay and un�ippable triangle in 3D triangulation . . 112

9.2 A triangulation where the arbitrarily monotonic �ip algorithm gets stuck 115

9.3 An example of �ip graph . 116

9.4 Examples of time line . 125

9.5 An example of circular time line . 126

9.6 A 3D illustration for the proof of Lemma 9.8 127

10.1 A �ip path of Θ(n3) in �ipping according to the V- and the D-criterion . 132

10.2 Flip algorithms that compute regular triangulation with free execution

order . 134

10.3 A 3D triangulation where some redundant vertices cannot be removed

by �ipping their incident triangles . 134

xv

xvi

CHAPTER 1

Introduction

Convex hull and regular triangulation are related basic geometric structures. Their

usefulness has been shown in many industrial and scienti�c applications. In the past

four decades, many algorithms have been developed to compute them e�ciently. These

algorithms can be categorized into two classes based on their input being either a

point set or an existing geometric structure. This thesis focuses on the latter class,

and more speci�cally on computing convex hull and regular triangulation using local

transformation.

Local transformation is a procedure of performing a series of local operations on

simplices of a given geometric structure. Each operation works on a few neighboring

simplices and uses only information about these simplices and possibly their neighbor-

hood, without considering any global con�guration of the structure. One well-known

such operation is the �ip operation used in Lawson's �ip algorithm [Law72] to compute

Delaunay triangulation, a specialized regular triangulation. This thesis studies existing

local transformations for their nice properties, and then goes beyond them in searching

for new ones.

By nature, local transformation employs simple operations and is more likely

amendable to parallel computation. It thus has great potential to be mapped onto

massively-multithreaded architecture. We are therefore particularly interested in de-

veloping algorithms of local transformation for the GPU, the low cost hardware with

the advances for its computational capability in solving large scale problems, to gain

orders of magnitude speedup in comparison to traditional CPU implementations.

This chapter reviews convex hull, regular triangulation, and local transformation

in detail and particularly in relation to GPU computation. It ends with a summary of

the main results in this thesis.

1

(a) (b)

Figure 1.1: (a) The point set of the Stanford bunny. (b) The convex hull.

1.1 Convex Hull and Its Algorithms

The convex hull of a set of n points is the smallest convex region that encloses all the

points of the set. Figure 1.1 shows the point set of the Stanford bunny [Sta12] and its

convex hull. It is a computationally e�cient structure because of its convexity, while

providing an approximation of the shape of the point set. Therefore, it is widely used

as a bounding volume to check intersection or collision between objects in scienti�c

visualization and computer games [LZB08, MY06], as well as to approximate robots

and obstacles for the purpose of path planning [OII03, Str04]. In addition, convex hull

is also employed in visual pattern matching [HH06], biology and genetics [WLYZ+09],

and astronomy [FGE01, ACHS05].

Algorithms for 2D convex hull have been well studied. Graham [Gra72] presents the

�rst algorithm with worst-case time complexity of O
(
n log n

)
, termed Graham's scan.

This algorithm performs a scan in linear time on a star-shaped polygon constructed

by sorting. Jarvis [Jar73] designs Jarvis' march algorithm, which incrementally �nds

all the edges of the convex hull. The worst-case time complexity of Jarvis' march

is O
(
nh
)
, where h is the number of the vertices on the convex hull. Divide-and-

conquer is also adopted to design convex hull algorithms in [PH77] and [KS86]. While

the algorithm in [PH77] directly applies divide-and-conquer, that in [KS86] uses the

idea of �marriage-before-conquest� to obtain an optimal worst-case time complexity of

O
(
n log h

)
. Eddy [Edd77] presents the �rst version of Quickhull, and Wenger [Wen95]

improves it by utilizing randomization. Both of these algorithms have the worst-

case time complexity of O
(
n2
)
, and the latter one has the expected running time

of O
(
n log h

)
.

2

The ideas of some 2D convex hull algorithms mentioned above are also adapted

to three and higher dimensions. Chand and Kapur [CK70] design the gift-wrapping

algorithm using the same idea of Jarvis' march. The algorithm in [PH77] can be used

to compute 3D convex hull. Edelsbrunner and Shi [ES91] present a 3D algorithm with

the worst-case time complexity of O
(
n log2 h

)
, which can be seen as a 3D version of

the �marriage-before-conquest� algorithm in [KS86]. Barber et al. [BDH96] extend

the randomized Quickhull to high dimensions. On the other hand, Graham's scan

can be neither directly used nor extended to compute convex hull in three and higher

dimensions. Chan [Cha96] invents a novel algorithm with the optimal worst-case time

complexity of O
(
n log h

)
by combining Jarvis' march and some optimal 3D convex hull

algorithms.

Parallel algorithms of convex hull have also been extensively studied. For example,

Miller and Stout [MS88] and Amato and Preparata [AP93] describe parallel algorithms

with the time complexity of O
(
log n

)
for n points using O

(
n
)
processors. These algo-

rithms are only of theoretical interest as they have no known e�cient implementation.

One of the reasons is that these algorithms are complex, making them hard to scale

on a �ne-grained data-parallel massively-multithreaded architecture. For the current

multi-core systems with a small number of independent processors, the algorithms de-

signed by Dehne et al. [DDD+95] and Gupta and Sen [GS03] may be applicable. These

algorithms, however, do not have known implementations that can demonstrate their

usefulness in practice.

Recently several convex hull algorithms for the GPU have been developed. Al-

gorithms simulating 2D Quickhull are proposed in [SRKN11] and [JD11]. Tzeng and

Owen [TO12] further extend them to three and higher dimensions. However, the out-

put of their algorithm, CudaQuickHull, does not have connectivity information, and

often contains non-extreme vertices; see Figure 1.2. Stein et al. [SGES12] propose to

compute the convex hull in R3 by iteratively inserting points and �ipping all concave

edges. This algorithm does not always work, because it prohibits the �ipping of concave

edges if that causes self-intersection (as indicated in their algorithm) and therefore the

�nal result might still contain concave edges. Tang et al. [TyZTM12] present a hybrid

CPU-GPU algorithm. In this algorithm, points are excluded as long as it is proved

to be interior during the growing of a polytope by inserting input points on the GPU.

Then, points surviving that process are passed to the CPU and a CPU-based algorithm

(e.g. Quickhull) is used to compute the convex hull.

3

(a) (b)

Figure 1.2: An example where CudaQuickHull outputs a wrong result. In (a), after
creating the initial tetrahedron abcd, CudaQuickHull �ags e with 4abc and f with
4acd, and outputs both as extreme vertices. In the correct result in (b), e is not an
extreme vertex since it lies inside tetrahedron fabc.

1.2 Regular Triangulation and Its Algorithms

Regular triangulation is a geometric structure related to convex hull. Given a set S

of points with weights, we obtain S′ in one higher dimension by lifting S; the regular

triangulation of S corresponds to the lower part of the convex hull of S′. Regular trian-

gulation is an important tool for solving other geometric problems such as constrained

Delaunay triangulation [MK04] and mesh re�nement [CDE+99]. It is also used in be-

havior simulation of granular materials [Fer01], path planning [ACK01] and channel

detection of protein molecules [Zem09].

Delaunay triangulation is a special regular triangulation. The Delaunay triangula-

tion of a point set S is the regular triangulation of a weighted point set whose points

come from S and have weight 0. Delaunay triangulation is also a dual structure of

Voronoi diagram. It partitions the convex hull of S, and is a crucial tool for �nite ele-

ment analysis [HDSB01]. More importantly, Delaunay triangulation has many distinc-

tive and favorable properties compared with other ways of partitioning [For97]. There-

fore, it has applications in many other areas such as terrain rendering [Gol94, KKS06]

and path planning [PS85, LNSV06]. Figure 1.3 illustrates the usage of Delaunay tri-

angulation for constructing terrain from contour and road data.

Many sequential algorithms are developed for computing regular triangulation and

Delaunay triangulation, and most of them adopt ideas similar to those of the convex

hull algorithms introduced in the previous section. Motivated by the gift-wrapping

algorithm, Beyer et al. [BSDMH05] construct the tetrahedrons of the Delaunay/reg-

ular triangulation incrementally. Guibas et al. [GS85] and Dwyer [Dwy87] propose

algorithms based on the divide-and-conquer approach to compute 2D Delaunay trian-

gulation with optimal worst-case time complexity. Cignoni et al. [Cig98] extend these

algorithms to higher dimensions and design the DeWall algorithm. Another class of al-

4

(a) (b)

Figure 1.3: (a) Data of contours (red) and roads (green), and (b) its Delaunay trian-
gulation with constraints.

gorithms uses incremental insertion, i.e. constructs the Delaunay/regular triangulation

of k+1 points from that of k points by inserting one more point and updating the struc-

ture. To update the structure, Bowyer [Bow81] and Watson [Wat81] re-triangulate the

a�ected regions with the newly inserted point (this method is named Bowyer-Watson's

algorithm), while others use local transformation with �ips [Joe91, Raj91, ES92, Joe93].

Besides these approaches, Lawson presents an algorithm that can transform an arbi-

trary 2D triangulation to its Delaunay triangulation by �ips [Law72].

Many parallel algorithms employ the same ideas as the sequential ones do. Teng et

al. [TSBP93] and Beyer et al. [BSDMH05] propose parallel algorithms based on incre-

mental construction. These algorithms have a high total work complexity in the worst

case. Blelloch et al. [BMHT99] adapt divide-and-conquer in parallel in their algorithm

of computing 2D Delaunay triangulation. Batista et al. [BMPS09] present a parallel

version of Bowyer-Watson's algorithm for multi-core computers. Qi et al [QCT12] de-

sign GPU-DT to compute 2D Delaunay triangulation on the GPU, but their method

cannot compute 2D regular triangulation.

1.3 Local Transformation

Local transformation gradually changes a geometric structure by operations that use

information local to neighboring simplices. As mentioned, a well-known algorithm of

local transformation is Lawson's �ip algorithm. Given an arbitrary triangulation in

R2, it iteratively �ips away locally non-Delaunay edges till none remains to get the

Delaunay triangulation. A nice property of Lawson's �ip algorithm is its �exibility

on the �ip sequence: no particular execution order is needed for �ipping among the

many non-Delaunay edges available, since any such sequence leads to the Delaunay

triangulation.

On the other hand, the situation in higher dimensions is quite di�erent. Flipping

can still be used to compute regular triangulation [ES92, Joe93, Raj91], but it requires

a very restrictive input triangulation. Speci�cally, it can only reach the correct output

5

if the input is created by inserting one new point into regular triangulation.

In another development, Shewchuk creates the splaying operation to compute con-

vex hull and regular triangulation [She05]. Splaying is the insertion of new points into

the convex star of a point to enlarge the star. The local transformation of star splaying

uses splaying as its operation, in any execution order, to transform the stars of a set of

points to the convex hull, and it works in any dimension.

Summing up the above, local transformation may be distinguished by the opera-

tion, the type of input geometric structure, and the �exibility on the execution order.

It has some exciting computational advantages as compared with other algorithmic

paradigms. First, local transformation is usually very simple since it operates on local

information only. Second, when the input geometric structure is close to the required

output, local transformation is very e�cient, making only minor amendment to reach

the output. Third, they are particularly amendable to parallel computation, e.g. on

the GPU, especially when the execution order is free.

Given the above advantages, local transformation is also often applied to build

geometric structures from a point set, by �rst preprocessing the point set into some

initial geometric structure acceptable to the local transformation.

Despite the existing works mentioned above, many interesting yet di�cult prob-

lems related to local transformation are still unsolved such as �ipping for 2D regular

triangulation. Besides, local transformation to geometric structures other than reg-

ular triangulation and convex hull is also a signi�cant problem with many potential

applications.

This thesis presents a novel �ip algorithm called �ip-�op to compute 2D regular

triangulation from an arbitrary triangulation and 3D convex hull from a star-shaped

polyhedron. It also presents a novel GPU approach that employs the known star

splaying to compute the convex hull of points in R3, and compares it with �ip-�op.

Besides, the thesis invents the twist operation to create a star-shaped polygon from

an arbitrary one, and to create a star-shaped polyhedron for a particular class of

polyhedrons.

All the parallel algorithms proposed in this thesis are presented speci�cally for the

GPU, while they should also work well on any other data-parallel shared-memory archi-

tecture. We use some common features on parallel systems such as atomic operations

and global synchronization, as well as some standard parallel primitives such as pre�x

sum, reduction, partition, and also sorting. These primitives are available in several

popular GPU libraries [CUD12, Thr14, CUB14], and are free from numerical errors.

1.4 Outline of the Thesis

Chapter 2 reviews some important concepts of convex hull, regular triangulation, and

the �ip operation. Particularly, extended triangulation as a useful structure in this

6

thesis is introduced in this chapter.

Chapter 3 formalizes the framework of local transformation with �ve essential ele-

ments: geometric structure, criterion, local operation, local check, and candidate. This

interpretation of the framework is illustrated using two existing algorithms of local

transformation.

Chapter 4 revisits the famous Graham's scan algorithm to compute 2D convex hull.

It reformulates the scanning stage as a �ip algorithm that has free execution order, thus

making that stage suitable for parallel computation. By doing so, the chapter further

develops a parallel version of Graham's scan as well as two other improvements. Our

implementation of these algorithms on the GPU reaches an order of magnitude speedup

over two well-known CPU implementations of existing convex hull algorithms.

Chapter 5 solves the 2D regular triangulation problem with a novel �ip algorithm.

It is known that Lawson's �ip algorithm is a hill-climbing procedure and can be stuck

at a local optimum without reaching the required output. By varying the criterion and

the local check in the local transformation framework (Chapter 3) to devise the so-

called �ip-�op algorithm, we can transform an arbitrary 2D triangulation to its regular

triangulation by �ips.

Chapter 6 advances �ip-�op to solve the 3D convex hull problem. Starting from

a star-shaped polyhedron in R3, �ip-�op locally identi�es non-extreme vertices of the

polyhedron, and �ips edges incident to them to reduce their degrees in order to even-

tually remove them. Our implementation of the algorithm on the GPU reaches more

than an order of magnitude speedup over existing CPU solutions.

Chapter 7 investigates the splaying operation as it is known to be powerful for

repairing convex hull in arbitrary dimensions. This investigation is to realize it to

compute 3D convex hull of a point set, and to compare it with the proposed �ip-�op

algorithm in Chapter 6. Splaying works best when the input is close to the output; the

thesis thus explores a way to �rst derive a set of convex stars from the closely related

structure of digital Voronoi diagram, and then apply star-splaying on these stars to

compute the convex hull. The verdict is that �ip-�op outperforms splaying in many

ways for our GPU implementation.

Chapter 8 studies local transformations to construct star-shaped polytopes that are

used in Chapter 4 and Chapter 6. For the 2D setting, a novel operation called twist

is used to compute a star-shaped polygon from an arbitrary polygon, possibly with

self-intersection. For the 3D setting, the chapter presents a way to work on a special

class of input polyhedrons where one extreme vertex connects to all the other vertices.

The general problem in three and higher dimensions remains open.

Chapter 9 drills into the possibility of �ipping from one regular triangulation to

another regular triangulation of the same point set in three and higher dimensions. It

discusses a sequential approach where the execution order is restrictive as discovered

in prior works. With the introduction of a time line to study local transformation,

7

interesting properties are observed and proved. These new insights are potentially

useful when searching for a �ip algorithm with more relaxed execution order. Until

then, it remains an open problem whether �ipping with no strict execution order can

transform one regular triangulation to another.

Chapter 10 concludes the thesis with a summary of the work done, and an outlook

of the area.

Experiment Setting

In the experiments mentioned in this thesis, our GPU implementations use the CUDA

programming model by NVIDIA, and our CPU implementations use C++. For all these

implementations, we adopt the exact arithmetic [She97] and apply the Simulation of

Simplicity (SoS) technique [EM90] to guarantee their exactness and robustness.

When comparing with the existing CPU implementations, we do not include the

time of transferring data between the CPU and the GPU in our GPU implementations.

We will explain the a�ect of this time to the overall performance in the analysis of time

breakdown.

All the experiments are conducted on a PC with an Intel i7 2600K 3.4GHz CPU,

16GB of DDR3 RAM and an NVIDIA GTX 580 Fermi graphics card with 3GB of video

memory, unless otherwise stated. Visual Studio 2008 and CUDA 4.0 Toolkit are used

to compile all the programs, with all optimizations enabled.

8

CHAPTER 2

Geometric Background

This chapter introduces important geometric concepts related to this thesis. The mate-

rial is summarized from existing works such as [PS85, Law87, O'R98, Ede01, DLRS10].

Convex hull, a fundamental concept, is the starting point for discussion in almost

all the books on computational geometry. It is used to de�ne and develop other geo-

metric concepts such as simplex and simplicial complex, followed by triangulation and

polytope. We discuss these concepts in Section 2.1.

Delaunay triangulation is a special triangulation among all possible triangulations

of a point set where the circumsphere of each simplex is empty with respect to the

point set. Regular triangulation is a generalization of Delaunay triangulation for a set

of points with weights. We discuss them in Section 2.2.

Flip as one of the most important local operations is discussed in Section 2.3. It is

powerful because one triangulation can be transformed to another completely di�erent

one via successive �ips. It will be used in a number of algorithms of local transformation

in the subsequent chapters.

In this chapter, we assume the points of any given point set in Rd are in general

position, i.e., no d + 1 points lie in the same (d − 1)-dimensional hyperplane and no

d+ 2 points lie on the same (d− 1)-dimensional sphere.

9

(a) (b) (c)

Figure 2.1: (a) A set S of planar points. (b) The convex hull of S. (c) The boundary
of the convex hull.

2.1 Convex Hull and Triangulation

A point set is convex if the line segment pq is completely contained in the set for any

two points p and q of the set. Given a point set S = {pi | 0 ≤ i < n}, a convex

combination of S is a point x =
∑
λipi where

∑
λi = 1 and λi ≥ 0 (0 ≤ i < n). The

convex hull of S, conv(S), is the set of all convex combinations of S. The boundary

of conv(S) is denoted as CH(S). Figure 2.1 shows the convex hull of a set of planar

points and its boundary. It is known that conv(S) is the smallest convex set containing

all the points of S.

A point p of conv(S) is extreme if p is not contained in segment uv for any two

points u and v of conv(S), p 6∈ {u, v}; otherwise p is non-extreme. In Figure 2.1(b), the

points represented by the solid dots are extreme and all the other points of the convex

hull are non-extreme. The convex hull of S can be represented using only its extreme

points, i.e. conv(S) = conv(S′) where S′ = {p | p ∈ conv(S) and p is extreme}.
A d-dimensional simplex, or simply d-simplex, is the convex hull of d+ 1 points in

Rd; see Figure 2.2. The d-simplex is the convex hull with the least extreme vertices

among all the convex hulls that cannot be embedded in Rd−1. De�ne the (-1)-simplex

to be the empty set ∅. In the d-simplex C constructed by d+1 points, each of the d+1

points is called a vertex of C. A k-face of C is the convex hull of some k + 1 vertices

of C and thus is a k-simplex. A (d− 1)-face of C is also called a facet of C.

(a) (b) (c) (d)

Figure 2.2: (a) A 0-simplex is a vertex. (b) A 1-simplex is an edge. (c) A 2-simplex is
a triangle. (d) A 3-simplex is a tetrahedron.

10

(a) (b) (c)

Figure 2.3: (a) A 2-complex that is not pure. (b) and (c) 2-complexes that are pure.

A simplicial complex is a set of a �nite number of simplices that satisfy the following

conditions:

(1) All faces of a simplex are also in the simplicial complex.

(2) The intersection of any two simplices is a common face of them.

Note that the latter condition implies that any two simplices either are disjoint or

share a common face. The dimension of a simplicial complex is the largest dimension

of its simplices. A simplicial complex with dimension d is called a d-complex. A

simplex that is not a face of any other simplex is called a facet or a maximal simplex

in a simplicial complex. A simplicial complex is pure if all its facets have the same

dimension with it; see Figure 2.3. A (d− 1)-face in a pure d-complex is called a ridge

of the complex. Ignoring the second condition in the de�nition of simplicial complex,

we obtain abstract simplicial complex. Abstract simplicial complex is a combinatorial

description of simplicial complex.

In an (abstract) simplicial complex, the star of a simplex τ , star(τ), is the set of all

the simplices that contain τ as a face; the link of τ , link(τ), is the set of all the simplices

that are the faces of the simplices of star(τ) and disjoint with τ . Take Figure 2.3(c)

as an example, star(b) is {b, ab, cb, db, fb, eb,4abc,4cbd,4dbf,4fbe} and link(b) is

{∅, a, c, d, f, e, ac, cd, df, fe}; star(bd) is {bd,4cbd,4dbf} and link(bd) is {∅, c, f}.
A (convex) polytope is usually de�ned as a particular convex set in Euclidean space.

In this thesis, we mainly focus on the boundary of polytope, which is actually a pure

abstract (d − 1)-complex embedded in Rd where each ridge is shared by exactly two

facets. We use the term polytope to refer to this boundary, and allow it to be not convex

nor free of self-intersection. A 2D polytope is further called a polygon, and a 3D one

is called a polyhedron. A d-dimensional polytope is homeomorphic to a d-dimensional

sphere, and it may have self-intersection. When a polytope has no self-intersection, it

is also used to represent the closed region that it bounds.

A polytope P is star-shaped w.r.t. a point s if for any point p on P, ps does

not intersect with P except for p. The point s is called a kernel point of this star-

shaped polytope, and de�nitely lies inside P. A star-shaped polytope does not have

self-intersection by de�nition.

11

(a) (b) (c)

Figure 2.4: (a) A 2D triangulation containing all the input points as vertices. (b) A
2D triangulation with some missed input points. (c) A 3D triangulation.

The boundary of the convex hull of S, CH(S), is usually described as a polytope.

CH(S) is star-shaped w.r.t. any point in the interior of conv(S). CH(S) can be parti-

tioned into a pure abstract complex where each facet is below the interior of conv(S)

and the other where each facet is above. The former is called the lower hull of S, while

the latter is called the upper hull of S. Given a polytope P whose vertex set is S, we

say a face of P is extreme if it is also a face of CH(S); otherwise it is non-extreme.

Given a point set S in Rd, a triangulation of S, T (S), is a simplicial complex that

satis�es the following conditions:

(1) Its vertices are in S.

(2) The union of all its d-simplices are conv(S).

In T (S), a facet of each d-simplex is either in CH(S) or a common facet of exactly

two d-simplices. Thus a triangulation is a pure simplicial complex. Note that some

points of S may not be the vertices of T (S). Figure 2.4 shows some examples of

triangulations. Furthermore, we say d-dimensional abstract triangulation to refer to an

abstract simplicial complex that is homeomorphic to a d-dimensional ball.

Given a set S of points and another point s in Rd, an extended triangulation T of

S w.r.t. s is a pure simplicial complex that consists of real facets and virtual facets.

A real facet of T is a d-simplex whose vertices are from S, and the boundary of the

union of all the real facets is a d-polytope P star-shaped w.r.t. s. For each ridge on

P, shoot a ray −→sp for each vertex p of the ridge, and build a cone which is the convex

hull of these rays. These cones partition the space outside P into many regions, each

of which corresponds to a ridge on P. By maintaining a virtual vertex v, each of these

regions is considered as a d-simplex consisting of its corresponding ridge and v, and

called a virtual facet of T . For example in Figure 2.5, the region CH{−→sp,−→sq}−4spq is
the virtual triangle 4vpq of the given extended triangulation.

The virtual vertex v does not have a real position. For a vertex p on P, v can be

imagined as a point that lies on −→sp and extremely far away from p; see Figure 2.5. By

de�nition, the star of v contains all the virtual facets of T , and the link of v is equal

to P. Obviously, T is a simplicial complex satisfying the following conditions:

(1) Its vertices are in S ∪ {v}.

12

Figure 2.5: An extended triangulation w.r.t. s.

(2) The union of all its d-simplices is Rd.

(3) Each its ridge is shared by exactly two facets.

Note that the concept of extended triangulation is more general than our de�nition.

Formally, an extended triangulation is the triangulation of a compacti�cation of the

Euclidean space. In our de�nition mentioned above, it is actually the triangulation of

a compacti�cation to a sphere of the same dimension.

2.2 Delaunay and Regular Triangulation

Let S be a set of n points in Rd. Given two points p = (a1, a2, ..., ad) and q =

(b1, b2, ..., bd) of S, their Euclidean distance is |pq| =
√∑

(ai − bi)2. Let C be a d-

simplex whose vertices belong to S. The circumsphere of C is the sphere passing

through all the vertices of C, and the circumcenter of C is the center of its circumsphere.

Let o be the circumcenter of C and r be the radius of its circumsphere; |po| = r for

any vertex p ∈ C. C is globally Delaunay (w.r.t. S), or Delaunay for short, if |qo| > r

for any point q ∈ S that does not belong to C. Otherwise it is globally non-Delaunay

(w.r.t. S), or simply non-Delaunay. Generally, a simplex is Delaunay if it is a face of

some Delaunay d-simplex; otherwise it is non-Delaunay. The Delaunay triangulation of

S, DT (S), is the unique triangulation of S in which all the points of S appear as vertices

and all the d-simplices are Delaunay. Figure 2.6 shows the Delaunay triangulation of

nine points in R2.

In a triangulation T (S), let C1 and C2 be its two facets that share a common ridge

F ; let p1 and p2 be the link vertices of F that are in C1 and C2 respectively. F is locally

13

Figure 2.6: The Delaunay triangulation of nine planar points. Each its triangle has a
empty circumsphere.

Delaunay if p1 lies outside the circumsphere of C2 (or equivalently p2 lies outside the

circumsphere of C1); otherwise it is locally non-Delaunay. The ridges of T (S) on CH(S)

are considered locally Delaunay. The following well-known theorem, �rstly introduced

by Boris Delaunay, indicates how to recognize a Delaunay triangulation in a local

manner:

Theorem 2.1 ([Law87]). A triangulation with its vertex set S in Rd is DT (S) if and

only if all its ridges are locally Delaunay.

Regular triangulation is the weighted version of Delaunay triangulation. Given a

point p, a weighted point of p is created by associating p with a real number wp as its

weight. By associating each point pi ∈ S with a weight wi for 0 ≤ i < n, we get a

weighted point set of S w.r.t. W = {wi | 0 ≤ i < n}. W is called a weight set of S. By

regarding the weighted point of pi as the sum of pi and wi, we can treat the weighted

point set as the direct sum of S and W , and denote it as S ⊕ W . A triangulation

T (S ⊕W) of S ⊕W is also a triangulation of S. The power distance from a point x to

a weighted point p is πp(x) = |xp|2 − wp, where wp is the weight of p. Two weighted

points p and q are orthogonal if |pq|2 = wp + wq.

Let C be a d-simplex whose vertices belong to S ⊕W . The orthogonal center of C

is the weighted point z that is orthogonal to all the weighted vertices of C. C is globally

regular (w.r.t. S ⊕W), or regular for short, if |qz|2 > wq + wz for any weighted point

q ∈ S⊕W that does not belong to C; otherwise C is globally non-regular (w.r.t. S⊕W),

or simply non-regular. A simplex from S⊕W is called redundant (w.r.t. S⊕W) if it is

not a face of any d-simplex that is regular; otherwise it is non-redundant (w.r.t. S⊕W).

A point of S⊕W is called redundant (resp., non-redundant) if the 0-simplex containing

the point is redundant (resp., non-redundant). The regular triangulation of S ⊕W ,

denoted as RT (S ⊕W), is the triangulation of S ⊕W where all the non-redundant

points of S ⊕W are contained as vertices and all the facets are regular. When the

weights of all the points of S ⊕W are 0, RT (S ⊕W) ≡ DT (S).

14

Figure 2.7: A regular triangulation in R2 and its corresponding lower hull in R3.

In a triangulation T (S ⊕W), let C1 and C2 be its two facets that share a common

ridge F . Let pi be the link vertex of F in Ci and zi be the orthogonal center of Ci for

i = {1, 2}. F is locally regular if |p1z2|2 > wp1+wz2 (or equivalently |p2z1|2 > wp2+wz1);

otherwise it is locally non-regular. The ridges of T (S ⊕W) on CH(S) is intrinsically

locally regular. We have the following theorem:

Theorem 2.2 ([ES92]). A triangulation with its weighted vertex set S ⊕W in Rd is

RT (S ⊕W) if and only if all its ridges are locally regular.

Regular triangulation in Rd can be obtained from convex hull in Rd+1; see Fig-

ure 2.7. Given a weighted point p = (a1, a2, ..., ad) in Rd whose weight is wp, de�ne its

lifted point as p+ = (a1, a2, ..., ad,
∑
a2i −wp) in Rd+1. The (d+ 1)-th coordinate of p+

is the height of p. Call S+ = {p+ | p ∈ S ⊕W} the lifted point set of S ⊕W . The

projection along the (d + 1)-th axis of the lower hull of S+ gives RT (S ⊕W) [ES92].

Particularly, a regular facet of RT (S ⊕W) corresponds to a facet of the lower hull of

S+, while the lifted point of a redundant point of S⊕W is above the lower hull of S+.

Therefore, regular triangulation can be computed using the algorithms of convex hull.

One interesting theoretical problem is checking the regularity of a triangulation

T (S), i.e. whether there is a weight set W of S so that T (S) ≡ RT (S ⊕W). An

existing solution is to use linear programming, where the variables are the weights of

the vertices and the constraints are formed from the ridges of T (S) [MII96].

For an extended triangulation T ((S ∪ {v})⊕W) where v is the virtual vertex, we

need to specially de�ne the local regularity of the ridges that are incident to virtual

facets. Let s be the kernel point of the extended triangulation. A ridge incident to

exactly one virtual facet is always locally regular by de�nition: one can think that v is

in�nitely far away so that the circumsphere of any real facet cannot include v. Let G be

a ridge incident to two virtual facets C1 and C2, and Fi be the ridge of Ci ∩ link(v) for

i ∈ {0, 1}. G is locally regular if F1 and s lie on the same side of the hyperplane passing

through F2 (equivalently, if F2 and s lie on the same side of the hyperplane passing

through F1), or otherwise G is locally non-regular. Take the extended triangulation in

15

Figure 2.5 as an example. The edge vp is locally regular, while vq is locally non-regular.

Note that the local regularity de�ned here is not related to the weights of the vertices,

and thus a locally regular ridge incident to virtual facets is also locally Delaunay. When

all the ridges are locally regular, the ridges that are incident to exactly one virtual facet

form CH(S), and the real facets of T form RT (S ⊕W).

2.3 Flip on Triangulation

Flip is a local operation that transforms one triangulation to another. Flip algorithm

is an algorithm to transform triangulations using �ips. Since �ipping with degenerate

points (i.e. the points may not be in general positions) is much more complicated than

that with points in general position, many algorithms do not consider such �ipping and

leave this issue to implementation. Studies of �ip with degenerate points can be found

in [Law87, Joe93].

Let S be a set of d + 2 points in Rd. To triangulate S there are exactly two ways

corresponding to the lower and upper hulls of the lifted point set of S. This can be

concluded from Radon's theorem:

Theorem 2.3 ([Rad21]). Let S be a set of d + 2 points in Rd. Then there exists a

partition T = U ∪ V so that conv(U) ∩ conv(V) 6= ∅.

Consider a partition T = U ∪ V of S according to Theorem 2.3. Let TU (S) be the

set of all the d-simplices from S each of which does not contain a point of U . De�ne

TV (S) in the same way for V . By Radon's theorem, a d-simplex of TU (S) and one of

TV (S) cannot appear in the same triangulation of S. Thus TU (S) and TV (S) are the

only two triangulations of S. A �ip on S is to replace one triangulation of S with the

other. Based on the distribution of S, the sizes of TU (S) and TV (S) vary from 1 to

d+ 1, and the sum of their sizes is d+ 2. A �ip from a triangulation with k facets to

one with d+ 2− k facets is further called a k-(d+ 2− k) �ip or a k to (d+ 2− k) �ip.

Specially, a 1-(d + 1) �ip inserts a vertex into the triangulation, while a (d + 1)-1 �ip

removes one. Figure 2.9 shows all the types of �ips in 1D, 2D, and 3D triangulation.

In a d-dimensional triangulation T , let F be an internal ridge, i.e. a ridge not on

the boundary of T , and SF be the point set consisting of the vertices of F and the two

link vertices of F . We use ��ip on F � or ��ipping F � to indicate the �ip on SF . If the

�ip on F is a k-(d + 2 − k) �ip, F is further called a k-(d + 2 − k) ridge. The �ip on

F does not exist in T if neither of the two triangulations of SF appears in T . In such

case F is called un�ippable; otherwise it is �ippable. A ridge on the boundary of T is

considered un�ippable.

The induced-subcomplex of F , TF , consists of all the simplices of T that span the

points in SF . If the underlying space of TF is convex (indicating that TF is a triangula-

tion of SF), F is �ippable; otherwise it is un�ippable. Examples on a 2D triangulation

16

Figure 2.8: The induced-subcomplex of ab is {4abc,4abd} and that of eg is
{4gec,4gcf,4gfe}. Edges be, bd, ec, cg, eg and fg are �ippable, while others are
un�ippable.

are shown in Figure 2.8. Given a �ip on a ridge F , the induced-subcomplex of the �ip is

that of F , and thus has a convex underlying space by de�nition. Note that the above

de�nitions about �ip are also applicable to ridges of an extended triangulation.

Flipping a �ippable ridge results in another triangulation. Based on this we can

build the �ip graph of a set of triangulations, in which a node represents a triangulation

and an edge indicates that two triangulations can be transformed to each other by one

�ip. The �ip graph of the regular triangulations of a point set in any dimension

is connected, and it corresponds to the secondary polytope of the point set [GZK91,

BFS90]. The �ip graph of all the triangulations of a point set in R2 is connected [Law72],

while for certain point sets in R5 and R6 the �ip graphs are disconnected [San05, San06].

The situations in R3 and R4 are unknown. The connectivity of �ip graph is not only

of theoretical interest, but also helpful for the development of practical algorithms.

17

(a) 1D �ip

(b) 2D �ip

(c) 3D �ip

Figure 2.9: Flips in 1D, 2D, and 3D triangulation.

18

CHAPTER 3

Algorithms of Local Transformation

This chapter revisits some known algorithms to categorize algorithms of local trans-

formation, and presents a framework for better understanding these algorithms and

designing new ones.

Local transformation is well-known for its adoption in designing geometric algo-

rithms. Section 3.1 summarizes these algorithms with emphasis on a few important

attributes, including the workable dimension in Euclidean space, the type of input

geometric structure, the local operation, and the order of executing these operations.

Section 3.2 discusses the essential components in an algorithm of local transforma-

tion: geometric structure, local operation, criterion, local check, and candidate. It also

elaborates on the common methodology for proving the termination and the correctness

of such algorithms, and presents two work�ows of local transformation for sequential

computation and parallel computation respectively. All these results as a framework

of local transformation are widely used in the following chapters.

Following the formalism in Section 3.2 about local transformation, Section 3.3

presents two known examples: Lawson's �ip algorithm and Shewchuk's star splaying

algorithm.

19

3.1 Overview

There are several existing algorithms that compute convex hull and regular triangula-

tion using local transformation: the scanning stage of Graham's scan [Gra72], Lawson's

�ip algorithm [Law72], Rajan's �ip algorithm [Raj91], Edelsbrunner-Shah's �ip algo-

rithm [ES92] (and similarly Joe's �ip algorithm [Joe93]), and star splaying [She05]. For

the simplicity of presentation, we use Graham's scan to refer to its scanning stage in

this chapter. These algorithms can be categorized by the following aspects.

1. Workable dimension and input structure. These two factors decide the

usefulness of these algorithms. Graham's scan transforms an arbitrary star-shaped

polygon to the convex hull, and Lawson's �ip algorithm transforms a 2D triangulation

to its Delaunay triangulation; they only work in R2. The input structure of Rajan's

and Edelsbrunner-Shah's �ip algorithms is a triangulation created by inserting one

point into the regular triangulation of a weighted point set; we denote it as �RT+1�

triangulation. Although they work in any dimension, their usefulness is restricted by

this special input structure. The best algorithm in terms of workable dimension and

input structure is star splaying, which can transform almost any set of stars in any

dimension to the convex hull.

2. Local operation. It a�ects the simplicity of these algorithms. The larger the

local region a�ected by an operation is, the more di�cult it is to maintain the simplicity

of this operation and the algorithms. Graham's scan, Lawson's �ip algorithm, and

Rajan's and Edelsbrunner-Shah's �ip algorithms use �ip as their local operation, while

star splaying uses splaying, an operation that modi�es a whole star. The a�ected region

of a splaying is usually much larger than that of a �ip, and this makes star splaying

more complicated than the �ip algorithms.

3. Execution order. An algorithm with sequential execution order has to apply

local operations in a certain sequence. Such algorithms include Rajan's �ip algorithm

and Graham's scan. In contrast, Lawson's �ip algorithm, Edelsbrunner-Shah's �ip al-

gorithm and star splaying have free execution order. Algorithms with free execution

order o�er some degree of freedom to choose the next local operation from many ap-

plicable ones, and therefore can be performed in parallel machines like the GPU, as

long as local operations do not con�ict. An algorithm with sequential execution or-

der may need to spend extra e�ort to �nd the next operation to perform, making the

algorithm less e�cient than one with free execution order. For example, Rajan's �ip

algorithm needs to additionally maintain a priority queue, and therefore it has higher

time complexity than Edelsbrunner-Shah's �ip algorithm.

These aspects provide good measures for evaluating algorithms of local transfor-

mation. In general, it is desirable yet more di�cult to design algorithms with more

general inputs, higher workable dimensions, simpler local operations and free execu-

tion order. It is almost impossible to design an algorithm while taking good care of

20

Table 3.1: The workable dimension, input structure, local operation, and execution
order of some existing algorithms of local transformation.

Algorithm Dimension Input Operation Order

Graham's scan 2 star-shaped polygon 2-1 �ip sequential

Lawson's �ip 2 triangulation 2-2 �ip free

Rajan's �ip any �RT+1� triangulation �ip sequential

Edelsbrunner-Shah's
�ip

any �RT+1� triangulation �ip free

Star splaying any a set of stars* splaying free

*The star of each vertex v must enclose a vertex that lexicographically precedes v.

all these aspects. One needs to make a balance among them based on requirements

from practice. Table 3.1 summarizes the properties of the algorithms discussed above

according to these aspects. The types of �ips used in Rajan's and Edelsbrunner-Shah's

algorithm depend on the particular dimension they work in.

We emphasize the advantages of algorithms of local transformation. First, they

are usually simple (to be presented or implemented) because of the simplicity of the

local operations they use. For example, one can use one sentence to describe Lawson's

�ip algorithm: pick a locally non-Delaunay edge to �ip until Delaunay triangulation is

obtained. Second, with free execution order, they can possibly be adapted to parallel

machines for the data parallelism provided by local operations. We show a simple

parallel work�ow for implementing these algorithms in the next section. Third, they

can be very e�cient when their inputs are close to the desired results, though their

worst-case time complexity may be worse than other algorithms.

3.2 Framework

An algorithm of local transformation consists of the following elements:

Geometric structure. The algorithm works on a geometric structure, continu-

ously updating it until it becomes the desired result. The input and output are two

instances of the geometric structure. As the base of all the other elements described be-

low, the geometric structure of the algorithm must be explicitly de�ned and maintained

during the whole procedure in order to guarantee the validity of the other elements.

For example, the geometric structure of Graham's scan is star-shaped polygon, which

is maintained during the whole execution.

Local operation. The algorithm uses local operation to update its geometric

structure. Each local operation changes a local con�guration of the geometric structure,

so it is designed based on that structure. For example, Lawson's �ip algorithm uses

�ip to transform triangulations, while star splaying uses splaying to update stars. An

21

algorithm of local transformation may contain one or more types of local operation.

Criterion. The algorithm must apply local operations under some rules in order to

compute the desired result. The criterion of the algorithm is a set of rules to guide the

application of local operations; it provides a direction for the algorithm to transform

the geometric structure. For example, the criterion of Lawson' �ip algorithm is to

�ip all locally non-Delaunay edges. This criterion helps to transform the triangulation

closer to its Delaunay triangulation, which has no locally non-Delaunay edges.

Local check. The algorithm checks the validity of a local operation according to

two conditions: (1) whether the local operation destroys the geometric structure, and

(2) whether it does not satisfy the criterion. Checking for the �rst condition is usually

a local task, while checking for the second one may not be local when the criterion

utilizes global information. We call this element local check. Only after a local check

can the corresponding local operation be applied. For example, Lawson's �ip algorithm

�ips an edge only after assuring that this edge is locally non-Delaunay and �ipping it

does not destroy the triangulation.

Candidate. A candidate of the algorithm is a piece of the geometric structure

that provides su�cient data for a local operation and its corresponding local check.

A candidate is called valid if it passes the local check; otherwise it is invalid. The

local operation on a valid candidate can be applied in the algorithm. For example, an

internal edge with its induced subcomplex is a candidate in Lawson's �ip algorithm,

and is valid if it is �ippable and locally non-Delaunay. Note that an algorithm with

free execution order usually has multiple valid candidates at any moment, while one

with sequential execution order may only have one valid candidate.

To sum up, these elements are strongly related to one another. The geometric

structure provides candidates that are used for local operations. The algorithm tests

the validity of candidates by local checks based on its criterion. Local operations update

the geometric structure, creating new candidates for the further computation.

The correctness of an algorithm of local transformation depends on two arguments:

the argument of termination and the argument of �nal state. The algorithm terminates

when there are no more valid candidates. To promise the termination, the algorithm

should avoid the in�nite re-creation of the same candidates. Particularly, the criterion

of the algorithm should provide a direction for local operations so that a candidate is

only re-created a constant number of times. When the algorithm terminates, the �nal

state of its geometric structure should be the desired result. We say the algorithm gets

stuck if it terminates at a wrong result. To promise correct �nal state, we should design

the criterion of the algorithm so that the �nal state is the desired output if and only if

no local operations are further required by the criterion.

A general sequential work�ow for implementing algorithm of local transformation

is shown in Figure 3.1. A container of candidates is maintained in the work�ow. The

choice of containers depends on the type of the execution order: if the algorithm allows

22

Figure 3.1: A sequential work�ow for algorithm of local transformation.

free execution order, a queue or a stack is su�cient; otherwise, the container is usually

a priority queue to �nd the correct order of the candidates to process. Given such an

algorithm and its input, we initially extract all the candidates from the input and put

them into the container. Each time a candidate is removed from the container and

locally checked according to the criterion. If the candidate is invalid, we ignore it and

continue with another. Otherwise, we apply local operation on it, creating new can-

didates and putting them into the container for further consideration. The algorithm

repeatedly handles each candidate and terminates after the container is empty.

Figure 3.2 shows a general parallel work�ow for implementing algorithm of local

transformation that allows free execution order. Given such an algorithm and its

input, we organize in an array all the candidates obtained from the input. We run the

algorithm by rounds, in each of which a batch of candidates are handled. Particularly,

we apply a local check on each candidate in parallel according to the criterion of the

algorithm, and collect those valid candidates into another array. Then we apply a local

operation on each valid candidate, and collect all the newly created candidates, both

also in parallel. The algorithm iteratively handles batches of candidates until no valid

candidates exist. Note that some local operations may con�ict with one another if the

local regions a�ected by them overlap. In this case we have to add another parallel

procedure to avoid this.

23

Figure 3.2: A parallel work�ow for algorithm of local transformation.

3.3 Examples

3.3.1 Lawson's Flip Algorithm

Lawson's �ip algorithm [Law72, Law77] transforms an arbitrary triangulation of a point

set S in R2 into DT (S) by �ips. The geometric structure is a 2D triangulation

and the criterion is to �ip all locally non-Delaunay edges. A 3-1 edge is always

locally Delaunay; thus the local operation is 2-2 �ip. As an un�ippable 2-2 edge is

intrinsically locally Delaunay, the local check is only to test whether an edge is locally

Delaunay or not. The candidate is an edge with its two incident triangles. A 2-2 �ip

removes a locally non-Delaunay edge and creates a locally Delaunay one. Lawson's �ip

algorithm iteratively selects a locally non-Delaunay edge to �ip until all the edges are

locally Delaunay.

We explain Lawson's �ip algorithm in the lifted space in order to prove its mono-

tonicity. Let S+ be the lifted point set of S by the function (p1, p2, ..., pd) →
(p1, p2, ..., pd,

∑
p2i). We then obtain the lifted triangulation T (S+) by lifting the ver-

tices of T (S). Setting a �xed virtual point v+ with a height larger than those of points in

S+, we construct a polyhedron P using the triangles of T (S+) and the triangles formed

by v+ and the boundary edges of T (S+). Obviously P is free of self-intersection and

thus its volume is well de�ned. When a 2-2 �ip is applied on T (S), and thus T (S+),

in Lawson's �ip algorithm, a re�ex edge in P is removed and a convex edge is created.

Since no self-intersection is created, the volume of P increases and thus no edges that

are removed can reappear. Therefore, the termination of Lawson's �ip algorithm is

guaranteed. At the �nal state, T (S) does not contain any locally non-Delaunay edge

24

Figure 3.3: The weight of a, b and c is w1 and the weight of d, e and f is w2; w1 is much
larger than w2 so that only the dashed edges are locally non-regular. Unfortunately,
all these edges are un�ippable.

and thus is DT (S) by Theorem 2.1. The time complexity of Lawson's �ip algorithm is

O
(
|S|2

)
because a removed edge never reappears in the triangulation.

Having free execution order, Lawson's �ip algorithm can be implemented on the

GPU following the work�ow in Figure 3.2. Speci�cally, all the edges of its input are

organized in an array. In each round a thread assigned to an edge checks whether the

edge is locally non-Delaunay. Because the induced sub-complexes of some edges overlap,

the �ips on them con�ict and cannot be applied concurrently. To avoid this, a thread

assigned to a locally non-Delaunay edge uses the atomic minimum operation to label

the two triangles incident to the edge with its index. After a global synchronization,

such a thread �ips its edge if the two triangles incident to the edge are still labeled

with its index. Since only up to two threads access to the same memory location, the

usage of the atomic operation does not a�ect the e�ciency much. This technique is

described in [NHS11, QCT12].

One may feel tempted to use Lawson's �ip algorithm to transform a triangulation

of a weighted point set in R2 to its regular triangulation, by picking an arbitrary

edge that is locally non-regular and �ippable to �ip until the regular triangulation is

obtained. However, this approach can get stuck at a local optimum as shown by the

counter-example in Figure 3.3 [ES92]. In the triangulation in this �gure, all the locally

non-regular edges (shown in dashed) are un�ippable.

3.3.2 Star Splaying Algorithm

Star splaying [She05] computes convex hull from a set of convex stars in an arbitrary

dimension. Here we only introduce its 3D version. Given the star of a vertex v, call

the vertices appearing in the star the neighbors of v. The star of v becomes dead when

a newly inserted point is beyond all its triangles; a star that is not dead is alive. In the

case when the star of v is dead, v is proved to be non-extreme by the newly inserted

point and all the neighbors of v, which altogether compose the death certi�cate of v

and its star. The algorithm always ensures each star is convex unless it is dead. The

25

(a) (b) (c)

Figure 3.4: The star of v has 6 neighbors and star splaying intends to insert u into
it. (a) The insertion fails if u is beneath all the triangles of the stars of v. (b) The
insertion is successful if u is beyond some but not all the triangles. Some facets (in
gray) are replaced by two new triangles incident to u. (c) The insertion makes a dead
star if u is beyond all the triangles.

geometric structure of star splaying is a collection of convex stars and dead stars.

Two stars may not agree with each other. For example, the star of a vertex u

contains two triangles 4uvs and 4uvt but the star of v does not contain both of them.

The local check of star splaying is to check for inconsistency, which is the circumstance

that a triangle appears in the stars of some but not all of its vertices. Star splaying uses

splaying as its local operation to eliminate the inconsistency between stars. Splaying

means inserting a point into a convex star. There are three possible cases when a point

is inserted into a star. In Case 1, the point is beneath all the triangles of the star, and

thus the insertion fails. In Case 2, the point is beyond some but not all the triangles

of the star, and thus the insertion succeeds and the star splays (like an umbrella). In

Case 3, the point is beyond all the triangles of the star, and thus the star becomes dead.

Figure 3.4 illustrates these three cases. The candidate of star splaying is a pair of

stars, or more accurately, an edge of a star. After a successful insertion, newly created

edges need to be checked for inconsistency, and when the star of a vertex becomes dead,

all the edges incident to that vertex in other stars also need to be checked.

The criterion of star splaying, named inconsistency enforcement, instructs how to

apply splaying to eliminate inconsistency on an edge. Given an edge vu, the algorithm

either promises that it appears in the stars of both v and u with the same incident

triangles, or removes it from both stars. Assuming that vu is in the star of v, there

exist two cases based on the status of the star of u. In the �rst case, u has a dead star.

The algorithm inserts the death certi�cate of u into the star of v, which will surely

remove vu from that star. In the second case, u has a convex star. Insert v into the

star of u if it does not have vu. If the insertion fails, �nd three vertices in the star of u

that prohibits the insertion and insert them into the star of v to remove vu. Now vu

exists in the star of u, but both stars disagree on the triangles incident to vu. Insert

the two link vertices of vu in one star into the other for both directions. The two stars

are then splayed and become agree about vu.

26

Star splaying always terminates because the convex stars monotonically splay and

thus a point cannot be inserted successfully into the same star more than once. When

the algorithm terminates, all the convex stars are consistent with one another. By

enforcing a precondition that the input star of each vertex encloses a vertex lexico-

graphically preceding it, the set of stars at the �nal state of the algorithm provably

determines the convex hull.

Star splaying can be implemented in both the sequential and the parallel work�ows

in Section 3.2. In the sequential work�ow, the edges of all stars are pushed into a

container, e.g. a queue, and checked for inconsistency. An edge with inconsistency

results into multiple point insertions. The newly created edges generated by these

insertions are then pushed into the container. In the parallel work�ow, the edges of

all stars are organized in an array A. In each round a thread assigned to an edge of

A checks its inconsistency. The edges with inconsistency are arranged into an array

B. One thread assigned to an edge in B creates at most four virtual insertions in the

format 〈s, p〉, which means point p should be inserted into star s. All virtual insertions

are arranged in an array C. Since insertions for the same star cannot be executed in

parallel, C is �rst sorted by s. Then each set of virtual insertions with the same s is

assigned to a thread and processed sequentially. These insertions modify A.

There are two points to note about star splaying. First, star splaying works e�-

ciently when its initial stars are close to the �nal stars of the convex hull. However, it

is unclear how to e�ciently construct such initial stars from a given point set. Second,

star splaying can be performed in parallel, since inconsistency is locally checked and

stars are independently splayed. As described previously, a batch of insertions into the

same star handled by a single thread must be done sequentially. As such, threads in

the same iteration may have di�erent amount of work, which is not good for parallel

machines such as the GPU.

27

28

CHAPTER 4

Parallel Flip Algorithms for 2D Convex Hull

This chapter studies the 2D convex hull problem and designs two parallel algorithms to

compute 2D convex hull based on our new understanding of the traditional Graham's

scan algorithm.

Section 4.1 reinterprets the scanning stage of Graham's scan as a �ip algorithm

called �ip-pop that has free execution order. Under this reinterpretation, one can

develop a straightforward parallel version of Graham's scan by �rst sorting all the

input points by their angles w.r.t. an extreme point to create a star-shaped polygon

and then applying �ip-pop. However, the polygon created by the sorting may not be

star-shaped in practice due to the numerical inexactness caused by the computation

of angles. In Section 4.2, we eliminate this numerical inexactness by constructing an

upper and a lower star-shaped chains separately instead of a star-shaped polygon.

Section 4.3 presents an alternative algorithm that applies �ip-pop to compute 2D

convex hull in parallel. The algorithm computes the two chains via incrementally

inserting the points instead of sorting, attempting to remove many non-extreme points

during insertion. Section 4.4 presents the experimental results of these two parallel

algorithms. Compared with the well-known implementations Qhull and CGAL on the

CPU, our proposed algorithms running on the GPU are 40 times faster.

29

(a) (b)

Figure 4.1: (a) A star-shaped polygon w.r.t. a kernel point o. (b) Applying a 2-1 �ip
on the vertex b removes b and increases the area of the polygon. The polygon remains
star-shaped w.r.t. o after the �ip.

4.1 Flip-pop

Graham's scan is a competitive algorithm with Quickhull for computing 2D convex

hull on the CPU. However, it is hard to be adapted in parallel machines such as the

GPU because of its strictly sequential scanning stage. We show that this stage can be

re-�tted as a �ip algorithm with free order of execution, named �ip-pop.

We describe the �ip-pop algorithm using our framework of local transformation.

The geometric structure of �ip-pop is a star-shaped polygon P. See Figure 4.1(a)

for an example of star-shaped polygon. The local operation is 2-1 �ip, and the

candidate is a vertex associated with its two incident edges. The criterion is designed

aiming to increase the area of P to the maximum: it removes a vertex v by the local

operation if v lies inside the triangle formed by the two neighbors of v and the kernel

point. Note that the polygon is still star-shaped w.r.t. the same kernel point after

removing v; thus the local check only tests if a vertex is inside the corresponding

triangle. For example, the polygon in Figure 4.1(a) is transformed into the one in

Figure 4.1(b) by a 2-1 �ip on vertex b as b lies inside 4oac.
Algorithm 1 and Algorithm 2 show the pseudocode of �ip-pop under the sequential

and parallel work�ows in Section 3.2 respectively. In contrast to Algorithm 1, Algo-

rithm 2 has extra codes for avoiding the con�ict of memory read and write due to

the parallel execution. Speci�cally, we partition one round of �ipping into two steps,

between which a global synchronization is set (Line 9). In the �rst step (Line 5�8), the

thread assigned to a vertex pi checks whether pi lies inside the triangle as mentioned

in the criterion and, if yes, labels pi and its two neighboring vertices with the index i.

In the second step (Line 10�12), the thread assigned to a vertex pi removes pi by 2-1

�ip only if pi and its two neighboring vertices are still labeled with the index i.

The �ip-pop algorithm always terminates in O
(
n
)
�ips where n is the number of

the vertices of P, because any vertex that is removed cannot reappear. When �ip-pop

30

Algorithm 1: Flip-pop under the sequential work�ow

input : a star-shaped polygon P w.r.t. s
output: CH(P)

1 label all the vertices of P as unchecked
2 repeat

3 foreach vertex pi labeled as unchecked do
4 let −−→pjpi and −−→pipk be the two edges incident to pi
5 if pi ∈ 4spjpk then
6 apply 2-1 �ip on pi
7 label pj and pk as unchecked

8 else

9 label pi as checked

10 until all vertices are labeled as checked

Algorithm 2: Flip-pop under the parallel work�ow

input : a star-shaped polygon P w.r.t. s
output: CH(P)

1 label all the vertices of P as unchecked
2 repeat

3 foreach vertex pi labeled as unchecked do in parallel

4 let −−→pjpi and −−→pipk be the two edges incident to pi
5 if pi ∈ 4spjpk then
6 use atomic minimum operation to label pj , pi and pk with i
7 else

8 label pi as checked

9 global synchronization

10 if pj , pi and pk are all labeled with i then
11 apply 2-1 �ip on pi
12 label pj and pk as unchecked

13 until all vertices are labeled as checked

terminates, the internal angle of each vertex is smaller than π. Because the polygon

is star-shaped throughout the execution and no non-extreme points are removed, the

polygon at the �nal state is the convex hull.

Note that �ip-pop is a hill-climbing algorithm from three di�erent points of view.

Every �ip applied in the algorithm reduces the number of vertices, increases the area

of the polygon, and decreases the sum of the inner angles. These multiple measures

of monotonicity re�ect the simplicity of �ip-pop, and this simplicity is mainly because

the problem is in R2. Indeed, �ip-pop is di�cult to be extended to compute 3D convex

hull, because it may get stuck when using these measures to guide �ipping.

31

Figure 4.2: An illustration of parallel Graham's scan. The blue nodes are Sa={p | p ∈ S
and p is above vlvr} and the green nodes are Sb={q | q ∈ S and q is below vlvr}, where
S is the set of input points and {vl, vr} are the leftmost and rightmost points of S.

4.2 Parallel Graham's Scan

With �ip-pop, Graham's scan can be straightforwardly adapted into a parallel version

consisting of a constructing stage to build star shaped polygon and a �ipping stage

to compute convex hull. In the constructing stage, the bottommost point v of S is

selected as the kernel point, and all the points are sorted in ascending order of their

polar angles in the polar coordinate system whose origin is v. A star-shaped polygon

w.r.t. v is built from this sorted array of points. In the �ipping stage, �ip-pop is used

to transform the star-shaped polygon to the convex hull in parallel.

However, note that the polygon built by sorting may not be star-shaped in practice

because of the numerical inexactness created when computing polar angles. If so, �ip-

pop cannot transform this polygon to the convex hull. To overcome this problem, we

use a di�erent polygon that is created from sorting the input points by their original

coordinates, and thus avoid the mentioned numerical inexactness. We simply name the

proposed algorithm parallel Graham's scan.

The key idea of the parallel Graham's scan is to use the in�nite point instead of

an input point as the kernel point, and build an upper star-shaped chain w.r.t. the

kernel point at (0,−∞) and a lower star-shaped chain w.r.t. the kernel point at (0,∞).

Speci�cally, we use vlvr to partition S \ {vl, vr} into Sa={p | p ∈ S and p is above

vlvr} and Sb={q | q ∈ S and q is below vlvr}, where vl and vr are the leftmost and

rightmost points of S respectively; see Figure 4.2. The upper chain is built via sorting

Sa ∪ {vl, vr} by their x-coordinates in descending order, while the lower chain is built

via sorting Sb ∪{vl, vr} by their x-coordinates in ascending order. The two chains thus

only intersect at vl and vr. By reading the upper chain from vr to vl and then the

lower chain from vl to vr, we obtain a counter-clockwise polygon which is free of self-

intersection. This polygon is not necessarily star-shaped but can still be transformed

to the convex hull by �ip-pop.

Algorithm 3 shows the pseudocode of the parallel Graham's scan. In Line 1, we

compute the leftmost and rightmost points of the input point set S using reduction

primitives. We then collect Sa = {p | p ∈ S and p is above vlvr} and Sb = {q | q ∈ S

32

Algorithm 3: Parallel Graham's Scan

input : a set S of points in R2

output: CH(S)
1 {vl, vr} ← the leftmost and rightmost points of S
2 Sa ← {p | p ∈ S and p is above vlvr}
3 Sb ← {q | q ∈ S and q is below vlvr}
4 sort Sa by x-coordinate in descending order
5 sort Sb by x-coordinate in ascending order
6 P ← 〈vr, Sa, vl, Sb〉
7 call parallel �ip-pop in Algorithm 2

and q is below vlvr} by �rst labeling the points of S according to their relation with

vlvr and then call a partitioning primitive. In Line 4 and Line 5, we sort Sa and Sb by

x-coordinates. In Line 6, we create the polygon P by concatenating vr, Sa, vl and Sb.

Finally, we apply the parallel �ip-pop on P to compute CH(S); see Algorithm 2.

The correctness of the parallel Graham's scan depends on two facts. First, the

polygon created by sorting is free of intersection. Second, �ip-pop (Line 7) transforms

it into CH(S). To prove the second fact, we note that vl and vr are extreme points in

CH(S), and thus no �ips can be applied on them. Therefore, the �ip-pop procedure

works separately for the upper and the lower star-shaped chains, and the combined

result is CH(S).

In order to reduce the amount of costly global memory access as well as the number

of global synchronization, we try to remove more non-extreme vertices in each iteration

by using the shared memory of the GPU. Particularly, each block of threads on the

GPU loads a consecutive chunk of vertices plus two more on its left and right into

shared memory, and repeatedly applies Algorithm 2 to remove non-extreme vertices in

that chunk until no more can be identi�ed. Figure 4.3 shows the di�erence of executing

one iteration with and without using shared memory. Note that this di�erence will be

more apparent when the polygon size and chunk size become larger.

33

Figure 4.3: The polygon has the same upper and lower chains (only mirrored). We
apply one iteration of �ip-pop, using shared memory on the lower chain and not on the
upper one. Each chunk of vertices on the shared memory has size 4. The result is that
11 non-extreme vertices (white nodes) are removed from the lower chain as compared
to only 7 from the upper chain.

4.3 Parallel Graham's Scan via Insertion

The main drawback of the parallel Graham's scan is that it always sorts all the points of

S, even if most of them are non-extreme. In this section, we use incremental insertion

to build the two star-shaped chains instead of sorting, and then apply �ip-pop to

transform them to the convex hull of S. This algorithm is named parallel Graham's

scan via insertion. A purely incremental insertion approach is presented in [SRKN11].

However, their approach may output a wrong result, because it does not always �nd

the correct furthest point for insertion due to numerical error.

Given an oriented edge
−→
ab that is non-vertical and a point c in R2, we say c is

beyond
−→
ab if 4abc is clockwise; otherwise c is beneath −→ab. When c.x ∈ [a.x, b.x], we

further say c is right beyond or right beneath
−→
ab. Given oriented edges −−→vlvr and −−→vrvl

where vl and vr are respectively the leftmost and rightmost points of S, each point

of S \ {vl, vr} is right beyond one of them. We incrementally insert the points right

beyond −−→vrvl to form the upper star-shaped chain, while insert the points right beyond
−−→vlvr to form the lower star-shaped chain. During the insertion, any point that is proved

to be non-extreme is excluded from S and will not be considered.

Algorithm 4 shows the pseudocode of the parallel Graham's scan via insertion.

In Line 1�6, we do the initialization including computing the leftmost point vl and

the rightmost point vr, excluding them from S, building P with these two points,

and associating each point of S with one edge of P. We then repeatedly insert the

remaining points of S into P. Each iteration consists of an insertion phase and an

updating phase. In the insertion phase (Line 8�11), for each edge −→pq of P, one point is
selected from all the points right beyond −→pq and inserted into −→pq; this point is excluded
from S. In the updating phase (Line 12�17), each point originally associated with −→pq is
either associated with a new edge or excluded from S. More speci�cally, for each point

34

Algorithm 4: Parallel Graham's Scan via Insertion

input : a set S of points in R2

output: CH(S)
1 {vl, vr} ← the leftmost and rightmost points of S
2 S ← S \ {vl, vr}
3 P ← 〈vr, vl〉
4 foreach point p in S do

5 if p is right beyond −−→vrvl then associate p with −−→vrvl
6 else associate p with −−→vlvr
7 repeat

8 foreach edge −→pq of P do

9 choose a point r associated with −→pq
10 replace −→pq with −→pr and −→rq
11 S ← S \ {r}
12 foreach point u in S do

13 let −→pq be its associated edge, and r be the point inserted into −→pq
14 if (u.x− p.x)(u.x− r.x) ≤ 0 then e← −→pr
15 else e← −→rq
16 if u is beyond e then associate u with e
17 else S ← S \ {u}
18 until S = ∅
19 call parallel �ip-pop in Algorithm 2

u, let −→pq be the edge it is originally associated with, and r be the point inserted into
−→pq in the current insertion phase. Then u must lie in one of the vertical bands de�ned

by −→pr and −→qr; let e be the edge de�ning the vertical band containing u (Line 14�15).

If u is beneath e, then u is removed because it lies inside the quadrilateral de�ned by

vl, vr and e; otherwise it is associated with e. After S becomes empty, we use �ip-pop

to compute CH(S) (Line 19).

Note that the polygon created by the constructing stage is free of self-intersection

and consists of two star-shaped chains. Furthermore, all the points that are not inserted

into the polygon are proved to be non-extreme. Therefore, the parallel Graham's scan

via insertion is provably correct.

In our GPU implementation, we intend to insert the furthest one among all the

points associated with the same edge, as this can quickly increase the area of P and

remove more non-extreme points. In fact, if we always insert the furthest point, then

the resulting polygon of the constructing stage is already the convex hull. However,

that requires atomic operation and is also a�ected by numerical inaccuracy. Instead, we

only �nd an approximately furthest point to insert by simply overwriting the maximum

distance in the global memory and picking a point whose distance is equal to the value

in the global memory. This approach does not a�ect the correctness of the algorithm

because of the use of �ip-pop.

35

(a) Square (b) Disk

(c) Frame with thickness 0.01 (d) Circle with thickness 0.01

Figure 4.4: Four distributions of tested data for 2D convex hull.

4.4 Experiment

We implement the parallel Graham's scan (Section 4.2) and the parallel Graham's

scan via insertion (Section 4.3) on the GPU, and use Graham-sorting and Graham-

insertion to denote these two implementations. The existing implementations used for

comparison include Qhull [Qhu12] and CGAL [CGA12]; the former one implements the

Quickhull algorithm, while the latter one implements the algorithm in [AT78].

We generate points randomly with coordinates between [0.0, 1.0]. Points are dis-

tributed uniformly in four distributions: a square, a disk of radius 0.5, a square frame

with thickness of 0.01, and a circle with thickness of 0.01; see Figure 4.4.

Running time

Figure 4.5 shows the running time of Graham-sorting and Graham-insertion when they

process millions of points on the four distributions. Their running time increases lin-

early with the number of input points for all the distributions. By comparing their run-

ning time, we get similar results for the square, disk and frame distributions: Graham-

insertion is much faster than Graham-sorting when the input size is larger than 4×106.

This is mainly because the number of extreme points is small, so Graham-insertion

can quickly exclude many non-extreme points. In contrast, excluding non-extreme

36

(a) Square (b) Disk

(c) Frame (d) Circle

Figure 4.5: Running time and speedups over CGAL and Qhull of Graham-sorting and
Graham-insertion for the four distributions of points.

points is not very e�ective for the circle distribution because of the large number of

extreme points. Therefore in this distribution, Graham-sorting runs slightly faster than

Graham-insertion for all the input sizes.

Since Graham-insertion performs better in most of the distributions, we use it to

compare with CGAL and Qhull, and show the results by the lines in Figure 4.5. The

speedup of Graham-insertion over CGAL ranges from 20 to 85 times, and that over

Qhull is from 14 to 46 times. The speedup increases as the input size grows. For the

disk and circle distributions, CGAL and Qhull have almost the same running time; for

the square and frame distributions, Qhull runs much faster than CGAL.

Sensitivity

We test the sensitivity of Graham-sorting and Graham-insertion to the thickness, rang-

ing from 0.5 to 0.0001, of the circle distribution with 107 points. The smaller this thick-

ness is, the more di�cult it is to remove non-extreme points. The number of extreme

points is around 600 for the thickness 0.5, and around 20,000 for the thickness 0.0001.

37

(a) Graham-sorting (b) Graham-insertion

Figure 4.6: Running time and speedups over CGAL and Qhull of Graham-sorting and
Graham-insertion for a circle distribution of di�erent thicknesses.

As shown in Figure 4.6(a), the running time of Graham-sorting is almost unchanged

when the thickness becomes smaller. The time of the constructing stage of Graham-

sorting is mainly decided by the number of input points, which is always 107 in this

experiment setting. For the �ipping stage, decreasing to 600 or 20,000 extreme points

from 107 input points makes little di�erence. CGAL is also not sensitive to the thick-

ness: the speedup of Graham-sorting over CGAL keeps at around 50 times when the

thickness changes from 0.1 to 0.0001. On the other hand, the speedup of Graham-

sorting over Qhull sharply increases and reaches 127 times for the thickness 0.0001.

This is because Qhull becomes slower when the input has more extreme points.

The sensitivity of Graham-insertion is illustrated in Figure 4.6(b). When the circle

becomes thinner, Graham-insertion needs to perform more insertion rounds in the

constructing stage. Meanwhile, the �ipping stage is slower as the input star-shaped

polygon has more vertices. As such, its speedup over CGAL decreases from 60 to only

25 times. However, its sensitivity is still less than Qhull, since its speedup over Qhull

slowly increases as the thickness decreases.

When the thickness of the circle further decreases so that the number of extreme

points is around 60,000, Graham-sorting runs 14 times faster than Graham-insertions,

and its speedups over CGAL and Qhull are respectively around 52 and 159 times.

Time breakdown

Figure 4.7 shows the time breakdown of Graham-sorting and Graham-insertion for 106

points on the four distributions. The initialization and the output stages transfer data

between the CPU and the GPU. For both Graham-sorting and Graham-insertion, these

two stages take more than 30% of the total running time.

38

(a) Graham-sorting (b) Graham-insertion

Figure 4.7: Time breakdown of Graham-sorting and Graham-insertion.

In Graham-sorting, the �ipping stage takes around 30% of the total running time

for all the distributions. This is reasonable because the constructing stage outputs a

polygon containing all the input points, and transforming it to the �nal convex hull

is a substantial work. In contrast, the �ipping stage of Graham-insertion only takes

a very small part of the total running time. This implies that its constructing stage

e�ectively excludes non-extreme points and outputs a polygon close to convex hull; its

�ipping stage needs to handle very little work.

Use of shared memory

In the �ipping stage of Graham-sorting and Graham-insertion, we employ shared mem-

ory to increase the number of non-extreme points removed in each round to decrease

the number of �ipping rounds. This bene�ts Graham-sorting more as its �ipping stage

takes a major percentage of its total running time. Therefore, we run Graham-sorting

using 106 points on the four distributions, and record the running time of the �ipping

stage and the number of �ipping rounds; see Figure 4.8. By using shared memory, we

can reduce the number of �ipping rounds by three to �ve times. However, the running

time of the �ipping stage is not reduced as much. This is because we have to enforce

synchronization in kernels in order to use shared memory, making many threads idle.

Consequently, the running time of the �ipping stage with shared memory is around 1/3

to 1/2 of that without shared memory.

Limitation

When the distribution of the input point set is not uniform, the constructing stage of

Graham-insertion may have many insertion rounds. For example, all the points that

are not excluded from S are always associated with the same edge. Then in every

39

(a) Running time (b) Flipping rounds

Figure 4.8: Running time and rounds of the �ipping stage in Graham-sorting with and
without using shared memory.

round only one point is inserted into the polygon. Graham-insertion also becomes

not competitive with Graham-sorting when most of the input points are extreme. In

contrast, Graham-sorting performs very stable for most of point distributions.

For some star-shaped polygons or chains, the �ipping stage, i.e. �ip-pop, may be

very ine�cient. Think about an upper star-shaped chain consisting of two convex sub-

chains where all the vertices are non-extreme except for the leftmost and the rightmost

ones; however, only the vertex joining the two sub-chains can be locally identi�ed as a

non-extreme point. After removing this vertex, one of its two neighbors becomes the

new vertex joining two convex sub-chains. In this case, �ip-pop can only remove one

non-extreme vertex in each iteration.

40

CHAPTER 5

Flip Algorithm for 2D Regular Triangulation

This chapter goes beyond the traditional way of hill-climbing �ipping to arrive at the

�ip-�op algorithm that solves the 2D regular triangulation problem.

As discussed in Chapter 3, Lawson's �ip algorithm is not always able to transform

a triangulation of a weighted point set to its regular triangulation, because its greedy

nature can lead to a stuck con�guration involving redundant vertices. Section 5.1

proposes the �ip-�op algorithm which can provably identify and remove redundant

vertices to reach the solution. When removing redundant vertices, the algorithm may

�ip, unconventionally, some locally regular edges. Such a �ip is distinguished as a

��op�, thus the name �ip-�op.

The correctness of �ip-�op lies in that a locally non-regular and un�ippable edge

is always incident to a redundant vertex, and thus redundant vertices can be identi�ed

locally; see Section 5.2. With this, given a weighted point set, we can �rst construct an

arbitrary triangulation by, for example, incremental insertion and then apply �ip-�op

to transform it to the regular triangulation. Section 5.3 details such a solution, named

�RT, and Section 5.4 compares the implementations of �RT on the CPU and the GPU

with CGAL. Experimentally, the GPU implementation of �RT reaches up to 45 times

speedup over CGAL.

41

Figure 5.1: To remove v, we successively �ip the 2-2 edges ve and vc to reduce the
degree of v to 3. Then, v is removed by a 3-1 �ip.

5.1 Flip-�op for 2D Regular Triangulation

Given a point set S in R2 and a weight set W of S, �ip-�op starts with an arbitrary

triangulation T (S ⊕W) that contains all the non-redundant points of S and possibly

some redundant ones as its vertices. The geometric structure is a 2D triangulation.

Besides 2-2 �ip as used in Lawson's �ip algorithm, the local operations include 3-1

�ip to remove redundant vertices. When a redundant vertex is identi�ed, we label it as

redundant. Note that labeling is indeed also a local operation; it changes the status of

vertices but does not modify the geometric structure. The candidate of �ip-�op is an

edge with its induced-subcomplex, and we commonly refer to an edge as a candidate.

The criterion of �ip-�op is a combination of two criteria. The �rst criterion, V-

criterion (V for Volume), is to �ip locally non-regular edges. Using the lifting function

(p1, p2)→ (p1, p2, p
2
1 + p22 −wp) where wp is the weight of p in W , we obtain the lifted

point set SW of S and the lifted triangulation T W (S) of T (S ⊕W) in R3. The idea

in the V-criterion is to lower the 3D surface formed by T W (S) by �ipping locally non-

regular edges. When the lifted triangulation is lowered to the extreme, we get the lower

hull of SW and hence RT (S ⊕W).

The second criterion, D-criterion (D for Degree), aims to reduce the degree of a

redundant vertex and �nally remove it from T (S ⊕W). We observe that a series of

�ips on the edges incident to this vertex can be used to remove it; see Figure 5.1. Given

an edge e and its induced-subcomplex Te, let v be the vertex with the smallest index

among all the vertices labeled as redundant in Te. The D-criterion is to �ip e if v is in

e; it forbids the �ip if v is in link(e); and it gives no decision if v does not exist. The

use of the smallest index is to avoid �ipping an edge back and forth.

The criterion of �ip-�op combines the V- and the D-criterion, giving the D-criterion

higher priority: if some vertex in Te is labeled as redundant, the D-criterion is used to

decide whether to �ip e or not; otherwise the V-criterion is used.

The local check of �ip-�op on an edge e includes one or more of the following

tasks: checking the �ippability of e to see whether �ipping e destroys the geometric

structure, a triangulation; checking whether the vertices in Te are labeled as redundant

for the D-criterion; and checking whether e is locally regular or not for the V-criterion.

Algorithm 5 shows the pseudocode of �ip-�op following the sequential work�ow of

42

Algorithm 5: Flip-�op for 2D Regular Triangulation

input : a triangulation T of a point set S in R2 and its weight set W
output: RT (S ⊕W)

1 label all vertices of T as unknown
2 Q ← { e | e is an edge of T }
3 while Q 6= ∅ do
4 e← Q.pop()
5 let e = ab, {c, d} be its link and x ∈ {a, b, c, d} be the redundant vertex with

smallest index
6 if e is a 3-1 edge then
7 assume a ∈ 4bcd w.l.o.g.
8 if a is labeled as redundant or e is locally non-regular then

9 �ip e; Q ← {bc, cd, db}
10 else

11 if a 6∈ 4bcd and b 6∈ 4acd then
12 if x does not exist and e is locally non-regular then

13 �ip e; Q ← {ac, bc, ad, bd}
14 else if x ∈ {a, b} then
15 �ip e; Q ← {ac, bc, ad, bd}
16 else if e is locally non-regular then
17 assume a ∈ 4bcd w.l.o.g.
18 label a as redundant
19 Q ← { e′ | e′ is an edge of T with a as an endpoint }

the local transformation framework in Section 3.2. First of all, all the vertices of T are

labeled as unknown, which means they are not yet labeled as redundant, and all the

edges of T are pushed into Q for checking. The main loop repeats until no more edges

in T need to be checked, i.e. Q is empty. Let e = ab be an edge popped in one iteration,

and let {c, d} be its link. We check whether e is a 3-1 or a 2-2 edge. In Case 1, e is a

3-1 edge (Line 6�9); then either a or b must lie inside the triangle formed by the other

3 vertices. Without loss of generality, assume a lies inside 4bcd. If a is already labeled

as redundant or e is locally non-regular (which also implies that a is redundant), we

�ip e to remove a. In Case 2, e is a 2-2 edge (Line 10�19). If e is �ippable, we �ip

e if either (1) e is locally non-regular and no vertices among {a, b, c, d} are labeled as

redundant, or (2) one of a and b is labeled as redundant and has the smallest index

among all the vertices labeled as redundant in {a, b, c, d} (Line 11�15). On the other

hand, if e is un�ippable and without loss of generality assume that a is inside 4bcd
(Line 16�19), then it can be proved that a is a redundant vertex; see Lemma 5.1. We

hence label a as redundant and push all the edges incident to a into Q.
Note that the algorithm presented above is just one approach of combining the V-

and the D-criterion. One variant is to keep �ipping according to the V-criterion �rst,

43

until no more �ips can be done. After that, we can start labeling redundant vertices

and use �ips due to the D-criterion to remove them. The process is then repeated until

all the redundant vertices are identi�ed and removed.

The trivial worst-case time complexity of �ip-�op is O
(
n3
)
, which comes from the

fact that each redundant vertex is identi�ed after O
(
n2
)
�ips and then removed by

O
(
n
)
�ips. However, we cannot �nd any example to prove this complexity is tight.

From a theoretical perspective, this bound is unsatisfactory; we should either �nd a

better bound or improve �ip-�op to achieve a better worst-case time complexity. In

practice, �ip-�op works very well as shown in our extensive experiment.

5.2 Proof of Correctness

In this section we prove that �ip-�op can transform an arbitrary triangulation T (S⊕W)

into RT (S ⊕W). We �rst show that a redundant vertex can be identi�ed from a 2-2

edge that is locally non-regular and un�ippable.

Lemma 5.1. Any 2-2 edge e = ab that is locally non-regular and un�ippable is incident

to a redundant vertex.

Proof. Let {c, d} be the link of e; See Figure 5.2. Without loss of generality, assume

a lies inside 4bcd. Let a+, b+, c+ and d+ be the corresponding lifted points in R3.

Because e is locally non-regular, a+ lies above the plane de�ned by b+, c+ and d+.

Together with the fact that a lies inside 4bcd, a+ must be above the lower hull of

{a+, b+, c+, d+}. Therefore a is a redundant vertex.

Next, we show that if all the points of S are non-redundant, then T (S ⊕W) can

be transformed into RT (S ⊕W) by �ipping under only the V-criterion. In this case

�ip-�op is degraded to a hill-climbing �ip algorithm similar to Lawson's �ip algorithm.

Lemma 5.2. If all the points of S are non-redundant, any locally non-regular edge of

T (S ⊕W) is a 2-2 �ippable edge.

Proof. By Lemma 5.1 the edge cannot be a 2-2 un�ippable edge; otherwise a redundant

vertex exists. Similarly it cannot be a 3-1 edge. Therefore, e is a 2-2 �ippable edge.

Theorem 5.3. Flipping according to the V-criterion transforms T (S⊕W) to RT (S⊕
W) if all the points of S are non-redundant.

Proof. Recall that T W (S) is the lifted triangulation of T (S ⊕ W) using the lifting

function. Flipping a locally non-regular edge lowers the surface formed by T W (S).

Therefore, during a sequence of �ips according to the V-criterion, no edge that was re-

moved can appear again. This implies the termination of the algorithm. By Lemma 5.2,

at the �nal state T (S⊕W) does not contain any locally non-regular edge, and therefore

is RT (S ⊕W).

44

Figure 5.2: ab is a 2-2 un�ippable edge that is non-regular and a lies inside 4bcd. Then
a is a redundant point.

When T (S ⊕W) has redundant vertices, �ipping under only the V-criterion may

get stuck with some redundant vertices remained. In this case the D-criterion must be

used to remove redundant vertices. We prove that any vertex not on the boundary is

removable by some �ips on its incident edges, hence the correctness of �ip-�op.

Lemma 5.4. A vertex v of T (S ⊕W) not on the boundary can be removed by succes-

sively �ipping its incident edges.

Proof. We show that there is always a �ippable edge incident to v. Consider three

consecutive vertices of a simple polygon; they form an ear if the triangle formed by

them is inside the polygon. By the Two Ears Theorem [Mei75], a simple polygon with

more than 3 vertices has at least two non-overlapping ears. Since link(v) is a simple

polygon, it has two non-overlapping ears, at most one of which can contain v. Let u

and its two neighbors u− and u+ be three vertices that form an ear not containing v.

Since link(v) is a star-shaped polygon w.r.t. v and v is not in 4u−uu+, each vertex

of {v, u, u−, u+} lies outside the triangle formed by the other three, and thus vu is a

2-2 �ippable edge. We repeatedly �ip 2-2 �ippable edges incident to v until its degree

decreases to three. Then we can �ip any of the remaining edges to remove v.

Theorem 5.5. The �ip-�op algorithm transforms T (S ⊕W) to RT (S ⊕W).

Proof. By de�nition, �ipping according to the D-criterion decreases the degree of a

vertex labeled as redundant without increasing the degree of any other such vertex

with smaller index. This implies that the number of �ips according to the D-criterion

is �nite. Between any two such �ips, only a �nite number of �ips according to the

V-criterion can be performed as proved in Theorem 5.3. Therefore, �ip-�op always

terminates.

At the �nal state, no locally non-regular edges exist in T (S ⊕ W), since such

an edge is either directly removed by a �ip or used to identify a redundant vertex

(Lemma 5.1), which further leads to more �ips (Lemma 5.4). By Theorem 2.2, the

result is RT (S ⊕W).

45

Theorem 5.5 promises the correctness of �ip-�op in sequential execution. When

�ip-�op is executed in parallel, we use atomic operations to avoid con�icting �ips; see

Section 4.1. Since the number of redundant vertices is bounded, it always terminates

after removing all redundant vertices and �ipping all locally non-regular edges. Thus,

the proof of Theorem 5.5 applies to the parallel execution as well.

5.3 Compute Regular Triangulation of a Point Set

We develop an algorithm, called �RT, to compute RT (S⊕W) from a planar point set

S and its weight set W . The algorithm consists of two stages: the constructing stage

builds a triangulation that contains all the non-redundant points of S and possibly some

redundant ones; and the �ipping stage transforms the triangulation into RT (S ⊕W)

using �ip-�op. In fact, the constructing stage outputs an extended triangulation, which

is further transformed by �ip-�op to an extended triangulation containing RT (S⊕W).

Figure 5.3(a) and 5.3(b) illustrate the constructing stage of �RT. We �rst construct

an initial triangle with three points of S and use the center of this triangle as the kernel

point s. We maintain an extended triangulation w.r.t. s, and grow it by incrementally

inserting the points of S. During this incremental construction, each point not yet in-

serted is associated with the triangle it lies in; this triangle may be a virtual triangle. A

point is excluded from future consideration if it has been inserted into the triangulation

or proved to be redundant by the three vertices of the triangle it is associated with. In

each iteration, for each triangle, one of the points that are associated with it is selected

and inserted into the triangulation by a 1-3 �ip, and all the others are re-associated

with one of the three new triangles created by the �ip. This process results into an

extended triangulation of S w.r.t. s that contains all the non-redundant points of S.

In the �ipping stage, we apply �ip-�op on the extended triangulation with special

treatment for the edges of star(v), where v is the virtual vertex. As de�ned in Sec-

(a) (b) (c)

Figure 5.3: (a) The center of a triangle is selected as the kernel point s of the initial ex-
tended triangulation. (b) The extended triangulation grows by incrementally inserting
points. (c) Flip-�op transforms the link of the virtual vertex to the convex hull of the
input points by �ipping the locally non-regular edges in the star of the virtual vertex.

46

(a) (b) (c)

Figure 5.4: Regular triangulations of 20,000 points where the percentage of non-
redundant points are (a) %1, (b) %20, and (c) 99%.

tion 2.2, given an edge bv incident to 4abv and 4bcv, bv is locally non-regular if s

and a lie on di�erent sides of bc. Such an edge is always �ippable, and thus will be

�ipped according to the V-criterion. After �ipping bv, a real triangle 4abc is created
and link(v) is still star-shaped. When all the edges of star(v) are locally regular,

link(v) becomes CH(S). For example, the gray triangles in Figure 5.3(c) are created

by �ip-�op.

Note that �RT can be executed in parallel because the incremental construction

of the extended triangulation can easily be adapted to parallel execution, and so is

�ip-�op since it has free execution order.

5.4 Experiment

We implement �RT on both CPU and GPU, and name them �RT-CPU and �RT-GPU

respectively. We compare our implementations with CGAL to compute 2D regular

triangulation. We randomly generate points in uniform distribution with coordinates

between [0.0, 1.0], and test three cases based on the range of weights assigned to the

points; see Figure 5.4. In the �rst case, the weights of the points are randomly chosen

from 0.0 to 0.01, so that the number of non-redundant points is approximately 1% of

the number of the input points. In the second (resp., third) case, the weight range is

[0.0, 10−5] (resp., [0.0, 2 × 10−7]), and approximately 20% (resp., 99%) of the input

points are non-redundant.

Running time

Figure 5.5 shows the experimental results in the three cases. Our CPU implementation

achieves a performance close to CGAL. It runs 30% faster than CGAL in the �rst case

(Figure 5.5(a)), 20% slower in the second case (Figure 5.5(b)), and almost as fast as

CGAL in the third case (Figure 5.5(c)). Our GPU implementation achieves up to 45

47

times speedup over CGAL in the �rst case, but only around 9 times in the other two

cases. The main reason is that in the �rst case, most of redundant points are removed

during the constructing stage of �RT.

(a) Around 1% of the input points are non-redundant.

(b) Around 20% of the input points are non-redundant.

(c) Around 99% of the input points are non-redundant.

Figure 5.5: The running time of �RT-CPU and CGAL (left), and the running time of
�RT-GPU compared with the two CPU implementations (right).

48

(a) (b)

Figure 5.6: Time breakdown of �RT (a) on the GPU and (b) on the CPU.

Time breakdown

We measure the time breakdown of �RT for all the three cases with 107 points. The

total running time of �RT-GPU can be partitioned based on four stages: initialization

(allocating memory and copying data from the CPU to the GPU), constructing, �ip-

ping and output (copying data back to the CPU). The running time of �RT-CPU is

partitioned based on only the constructing and the �ipping stages.

Figure 5.6(a) shows the time breakdown of �RT-GPU. As more input points are

non-redundant, �ipping takes a larger percentage of the total running time. In the

�rst case (around 1% of the input points are non-redundant), �ipping is 2 times faster

than constructing, while in the third case (around 99% of the input points are non-

redundant), �ipping becomes 2 times slower than constructing. The main reason is

that, when most of the input points are non-redundant, the initial triangulation of the

�ipping stage is very large and thus the �ipping stage has a great amount of work. For

all the three cases, the running time of the initialization and the output stages only

takes a small proportion of the total time.

Figure 5.6(b) shows the time breakdown of �RT-CPU. Similar to �RT-GPU, the

running time of the �ipping stage takes a larger proportion when more input points

are non-redundant. However, the constructing stage is always slower than the �ipping

stage for all the three cases.

49

50

CHAPTER 6

Flip Algorithm for 3D Convex Hull

This chapter advances the �ip-�op algorithm in the previous chapter to construct 3D

convex hull problem from a star-shaped polyhedron.

For a polyhedron P with its vertex set S, we want an algorithm to transform it to the

convex hull of S by �ips. Using the standard hill-climbing approach to monotonically

increase the volume of P has two issues. First, a �ip on an edge of P may result in

self-intersection beyond the local region, after which the volume of P is no longer well

de�ned. Second, if self-intersection is prohibited, the �ipping can get stuck with no

valid �ips (see Figure 6.1). An approach such as the one proposed in [Alb03] only works

when all the vertices of P are extreme.

To address the �rst issue, we study �ips in the context of a star-shaped polyhe-

dron where any self-intersection due to �ip can be prevented by a simple local check.

Section 6.1 reviews star-shaped polyhedron and its properties. In a star-shaped poly-

hedron, an un�ippable and re�ex edge as we de�ne must be incident to a non-extreme

vertex. Section 6.2 exploits this to adapt the �ip-�op algorithm for 3D convex hull,

and Section 6.3 proves its correctness.

With �ip-�op, given a point set S, we can compute CH(S) by �rst constructing a

star-shaped polyhedron of S using, for example, incremental insertion and then apply-

ing �ip-�op. Section 6.4 details this approach termed �Hull, and Section 6.5 analyzes

�Hull experimentally on both CPU and GPU. As shown in the experiment, �Hull on

the GPU is up to 50 times faster than Qhull and 170 times faster than CGAL. Also,

�Hull on the CPU runs up to 4 times faster than CGAL and as fast as QHull.

51

Figure 6.1: This star-shaped polyhedron is constructed as follows. A tetrahedron
gabc is initialized where 4abc is equilateral and horizontal. Another equilateral and
horizontal triangle 4def is embedded into 4abc and lower than 4abc. After twisting
4def a bit, all dashed edges are re�ex but �ipping them creates self-intersection.

6.1 Star-Shaped Polyhedron

Let P be a polyhedron with its vertex set S and s be a point in R3, and assume

that the points of S ∪ {s} is in general position. Given three points a, b, c ∈ S, the

cone of 4abc w.r.t. s, denoted as Cs(4abc), is the convex hull of {−→sa,−→sb,−→sc}, i.e., the
collection of points where each is a convex combination of some points on the three

rays; see Figure 6.2. The cones of a set T of triangles is the union of the cones of all

these triangles: Cs(T) =
⋃
4∈T Cs(4). Cs(4abc) extends to in�nity. The convex hull

of any two rays of {−→sa,−→sb,−→sc} is a facet of Cs(4abc), which also extends to in�nity.

These three facets together with the three rays, s, and the empty set ∅ form the faces

of Cs(4abc). Two cones overlap if their intersection is not a common face of them. The

following lemma provides a new way to de�ne star-shaped polyhedron using cones,

which is preferable in this thesis.

Lemma 6.1. A polyhedron P is star-shaped w.r.t. a point s if and only if ∀41,42 ∈ P,
41 6= 42, Cs(41) and Cs(42) do not overlap.

Proof. (only if) Pick a ray that starts at s and is contained in the overlapping region

of Cs(41) and Cs(42). The ray intersects with Cs(41) and Cs(42) respectively, and

one of the intersected point is in the interior of the line segment whose endpoints are

s and the other intersected point. By de�nition, P is not star-shaped.

(if) Proved by de�nition.

Figure 6.2: The cone of 4abc w.r.t. s, Cs(4abc).

52

(a) (b)

Figure 6.3: (a) ab is re�ex. (b) ab is convex.

From here onward, let P be a star-shaped polyhedron w.r.t. a kernel point s. P
has the following properties:

� For any triangle t of P, none of the points of S lies inside Cs(t).
� For any vertex v of P, none of the points of S except v lies inside Cs(star(v)).

� Cs(P) covers R3.

Let e = ab be an edge of P with its two incident triangles 4abc and 4abd. The two
sides of a triangle are the two half-spaces de�ned by the plane containing the triangle.

The edge e is a re�ex edge (w.r.t. s) if c and s lie on di�erent sides of 4abd; otherwise
it is a convex edge. Besides, since P is star-shaped, c and s lie on two di�erent sides

of 4abd if and only if d and s lie on two di�erent sides of 4abc. Figure 6.3 illustrates

these two concepts. Although the convexity and re�exivity of an edge is only a local

property of P, we can build the relation between this local property and the global

convexity of P in the following theorem.

Theorem 6.2. A star-shaped polyhedron P w.r.t. a point s is convex if and only if all

its edges are convex w.r.t. s.

Proof. (only if) When P is convex, any triangle de�nes a plane such that all the vertices

of P and s lie on the same side, indicating that all the three edges of this triangle are

convex w.r.t. s.

(if) By contradiction, suppose all the edges of P are convex while P is not. There

exists a triangle t0 and a vertex v of P such that v lies on the di�erent side of t0

from s. Pick a point p on t0. The convex hull of −→sp and −→sv intersects with a series of

edge-adjacent triangles of P starting at t0 and ending at a triangle incident to v, as

illustrated in Figure 6.4(a). By choosing a proper p, no vertices of P except v lie on

the intersection. Let the sequence of triangles be {t0, t1, ..., tk}.
Now consider t0 = 4abc and t1 = 4bcd that share a common edge bc; see Fig-

ure 6.4(b). Let H be the plane de�ned by s, b and c. Since P is star-shaped w.r.t. s, d

and a lie on di�erent sides of H. By assumption bc is a convex edge and thus d and s

lie on the same side of t0. On the other hand, v lies on the di�erent side of H from a

53

(a) (b)

Figure 6.4: (a) The convex hull of −→sp and −→sv (shaded region) intersects with a sequence
of triangles from t0 to tk. The intersection is shown in red segments. (b) H is the plane
de�ned by s, b and c. Both v and d lie on the di�erent side of H with a; d lies on the
same side of 4abc with s while v lies on the di�erent side of 4abc with s. Therefore v
and s lie on di�erent sides of 4bcd.

and on the di�erent side of t0 from s. We conclude that v lies on the di�erent side of t1

from s. This argument is repeated with t1 replacing t0 and so on. Finally, we conclude

that v lies on the di�erent side of tk−1 from s, implying that the edge shared by tk−1

and tk is re�ex, a contradiction.

Because of Theorem 6.2, checking whether P is convex can be done by applying

local checks on all the edges of P, similar to Theorem 2.1 and Theorem 2.2. Note that

this method only works for star-shaped polyhedron. There exists some polyhedron

with self-intersection where all the edges are convex w.r.t. the same point. Figure 6.5

shows a simple 2D illustration.

Let e = ab be an edge of P with two link points c and d, and Te be the induced-

subcomplex of e. The �ippability of e is subject to whether P is still star-shaped w.r.t. s

after �ipping e. There are two cases that make P no longer star-shaped w.r.t. s. The

�rst case is when s lies outside P after �ipping e; this cannot happen if s is outside the

tetrahedron abcd. The second case is when �ipping e creates self-intersection. Similar

to the case when �ipping on a 2D triangulation, no self-intersection is created by the

�ip on e if Cs(Te) is convex, i.e., if Cs(Te) = CH({−→sa,−→sb,−→sc,−→sd}). Thus e is �ippable

Figure 6.5: All the vertices are �convex�, but the polygon is not.

54

(w.r.t. s) if (1) s is outside the tetrahedron abcd, and (2) Cs(Te) is convex; otherwise e
is un�ippable.

Lemma 6.3. P is still star-shaped w.r.t. s after �ipping a �ippable edge of P.

Proof. Let e = ab be a �ippable edge of P with its two link points c and d. The �ip

on e either adds the tetrahedron abcd into or removes from P. Because s lies outside
the tetrahedron abcd, s is still inside P after �ipping e. The new triangles created by

the �ip on e must be contained in Cs(Te) because Cs(Te) is convex. Thus the cone of

any newly created triangle does not overlap with those outside Te.
We now prove that the cones of the newly created triangles do not overlap. If e is

a 3-1 edge, only one triangle is created. If e is a 2-2 edge, any point of {a, b, c, d} lies
outside the cone of the triangle formed by the other three points; thus the cones of the

two new triangles do not overlap. In addition, any triangle not in Te is not changed by

the �ip. Therefore after �ipping e, the cones of any two triangles of P do not overlap.

By Lemma 6.1, P is still star-shaped w.r.t. s.

We �nish this section with some notes. First, checking the convexity and �ippability

of an edge are local operations by de�nition. Second, �ipping a �ippable edge that is

re�ex replaces it with a convex one, and vice versa. Third, by Lemma 6.3, we can

always maintain a star-shaped polyhedron w.r.t. a �xed kernel point during �ipping.

6.2 Flip-�op for 3D Convex Hull

Flip-�op for 3D convex hull is a variant of the �ip-�op for 2D regular triangulation

described in Chapter 5 to work on polyhedron. In the remaining of this chapter we

use �ip-�op to refer to the one for 3D convex hull unless otherwise stated. In this

algorithm, the geometric structure is a star-shaped polyhedron w.r.t. a �xed kernel

point s. The local operations consist of 2-2 �ip and 3-1 �ip, and the candidate is

an edge associated with its induced-complex. A vertex is labeled as non-extreme once

it is proved to be a non-extreme point.

The criterion of �ip-�op is also a combination of the V- and the D-criterion with

a slight di�erence from that for 2D regular triangulation. The V-criterion is to �ip

re�ex edges to increase the volume of the polyhedron; and the D-criterion is to �ip

the edges incident to a non-extreme vertex in order to remove it from the polyhedron,

using the indices of the vertices to avoid �ipping back and forth. The D-criterion is

prioritized over the V-criterion. The local check on an edge e includes one or more

tasks as follows: checking the �ippability of e, checking the convexity of e, and checking

whether the vertices of e and link(e) are labeled as non-extreme.

The pseudocode of �ip-�op is shown in Algorithm 6, which is very similar to Algo-

rithm 5. Instead of checking the local regularity of an edge, we here check the convexity

55

Algorithm 6: Flip-�op for 3D Convex Hull

input : a star-shaped polyhedron P w.r.t. s with its vertex set S
output: CH(S)

1 label all vertices of P as unknown
2 Q ← { e | e is an edge of P }
3 while Q 6= ∅ do
4 e← Q.pop()
5 let e = ab, {c, d} be its link and x ∈ {a, b, c, d} be the non-extreme vertex

with smallest index
6 if e is a 3-1 edge then
7 assume a is inside Cs(4bcd) w.l.o.g.
8 if a is labeled as non-extreme or e is re�ex then

9 �ip e; Q ← {bc, cd, db}
10 else

11 if a 6∈ Cs(4bcd) and b 6∈ Cs(4acd) then
12 if x does not exist and e is re�ex then

13 �ip e; Q ← {ac, bc, ad, bd}
14 else if x ∈ {a, b} and s 6∈ CH({a, b, c, d}) then
15 �ip e; Q ← {ac, bc, ad, bd}
16 else if e is re�ex then
17 assume a is inside Cs(4bcd) w.l.o.g.
18 label a as non-extreme
19 Q ← { e′ | e′ is an edge of P with a as an endpoint }

of an edge w.r.t. the kernel point s. The �ippability of an edge is checked based on

s and the vertices included in the �ip. When a 2-2 edge is re�ex and un�ippable, one

of its endpoints can be shown to be non-extreme, and we label it. As an algorithm

of local transformation with free execution order, �ip-�op for 3D convex hull can be

implemented under the sequential and the parallel work�ows shown in Section 3.2.

6.3 Proof of Correctness

The main challenge of adapting �ip-�op for 3D convex hull is to prove its correctness.

This proof is signi�cantly di�erent from the one in Section 5.2.

Recall that Te is the induced subcomplex of an edge e. In Line 8�9 of Algorithm 6,

when a 3-1 edge is re�ex we �ip it without checking its �ippability, and in Line 16�18,

when a 2-2 edge is re�ex and un�ippable, one of its endpoints is labeled as non-extreme.

These are based on the following 2 lemmas.

Lemma 6.4. Any 3-1 edge of P that is re�ex is �ippable.

Proof. Let e = ab be a 3-1 edge of P that is re�ex and {c, d} be its link. Without loss

of generality, assume Te = {4abc,4bad,4acd}; see Figure 6.6(a). Since e is re�ex,

56

(a) (b)

Figure 6.6: (a) ab is a 3-1 edge that is re�ex. (b) ab is a 2-2 edge that is re�ex and
un�ippable. In both cases, a is a non-extreme vertex since it lies inside the tetrahedron
sbcd.

s and d lie on di�erent sides of 4abc, so s is outside the tetrahedron abcd. As a lies

inside Cs(Te), Cs(Te) equals Cs(4bcd) and thus is convex. Therefore, e is �ippable.

Lemma 6.5. Any 2-2 un�ippable edge of P that is re�ex is incident to a non-extreme

vertex.

Proof. Let e = ab be a 2-2 un�ippable edge of P that is re�ex and {c, d} be the link
of e. Since e is re�ex, s and d lie on di�erent sides of 4abc, therefore s is outside

the tetrahedron abcd. As such, by the de�nition of the un�ippable edge, the union of

Cs(4abc) and Cs(4bad) must not be equal to CH({−→sa,−→sb,−→sc,−→sd}); see Figure 6.6(b).
This implies that either a is inside Cs(4bcd) or b is inside Cs(4acd). Assuming the

former one without loss of generality, and because e is re�ex, a must lie inside the

tetrahedron sbcd and thus is non-extreme.

Similar to Lemma 5.2 and Theorem 5.3, we can prove that any star-shaped polyhe-

dron with all vertices being extreme can be transformed into its convex hull by �ip-�op

under only the V-criterion. We show that in this case any re�ex edge is �ippable, which

implies that we can �ip all the re�ex edges of P to get CH(S).

Lemma 6.6. If all the vertices of P are extreme, any re�ex edge of P is 2-2 �ippable.

Proof. Let e be a re�ex edge of P. It cannot be a 3-1 edge; otherwise �ipping it removes

a non-extreme vertex (Lemma 6.4), a contradiction. Also e cannot be a 2-2 un�ippable

edge; otherwise one of its endpoints is non-extreme (Lemma 6.5), a contradiction again.

Therefore, e is 2-2 �ippable.

Theorem 6.7. Flipping according to the V-criterion can transform P to CH(S) if all

the vertices of P are extreme.

Proof. Since the volume of P monotonically increases, an edge removed by a �ip cannot

reappear, and thus the �ipping terminates. By Lemma 6.6, all the re�ex edges are

57

(a) (b)

Figure 6.7: Two cases that a vertex is not removable by �ipping its incident edges.
(a) The kernel point s is inside the tetrahedron vabc. Flipping any edge incident to
v makes s be outside the polyhedron. (b) The six neighbors of u are coplanar. The
kernel point s lies inside the closed region formed by the star of u and the hexagon of
the six neighbors. Then �ipping any edge incident to u makes the polyhedron be not
star-shaped w.r.t. s.

�ippable. After the algorithm terminates, P is a star-shaped polyhedron containing

only convex edges; by Theorem 6.2, P is CH(S).

When a vertex of P is labeled as non-extreme the algorithm �ips the edges incident

to it according to the D-criterion in order to remove it from P. While any vertex of

a 2D triangulation not on the boundary is always removable by �ipping its incident

edges as shown in Lemma 5.4, a vertex of P may not be removable if all its incident

edges are un�ippable. For example, in Figure 6.7(a) all the edges incident to the vertex

v are un�ippable because �ipping any of them makes the kernel point s be outside

the polyhedron; in Figure 6.7(b) all the edges incident to the vertex u are un�ippable

because �ipping any of them makes the polyhedron be not star-shaped w.r.t. the kernel

point s. We next prove that a non-extreme vertex of P is always removable by �ipping

edges incident to it.

We introduce several new concepts for the proofs. Let v, a, b and c be di�erent

(a) (b)

Figure 6.8: (a) v is locally covered by b, e and f on v's link. (b) v is not locally covered
because no cone de�ned by three vertices on v's link contains it.

58

Figure 6.9: If v is not locally covered, the line passing through v and s intersects with
CH(link(v)), and v is in fact an extreme vertex. The solid edges form the link of v.

vertices of P. The cone Cs(4abc) is called a cover of v if v lies inside it. It is then

called a minimal cover of v if no other vertices of P lie inside it. Note that v might

have more than one minimal cover. We say v is locally covered if it has a cover formed

by three vertices on its link; see Figure 6.8. We show that any non-extreme vertex is

locally covered and a locally covered vertex is always incident to a �ippable edge, and

thus such a vertex can be removed by �ipping.

Lemma 6.8. If v is a non-extreme vertex, then v is locally covered.

Proof. By contradiction, assume that v is not locally covered, i.e., no cone of three

vertices of link(v) is a cover of v. We construct CH(link(v)) and the line vs, as

shown in Figure 6.9. Because v is inside Cs(star(v)), the line vs must intersect with

CH(link(v)) at two triangles t1 and t2. Note that t1 and t2 are possibly the same

triangle when link(v) has only 3 vertices. Since Cs(t1) and Cs(t2) are not covers of v,
v and s must lie on the same side of both triangles with v being further. Without loss

of generality, let the intersection of t1 and the line vs be nearer to s than that of t2,

and let H be the plane through s and parallel to t1.

We prove that all vertices of P lie on the half-space of H not containing v. Let Rt

be this half-space; clearly CH(link(v)) lies inside Rt. Let p be an arbitrary vertex in

P other than v and those in link(v). The half-plane de�ned by vs and containing p

must intersect with link(v) at a point q. The point p must lie outside the angle v̂sq;

otherwise it falls into Cs(star(v)), contradicting the star-shaped polyhedron. Since q

lies in Rt, p also lies in Rt. Thus all vertices of P other than v lie inside Rt and therefore

v is an extreme point, a contradiction.

Lemma 6.9. If v is locally covered, it has a minimal cover with vertices on its link.

Proof. Let Cs(4abc) be a cover of v such that {a, b, c} ⊆ link(v). If there is another

vertex p ∈ link(v) that lies inside Cs(4abc), without loss of generality we assume

that v lies inside Cs(4pab); see Figure 6.10. In this case, we replace 4abc with 4pab
and repeat the argument. Since the focused cover is shrunk by each replacement, this

process can terminate.

59

Figure 6.10: The cone of 4abc where {a, b, c} ∈ link(v) is a cover of v, and if another
p ∈ link(v) is inside Cs(4abc), p subdivides the cone into three and v lies inside one of
them.

Now let us assume that no other vertices of link(v) lie inside Cs(4abc). We argue

that Cs(4abc) is completely inside Cs(star(v)). Otherwise, an edge pq of link(v) must

cut through Cs(4abc) and thus Cs(4vpq) overlaps one of the cones of the triangles

incident to the edge va, vb and vc. This violates the fact that P is star-shaped.

Vertices in P \ link(v) cannot lie inside Cs(4abc). Therefore, Cs(4abc) is a minimal

cover of v.

Lemma 6.10. If the degree of a non-extreme vertex v is 3, any edge incident to it is

3-1 �ippable.

Proof. By Lemma 6.8, v is locally covered. Let {a, b, c} be the vertices of the link of v.

First, s lies outside the tetrahedron vabc; otherwise v is not locally covered. Second,

similar to the proof of Lemma 6.4, we have Cs(Te) = CH({−→sa,−→sb,−→sc,−→sv}) for any edge

e incident to v. Therefore any edge incident to v is �ippable.

Lemma 6.11. If the degree of a non-extreme vertex v is more than 3, there exists a

2-2 �ippable edge incident to v.

Proof. From Lemma 6.8 and Lemma 6.9, let Cs(4abc) be the minimal cover of v where

{a, b, c} ∈ link(v). The three vertices partition the link of v into three chains of

vertices: Lab, Lbc and Lca, each of which goes between two of these vertices and does

not include the third one; see Figure 6.11. Since the degree of v is more than 3,

there is at least one chain with more than 2 vertices. Without loss of generality, let

Lab be 〈a, p1, p2, . . . , pn, b〉 such that n ≥ 1. We prove that there exists a vertex pm

(1 ≤ m ≤ n) such that the edge vpm is 2-2 �ippable.

Let Dsva be the half plane through v, s, a that is de�ned by the line vs and contains

a. Similarly we de�ne Dsvb and Dsvc. Let Rab be the region bounded by Dsva and

Dsvb and containing the edge ab. Cs(4abc) is a cover of v, thus a and b must lie on

two di�erent sides of 4svc. To go from a to b without going into Rab, the chain Lab

must intersect with Dsvc at an edge e = pq ∈ Lab, and as a result Cs(4vpq) overlaps

60

Figure 6.11: If the chain of vertices Lab has more than 2 vertices, there exists a vertex
pm in the chain such that the edge vpm is 2-2 �ippable.

one of the cones of the triangles incident to vc, violating the fact that P is star-shaped.

Therefore, Lab goes through Rab. By the same argument, Lab cannot intersect with

Dsva or Dsvb at an edge, therefore Lab lies completely inside Rab.

Now we show how to �nd the vertex pm. Since Cs(4abc) is a minimal cover of

v, Lab cannot go through Cs(4abc); otherwise some cones of the triangles of P would

overlap. Consider the convex hull of {−→sv,−→sa,−→sp1, . . . ,−→spn,
−→
sb}, there must be a vertex

pm (1 ≤ m ≤ n) on its boundary. Let pm−1 and pm+1 be its two neighbors in Lab

(pm−1 = a if m = 1 and pm+1 = b if m = n). Clearly, pm lies outside Cs(4vpm−1pm+1).

Since pm−1, pm and pm+1 lie inside Rab, v is outside Cs(4pm−1pmpm+1). Therefore,

vpm is a 2-2 edge and the union of Cs(4vpm−1pm) and Cs(4vpmpm+1) is equal to

CH({−→sv,−→spm−1,−→spm,−→spm+1}). On top of that, since v, pm−1, pm and pm+1 are inside

Rab, s is surely outside the tetrahedron vpm−1pmpm+1. As a result, vpm is a 2-2

�ippable edge.

Finally, we can prove the correctness of �ip-�op based on the previous lemmas. The

proof is very similar to that of Theorem 5.5 and thus omitted here.

Theorem 6.12. The �ip-�op algorithm transforms any star-shaped polyhedron to its

convex hull.

6.4 Compute Convex Hull of a Point Set

We develop �Hull, an algorithm utilizing �ip-�op to compute the convex hull of a point

set S in R3. Before applying �ip-�op, �Hull constructs a star-shaped polyhedron P
using S so that all the points of S are either inserted into P or proved to be inside P.

Algorithm 7 shows the pseudocode of the sequential version of �Hull. There are

two stages: constructing a star-shaped polyhedron P (Line 1�14), and transforming P
to CH(S) using �ip-�op (Line 15).

In the constructing stage, starting at an initial tetrahedron (Line 1�4), we grow the

polyhedron P star-shaped w.r.t. the centroid s of the initial tetrahedron by incremen-

61

Algorithm 7: �Hull

input : a set S of points in R3

output: CH(S)
1 let a, b, c, d be any 4 extreme vertices
2 S ← S \ {a, b, c, d}
3 P ← CH({a, b, c, d})
4 s← the centroid of P
5 associate each p ∈ S to 4abc ∈ P s.t. p ∈ Cs(4abc)
6 while S 6= ∅ do
7 foreach 4abc associated by some points do
8 let v be the furthest point associated to 4abc
9 P ← P ∪ {4vab,4vbc,4vca} \ {4abc};

10 S ← S \ {v}
11 foreach p ∈ S do

12 let p be associated to 4abc, into which v is just inserted
13 associate p to t ∈ {4vab,4vbc,4vca} s.t. p ∈ Cs(t)
14 if p and s lie on the same side of t then S ← S \ {p}

15 apply �ip-�op on P

tally processing the input points: an input point is either inserted to become a vertex

of P or removed if found to be inside P constructed so far. For each point p in S,

we associate p with a unique 4abc of P if p is inside the cone of 4abc (Line 5). We

remove p if it is inside the tetrahedron sabc, i.e., when p and s lie on the same side of

4abc, since it is a non-extreme point. In the main loop, P is grown by inserting the

furthest point v associated to each triangle t ∈ P into P (Line 7�10); doing so helps

to remove non-extreme points in S quickly. This is done by replacing t with three new

triangles. Each point inserted into P is removed from S. Each insertion splits Cs(t)
into three new non-overlapping cones. This guarantees that P is still star-shaped after

the insertion. Line 11�14 update the triangle each point p ∈ S is associated to, and

remove p if it is found to be a non-extreme point. This �growing� process is repeated

until S is empty.

In the �ipping stage, we simply apply �ip-�op to transform P to CH(S).

There are two points to note for the above algorithm. First, �ip-�op actually works

for any star-shaped polyhedron. It is thus not necessary to always �nd the furthest

point to insert into P. In fact, it is costly to �nd such furthest points because of

numerical error. In practice, we often choose the almost furthest points to insert to

construct the star-shaped polyhedron. Second, the algorithm presented above is just

one approach to use �ip-�op to construct the convex hull. Another possibility is to

alternate between inserting points and �ipping in multiple iterations.

The point insertion process in the constructing stage generates a star-shaped poly-

hedron from the input points, with no extreme vertices being excluded. By Theo-

62

rem 6.12, the subsequent �ip-�op in the �ipping stage correctly computes CH(S), thus

the correctness of �Hull is guaranteed.

6.4.1 GPU Implementation

The polyhedron is represented as an array of triangles, each containing the indices of

its three vertices and the indices of the triangles sharing its three edges. Furthermore,

some auxiliary arrays are also used for intermediate computation. For example, we

need an array to store the index of the furthest point for each triangle and an array

to store for each point the index of the triangle it is associated to. The arrays are

dynamically expanded rather than pre-allocated since usually only a small number of

points appear in the polyhedron.

We use two techniques to simplify (and also optimize) the implementation of �Hull.

Let orient(p, t) be the determinant used to determine whether the point p lies beneath

or beyond the triangle t. The �rst technique is to maintain the orientation of each

triangle t in the polyhedron so that the kernel point s is beneath t. With this, to

perform Line 14 of Algorithm 7, we only need to compute orient(p, t). Similarly, we

can check the re�exivity of an edge, without referring to s. The second technique is

reusing |orient(p, t)|, which is the volume of the tetrahedron formed by p and t, instead

of actually computing the distance when �nding the furthest point to t.

The details of the implementation are as follows. In the constructing stage we have

four major GPU kernels. The �rst kernel (Line 5 of Algorithm 7), with one thread

processing one input point p, �nds the triangle in the initial tetrahedron that p is

associated to and at the same time participates in the search for the furthest point of

each triangle. We use two arrays in the global memory to store for each triangle the

furthest point and its distance, with the initial value being 0. The thread associating

p to a triangle t uses orient(p, t) to judge whether p is beneath t or not, and marks p

as deleted if it is beneath. Otherwise, the distance from p to t (actually orient(p, t) is

used) is compared with the currently recorded value and if the new distance is larger,

p is recorded as the furthest point of t, and the distance is updated.

The second kernel (Line 7�10), with one thread processing one triangle t, inserts

one point associated to t into the polyhedron. A point being inserted into t replaces

it with three new triangles. The �rst one is stored in the original slot, while the other

two are appended into the end of the array of triangles. Then, the third kernel, with

one thread processing one triangle, updates the full adjacency information of all new

triangles and those adjacent to them. A separate kernel is necessary here since updating

directly in the second kernel may create memory read and write con�ict. The fourth

kernel (Line 11�14), with one thread processing one point p, updates p's associated

triangle if p is still outside P. For p with t being the previous associated triangle,

we �rst read the slot in the triangle array that previously stored t, which now stores

63

the �rst new triangle. From its adjacency information, we obtain the other two new

triangles. Among these three, we identify the triangle t′ that p is to be associated to,

and mark p as deleted if necessary. Then the furthest point for t′ is updated similar

to the �rst kernel mentioned above. Note that in the �rst and fourth kernels, since

the threads are executed in parallel, we do not always get the furthest point for each

triangle. However, this approach is e�cient without compromising on the correctness.

The �ipping stage is done in multiple iterations. In each iteration, we use two

kernels, a checking kernel and a �ipping kernel, to perform �ip in parallel, similar to

the technique described in [QCT12] and [NHS11]. In the checking kernel, we assign

one thread to one triangle to check if one of its edges should be �ipped based on the

criterion. The di�culty is that the induced sub-complexes of some edges share some

triangles, thus the �ips on these edges con�ict and cannot be done in the same iteration.

To avoid this, if a thread in charge of 4abc wants to �ip the edge e = ab, it uses the

atomic minimum operation to label the triangles of Te with the index of 4abc. In

the �ipping kernel, we also assign one thread to one triangle. The thread in charge of

4abc only �ips e if the triangles of Te are still labeled with the index of 4abc. This

guarantees no con�icting �ips are performed concurrently, and in each iteration at least

one �ip can be done. Since only up to three threads write to the same memory location

during the labeling, the use of the atomic operation does not a�ect the e�ciency much.

6.4.2 Exact Computation and Robustness

The only predicate we use, the 3D orientation predicate, is adapted from the exact

predicate of Shewchuk [She97]. Together with the SoS technique [EM90], we can guar-

antee the exactness and robustness of our implementation. The only source of inexact

computation is computing the kernel point s. If the initial tetrahedron is almost �at,

its centroid computed inexactly can lie outside. In our implementation, by carefully

choosing the �rst four extreme points, we make sure they are far away from each other

to avoid the undesirable situation, unless all the input points are almost co-planar. To

really �x this problem, we should use the input points as the kernel points. Speci�cally,

we can select an extreme point v1 as the kernel point, and another extreme point v2

as the second kernel point. During the insertion, we need to guarantee that star(v1)

is star-shaped w.r.t. v2 and the polyhedron is star-shaped w.r.t. v1. This procedure is

much more complicated and less e�cient than the one described in Algorithm 7.

There are two notes for the GPU implementation. First, instead of using a multiple-

stage adaptive arithmetic on the GPU, we only use two stages: a fast computation with

all arithmetic operations being done using native �oating-point numbers, and an exact

computation with all arithmetic operations being fully expanded into arrays of �oating-

point numbers. To verify whether the fast computation gives the correct sign, we use

the forward error analysis approach described by Shewchuk. The error bounds are pre-

64

(a) Cube (b) Ball

(c) Box with thickness 0.01 (d) Sphere with thickness 0.01

Figure 6.12: Four distributions of tested data for 3D convex hull.

computed and stored for later usage. Second, the exact computation code requires a

lot of registers and local memory, so each kernel that needs exact computation is split

into two kernels. The �rst one performs only fast computations, and uses the error

bounds to determine whether it requires exact computation or not. In second kernel,

only the threads that need exact computation are active. By doing this, the �rst kernel

requires less registers and local memory, and thus can run with higher parallelism. The

second kernel, on the other hand, has very little work to do.

6.5 Experiment

We implement �Hull on both CPU and GPU, and denote these two implementations

as �Hull-CPU and �Hull-GPU respectively. We compare their performance with the

two fastest sequential implementations of the Quickhull algorithm: Qhull [Qhu12] and

CGAL [CGA12]. Qhull handles roundo� errors from �oating point arithmetic by gen-

erating a convex hull with �thick� facets: any exact convex hull must lie between the

inner and outer plane of the output facets. On the other hand, CGAL uses exact arith-

metic, which is similar to our implementation. In our experiment, we �nd that CGAL

always runs slower than Qhull due to its use of exact arithmetic.

Points are generated randomly with coordinates between [0.0, 1.0] and distributed

65

(a) Cube (b) Ball

(c) Box (d) Sphere

Figure 6.13: Running time of �Hull for the four distributions of points.

uniformly in four distributions: a cube, a ball of radius 0.5, a box with thickness of

0.01, and a sphere with thickness of 0.01; see Figure 6.12. The cube distribution has

very few points on the convex hull, while many points inside can easily be removed by

the Quickhull algorithm. The ball distribution is similar, but with a bit more points

on the convex hull. The box distribution also has very few extreme vertices, but points

are distributed close to the convex hull, so it is harder to eliminate them. The sphere

is the extreme case where many points are on the convex hull, while the rest of them

are also close to it. The size of tested point set is in the range [106, 107].

Running time

We show the running time of the three CPU implementations in Figure 6.13: �Hull-

CPU, CGAL, and Qhull. For all the point distributions, �Hull-CPU runs 3 to 4 times

faster than CGAL and as fast as Qhull. Considering �Hull-CPU uses exact computation

while Qhull does not, �Hull-CPU has a better performance than Qhull.

Figure 6.13 also shows the speedup of �Hull-GPU over CGAL and Qhull. For the

66

Table 6.1: Running time of �Hull, CGAL and Qhull on 3D models.

Model
Points Running time (ms)

(millions) CGAL Qhull �Hull-CPU �Hull-GPU

Asian dragon 3.6 1181 540 997 117

Thai statue 5.0 1538 692 1240 91

Lucy 13.9 4488 1884 3664 192

ball distribution, �Hull-GPU is up to 30 times faster than Qhull and 120 times faster

than CGAL. For the cube and the sphere distributions, �Hull-GPU is up to 40 times

faster than QHull and 140 times faster than CGAL. Notably, �Hull-GPU performs very

well for the box distribution: it runs 50 times faster than Qhull and 170 times faster

than CGAL when the number of points are 107.

We also test �Hull with models of over a million points from the Stanford 3D

scanning repository [Sta12]; see Table 6.1. These models have very few points on the

convex hull, and most other points are distributed near the surface with many being

co-planar. Since �Hull su�ers from a large amount of coplanar points, �Hull-CPU

runs approximately 2 times slower than Qhull and only a little faster than CGAL. The

speedups of �Hull-GPU over Qhull are from 4.6 to 9.8 times, and those over CGAL are

from 10.1 to 23.4 times.

Sensitivity

When the input has more points close to the boundary of the convex hull, �Hull excludes

fewer non-extreme points during constructing star-shaped polyhedron and thus spends

more time on its both stages. We investigate the sensitivity of �Hull to the thickness

of the sphere distribution. Speci�cally, we test the running time of �Hull using 107

points on the sphere distribution with thickness varying from 0.5 to 0.0001.

As shown in Figure 6.14, �Hull-CPU slows down when the sphere becomes thinner,

and similar performance can be observed for CGAL. The speedup of �Hull-CPU over

CGAL is around 3 to 4 times for all the thicknesses. On the other hand, the rate of

slowing down in Qhull is much larger that those in �Hull-CPU and CGAL. Qhull is

as fast as �Hull-CPU when the thickness is in [0.5, 0.01], while it runs 3 times slower

than �Hull-CPU at thickness 0.0001.

Figure 6.14 also shows the speedup of �Hull-GPU over CGAL and Qhull. As the

speedup of �Hull-GPU over CGAL becomes smaller when the thickness varies from

0.01 to 0.0001, we conclude that �Hull-GPU is more sensitive to the thickness than

CGAL and �Hull-CPU. This is mainly because �Hull-GPU takes much more time for

exact computation when the sphere is thinner. However, the sensitivity of �Hull-GPU

is still less than Qhull: the speedup of �Hull-GPU over Qhull increases sharply from

30 to 60 times when the sphere becomes thinner.

67

Figure 6.14: Running time of �Hull for a sphere distribution of di�erent thicknesses.

Time breakdown

We �rst measure the time breakdown of �Hull for the four distributions of 107 points.

The total running time of �Hull-GPU can be partitioned based on four stages: initial-

ization (allocating memory and copying data from the CPU), constructing, �ipping,

and output (copying data back to the CPU). The running time of �Hull-CPU can be

partitioned in a similar way, yet without the initialization and the output stages.

Figure 6.15(a) shows the time breakdown of �Hull-GPU. The time of constructing

takes a major proportion; especially in the sphere distribution, it takes more than

50% of the total running time, as most of the input points cannot be removed during

this stage. In contrast, �ipping uses much less time, implying that the constructed

polyhedron is a proper starting point of �ip-�op. The time of the initialization and the

output stages is unchanged among di�erent distributions. The time of initialization is

quite large, because copying data between CPU and GPU is costly.

Figure 6.15(b) shows the time breakdown of �Hull-CPU. Unlike �Hull-GPU, �ip-

ping of �Hull-CPU takes very few time compared with constructing. The main reason

is that �Hull-CPU can always �nd the furthest point to insert during constructing, and

thus provides a much better input for �ipping.

We also measure the time breakdown of �Hull with 107 points on the sphere dis-

tribution of various thicknesses, as shown in Figure 6.16. Point set distributed in the

thinner sphere has more extreme points. As more points are on the convex hull, both

constructing and �ipping take more time, and thus the proportion of the initialization

and the output stages in �Hull-GPU decreases. For both �Hull-GPU and �Hull-CPU,

�ipping takes a larger proportion of the total running time as the sphere becomes

thinner. For example, in �Hull-GPU, �ipping only takes about 50% as much time as

constructing at thickness 0.01, while it takes almost the same time as constructing at

68

(a) (b)

Figure 6.15: Time breakdown of �Hull for the four distributions of points (a) on the
GPU and (b) on the CPU.

(a) (b)

Figure 6.16: Time breakdown of �Hull for a sphere distribution of di�erent thicknesses
(a) on the GPU and (b) on the CPU.

thickness 0.0001. This is because the number of points on the convex hull a�ects the

constructing stage at a logarithmic rate (i.e., only a�ects the number of loops) while it

a�ects the �ipping stage at a linear rate in our experiment.

Number of �ips

In Figure 6.17, we present the total number of �ips performed by �Hull-CPU when

running on di�erent distributions with varying number of points. For the cube and the

69

Figure 6.17: Number of �ips performed by �Hull on the CPU.

box distributions, due to the small number of points on the convex hull, the numbers of

�ips needed are very small, as shown by the two overlapping curves near the horizontal

axis. On the other hand, for the ball and the sphere distributions, the numbers of �ips

are nearly linear to the number of points. This result matches with the result of the

traditional Lawson's �ip algorithm when computing the 2D Delaunay triangulation in

practice.

70

CHAPTER 7

Algorithm using Splaying for 3D Convex Hull

This chapter discusses the use of star splaying to construct convex hull from a point

set in R3, and compares it with the �Hull algorithm developed in the previous chapter.

Star splaying is a powerful algorithm of local transformation compared with �ip

algorithms because its input, a set of convex stars, is very general and it works in any

dimension for computing convex hull. However, to be e�cient, it must start from a

good approximation of the output. To derive such a good approximation, we exploit

the relation between 3D Voronoi diagram and 3D convex hull. In particular, we derive

convex stars from the digital restricted Voronoi diagrams on the six sides of a box

enclosing all the input points in the digital space. The whole process is termed gHull

in Section 7.1.

Section 7.2 further elaborates the implementation details of gHull. Section 7.3

proves the correctness of gHull. Since the performance of gHull is determined by the

approximation constructed in the digital space, it is sensitive to the distribution of

input points. In particular, we identify three possible problems and propose strategies

to remedy them.

Section 7.4 details experiment on gHull, and compares it with the GPU implemen-

tation of �Hull and existing CPU implementations, Qhull and CGAL. By design, gHull

is meant for GPU implementation. It is up to 30 times faster than Qhull and 100 times

faster than CGAL. On the other hand, �Hull on the GPU performs better than gHull

for most of input distributions, especially when most of input points are close to the

boundary of the convex hull.

71

(a) (b)

Figure 7.1: (a) Digital restricted Voronoi diagram. (b) Stars constructed from the
digital restricted Voronoi diagram; they might not be consistent.

7.1 The gHull Algorithm

The main idea of gHull is to utilize the relation between the 3D Voronoi diagram and

the convex hull computed from the same point set S. In particular, only the Voronoi

cells of the extreme vertices of S are unbounded, i.e., extend to in�nity. Thus, one

can �rst identify these Voronoi cells to derive the extreme vertices of S. Traditionally,

this observation is not computationally useful as the Voronoi diagram V(S) structure

is harder to manage than the convex hull, and is just as expensive to compute. But, on

the GPU the Parallel Banding Algorithm (PBA) [CTMT10] can compute the digital

Voronoi diagram very e�ciently and it is a good starting point to derive an approxi-

mation of CH(S).

In gHull, we enclose the input point set S in a box B that contains integer grid

points, each corresponding to one unit cell of B. We use the boundary of B to capture

the unbounded Voronoi cells of S, meaning we only compute six slices of the 3D Voronoi

diagram. Theoretically, if B is large enough, dualizing V(S) restricted to the faces of

B, i.e. the restricted Voronoi diagram (Figure 7.1(a)), gives us CH(S). However, since

the Voronoi diagram we compute is in the digital space, and due to the �nite size of

B, we can only obtain an approximation of the convex hull. We apply star splaying to

transform this approximation into the convex hull. Star splaying plays an important

role in gHull as a repairing tool, and it is the only known algorithm to compute the

convex hull from such an approximation, which may not even be a polyhedron.

The gHull algorithm can be split into �ve stages:

Stage 1. Voronoi Construction: compute the six 2D slices of the 3D digital

Voronoi diagram of S on the boundary of B. Let S′ be the set of points whose Voronoi
cells appear on these slices.

Our aim is to approximate V(S) restricted to the six faces of B. We �rst translate

and then scale the input points such that their bounding box �ts inside the box B. Then,

72

we compute the digital Voronoi diagram of S intersecting each side of the boundary

of B on the GPU. To do so, for each side, we project the points onto it, recording one

nearest point among those that fall onto the same 2D grid cell. The two coordinates of

a point are shifted to the center of the nearest 2D grid cell, while the third coordinate

(the distance to the side we are projecting on) is unmodi�ed. We then apply PBA to

compute the digital Voronoi diagram.

Stage 2. Star Creation: dualize the digital restricted Voronoi diagram to obtain

for each point s in S′ a set of neighbors, called the working set of s and use that to

construct a convex cone, represented as a star, for the point.

We dualize the digital restricted Voronoi diagram obtained in the previous stage to

get a set of triangles. The corners of grid cells are grid vertices, each of which is incident

to a maximum of 4 di�erent Voronoi cells. Each grid vertex incident to 3 or 4 di�erent

Voronoi cells is dualized into one or two non-intersecting triangles respectively. Ideally,

dualizing the (non-digital) restricted Voronoi diagram of S on a closed box results in

a polyhedron, not necessarily convex, approximating CH(S′). However, in the digital

restricted Voronoi diagram, a Voronoi cell can be, for example, disconnected, resulting

in the dualized polyhedron having holes or duplicated triangles. Instead of constructing

a polyhedron, we only record the information on the adjacencies of the Voronoi cells.

For each triangle thus obtained, we add each two vertices of the triangle to the working

set of the third one.

For each s in S′ in parallel, we create its star (in the continuous space) from its work-

ing set such that its cone is convex (Figure 7.1(b)). Each GPU thread handling a point

s �rst creates an initial star from 3 points in the working set, and then incrementally

inserts the rest using the beneath-beyond algorithm.

Stage 3. Hull Approximation: apply the star splaying algorithm to obtain the

convex hull CH(S′); see Section 3.3.2 for this algorithm.

To perform the star splaying algorithm in parallel while achieving regularized work

for di�erent GPU threads, we carry out the inconsistency checking and the insertions

of points in two separate steps, alternately performed until all the stars are consistent.

Any inconsistency between two alive stars can generate up to 4 insertions, two each

from the link of this edge on each star. For any dead vertex, we only maintain 4

neighbors as its death certi�cate so that inconsistency between an alive star and a

dead star only generate 4 insertions. The insertion step is done by �rst sorting the set

of insertions by the indices of the stars they are destined for, and then assigning each

thread to perform the insertions into a star independent of others.

Stage 4. Point Addition: collect points of S that lie outside CH(S′) and for

each of them construct its star using its nearby vertices of CH(S′).

Due to CH(S′) being an approximation, it may not contain all extreme vertices of

S. We use CH(S′) to check the points in S and remove those inside the hull; this is

the reason why we construct CH(S′) in Stage 3. The rest of the points can potentially

73

be extreme vertices. We �rst perform the checking in the digital space by rendering

the triangles of CH(S′) with the viewing direction orthogonal to each side of B in turn.

Then, we use a depth test to eliminate points that clearly lie inside CH(S′). Each

GPU thread handling a point s in S projects s onto each side of B and compares its

depth value ds with the value d on the depth map on that side (with depth value

increasing in the viewing direction). If ds − d ≤ τ where τ is a prede�ned constant,

then s is potentially an extreme vertex. The depth test is done in the digital space, so a

conservative threshold (τ equals 1 pixel width) is used to remove non-extreme vertices;

see Section 7.3.1 for the proof that this threshold is safe.

To further eliminate non-extreme vertices, we perform another round of checking in

continuous space. For each point s that passes the depth test, we also record a triangle

A that covers its projection in one of the viewing directions. Notice that A is close to s.

Pick an arbitrary point r on CH(S′). The point s is either beyond one of the triangles

in the star of r, or the ray −→rs intersects with CH(S′) at a triangle not in the star of

r. Using a walking technique similar to point location, starting from A we can quickly

�nd such a triangle B, and accurately determine whether s is inside or outside CH(S′).

If s is outside, we use B to form the initial star of s, otherwise it is eliminated. All

this computation can be done on each point independently in parallel. The new stars

together with CH(S′) form an approximation of CH(S).

Stage 5. Hull Completion: perform star splaying again to obtain CH(S).

7.2 Implementation Details

Due to the nature of the GPU, it is more e�cient to allocate memory in large chunks

rather than dynamically allocate many small blocks. In our implementation, we use

two lists to store the description of the stars and their edges, called the star list and the

edge list, as shown in Figure 7.2. Each star has a contiguous chunk of memory whose

size is enough to store its current edges plus a certain amount of free space. Each star

records the coordinates of its point, its status (whether it is dead), the number of edges,

the size of memory allocated for it, and the starting location of its storage in the edge

list. Each edge of a star records the index of the other endpoint, and a �ag for checking

of consistency. The edge list of a star represents its link vertices in counter-clockwise

order.

Stars

Edges

Figure 7.2: Data structures for stars and edges. × indicates a dead star.

74

Algorithm 8: Projecting a chunk of points onto a tile in each block

1 declare a k × k real number array A in shared memory for the tile
2 foreach element of A do in parallel

3 initialize the element using maximum real number

4 foreach point of the chuck do in parallel

5 �nd the pixel and the element of A corresponding to the point
6 compute the distance between the point and the pixel
7 use atomic minimum operation to store the distance into the element

8 foreach element of A do in parallel

9 output the value into global memory

10 foreach point of the chunk do in parallel

11 �nd the pixel and the element of A corresponding to the point
12 compute the distance between the point and the pixel
13 if the distance is equal to the value of the element then
14 output the index of the point into global memory

The di�culty here is that the edge list has a dynamic size as stars are shrinking as

well as expanding during star splaying. Any time a star uses up its chunk of allocated

storage, we have to expand the edge list. We also use this opportunity to shrink or

expand the storage of all the stars to maintain some free space (say 20%) for each star.

This helps to reduce the number of times we need to reallocate the edge list. Note

that the size of the free space does not a�ect the performance much, as we observe in

our experiment, because the list expansion is relatively cheap compared to the other

processing on the GPU. Also, since we start star splaying with a good approximation

of the convex hull, the stars typically do not grow drastically.

Voronoi Construction

Before applying the PBA, we need to project the points on the six sides of the box B.
This operation entails a lot of random atomic memory accesses to the global memory

that are highly ine�cient on the GPU. Instead, we perform all the projections in the

GPU shared memory to speed up this stage.

B is partitioned into bricks, each of size k × k × k. For each point in S, we �nd

the brick that encloses it using a GPU kernel. We accumulate the points that belong

to the same brick into a contiguous chunk using a sorting primitive. We identify the

starting o�set of each such chunk in the sorted list using another kernel.

We use six textures to store the projections on the six sides of B. For each k × k
tile of a texture, use a block of threads to process the points enclosed in the bricks that

project onto this tile. Algorithm 8 shows the details of projecting these points onto the

tile in each block by one kernel. When many points project onto one pixel, we store

the point closest to the tile by using the atomic minimum operation (Line 7). This is

75

applied on a shared memory array of the block and thus is highly e�cient compared to

using it on global memory. The constant k can typically be chosen to be 32, so that the

k×k tile can �t in shared memory. The result of these projections is coherently written

to global memory to apply PBA and obtain the digital restricted Voronoi diagram.

Star Creation

We construct the working set for each point by scanning the resulting Voronoi diagram

textures constructed in the previous stage. For each triangle identi�ed, we generate 6

pairs of its vertices, each pair (a, b) indicating that b is in the working set of a. First,

we let one kernel count the number of pairs generated by each grid corner. Next, we

pre-allocate an array to store the pairs, and use a pre�x sum primitive to compute for

each corner the o�set in the array to store its pairs. After that, we call another kernel

to scan the textures again, generating the working set pairs. Lastly, we sort the list

of pairs using a sorting primitive, remove duplicates, and identify the working set for

each point as a contiguous chunk of pairs.

Based on the working sets thus constructed, we allocate the storage for the star list

and the edge list. A kernel is used to construct an initial star consisting of 3 link points

for every point in S′. Each thread constructing an initial star takes 3 points from its

working set, checks the 3D orientation, and stores these points in the edge list of that

star in counter-clockwise order.

After that, the rest of the working set of each point is inserted into its star in a single

kernel. Each thread processes the working set of a point, independent of other points.

For each insertion of t into s, we go through the star of s, identifying a (continuous)

series of beneath triangles, removing their corresponding edges and inserting t into the

edge list of s accordingly.

The beneath-beyond insertion relies heavily on the 3D orientation predicate. It is

important that the predicate is computed exactly and co-planar cases are handled cor-

rectly. More importantly, the predicate should give the same result when checked from

di�erent stars for the star splaying algorithm to converge. In order to achieve this, all

our predicates are performed with the Simulation of Simplicity (SoS) technique [EM90]

and exact arithmetic [She97].

Hull Approximation

In this stage the star splaying algorithm is adapted for the GPU. The pseudocode of

the star splaying implementation on the GPU is outlined in Algorithm 9. In Line 3, we

use a compaction primitive on the edge �ags to obtain the list of edges to be checked

for consistency. Each inconsistent edge can potentially lead to up to four insertions into

di�erent stars (see Section 3.3.2). We pre-allocate storage for these possible insertions

in Line 4. In Line 5, we use a kernel where each thread processes one edge.

76

Algorithm 9: Star splaying on the GPU

1 �ag all edges to be checked for consistency
2 repeat

3 collect the edges that are �agged
4 allocate space for possible insertions
5 check the �agged edges and generate insertions
6 sort and compact the list of insertions
7 if a star needs more space then
8 expand the edge list

9 perform the insertions to splay stars
10 �ag edges that need to be checked in the next iteration

11 until there are no more �agged edges

The insertions are sorted and compacted in Line 6 and duplicates are removed.

Each star then checks if it has enough free space in its edge list and the edge list is

expanded if needed (Line 7�8). This expansion is done by computing the required space

for each star using a kernel, allocating a new edge list, and then copying the edges over.

The insertions (Line 9) are performed similar to those in star creation (Stage 2). In

Line 10, we �ag all newly created edges. Also, during the insertions, if an edge ab in

the star of a is deleted, then the edge ba in the star of b, if any, needs to be �agged too.

Point Addition

The �rst round of checking in this stage is carried out in OpenGL, which works seam-

lessly with other stages done on the GPU. As we keep edges rather than triangles, we

�rst use a kernel to generate the triangles of CH(S′) from the stars. To avoid generating

duplicate triangles, each triangle 4abc is created from the star of the vertex having the

minimum index among the three. Similar to other stages, we �rst count, then use a

pre�x sum primitive to compute the o�set before actually generating the triangle list.

When a triangle is rendered, we record in the color bu�er the index of one of the

three vertices so that we can use it as the starting point for our point location in

the second round of checking. After the rendering, the depth bu�er is processed by a

kernel. Each thread processing a point in S \ S′ checks the depth value to see whether

the point can potentially be outside or not. If outside, this point becomes a candidate

for the next round of checking.

The second round of checking is explained in Algorithm 10. We use one thread

to check one candidate found in the previous round. Let the candidate be s and the

corresponding point recorded at the projection of s in the color bu�er be c. Also, let r

be an arbitrary point in S′ where r 6= c. In order to determine the triangle B in CH(S′)

that is intersected by the ray −→rs, we start walking from c (Line 3�17). Each vertex t

on the link of c together with the line rc forms a plane, and we are interested in the

77

Algorithm 10: Second round of checking in one kernel

1 foreach candidate point s do in parallel

2 read the corresponding point c from color bu�er
3 repeat

4 p← ∅, q ← ∅
5 foreach triangle 4cvv′ in the star of c do
6 if r is one of v and v′ then continue
7 if s is beyond rcv and beneath rcv′ then
8 p← v, q ← v′

9 break

10 if p 6= ∅ and q 6= ∅ then
11 if s is beyond rvv′ then
12 B ←4cvv′
13 else

14 c← v

15 else

16 B ← the �rst triangle in the star of r

17 until the triangle B is found
18 if s is beyond B then

19 construct initial star of s using B
20 else

21 label s as non-extreme vertex

half-plane de�ned by rc that contains t. The collection of these half-planes partitions

the space into several unbounded subspaces around rc; one of these subspaces contains

s, which can be identi�ed using 3D orientation checks. This subspace tells us which

vertex on the link of c gets us closer to s, until we reach B. Specially, when r is in the

star of c, it is possible that none of the subspaces contains s. In this case, s must be

beyond one of the two triangles incident to r in the star of c, and we select the �rst

triangle from the star of r as B. After that, using one more 3D orientation check, we

can determine accurately if s is outside CH(S′), in which case the three vertices of B

form the initial star of s (Line 18�21).

7.3 Digital Approximation Issues

In this section, we discuss some issues of using the digital space. Note that gHull

has two places related to the digital space: it computes the digital restricted Voronoi

diagram using six textures, and retrieves extreme-points that are previously missed by

rendering triangles in the bu�ers of OpenGL.

78

x

T

s

inside

outside

1.0 ds − d

Figure 7.3: The digital depth test of a point s against a triangle T on the boundary of
CH(S′) when s is outside CH(S′).

7.3.1 Digital Depth Test

In point addition (Stage 4), we use the six sides of the boundary of B as the viewing

planes. We compare the depth ds of each point s with the minimum depth value of

CH(S′) at the corresponding projection of s to quickly exclude points that are inside

CH(S′). However, since the depth bu�er we obtain when rendering CH(S′) is of �nite

resolution, the depth value d of the projection of s is actually the depth value of the

center of the cell containing this projection. Depending on the triangle covering that

projection, (ds − d) can be arbitrarily large; see Figure 7.3. The following claim shows

that as long as we keep every point s that has (ds − d) < 1 in one of the projections,

we do not miss any point outside CH(S′). This tight bound allows us to throw away

most of the points that are inside CH(S′).

Lemma 7.1. Let s ∈ S \ S′ be a point outside CH(S′). In (at least) one of the six

renderings of CH(S′) orthogonal to a side of B, we have (ds− d) ≤ τ where τ = 1 pixel

width.

Proof. The point s is inside a unit cell of B whose center is the grid point (x̄, ȳ, z̄). The

coordinates of s is (x̄ + δx, ȳ + δy, z̄ + δz) where δx, δy, δz ∈ [−0.5, 0.5]. Let T be the

triangle covering the cells containing the projections of s in di�erent viewing directions,

and the plane equation of T be ax + by + cz + K = 0. Without loss of generality we

assume that a ≥ b ≥ c.
Since T appears in the depth bu�er, and CH(S′) is convex, T must be visible

from three di�erent viewing directions. This forms a coordinates system in which the

plane equation of T has a, b, c ≥ 0. In the viewing direction along the positive x-axis,

ds = x̄ + δx and d is the depth of T at (ȳ, z̄). As s is outside CH(S′) and thus is in

front of the plane of T , a(x̄+ δx) + b(ȳ + δy) + c(z̄ + δz) +K ≤ 0, and we thus have:

79

ds − d = (x̄+ δx)−
(
−bȳ + cz̄ +K

a

)
=

a(x̄+ δx) + b(ȳ + δy) + c(z̄ + δz) +K

a
− bδy

a
− cδz

a

≤ −bδy
a
− cδz

a
≤ b

2a
+

c

2a
≤ 1

It is possible that the depth values of s used in checking in the six viewing directions

belong to di�erent triangles. Suppose that the depth value of triangle T is used in one

of the directions, then from the above argument, there is one direction in which the

depth d of the plane containing T ful�lls the inequality (ds− d) ≤ 1. Suppose T ′ is the

other triangle that covers s in that direction, then due to the convexity of CH(S′), the

depth d′ of T ′ must be no smaller than d, and thus (ds − d′) ≤ 1, as required.

7.3.2 Convex Hull Approximation

There are three issues related to the use of digital Voronoi diagram that can a�ect

the performance of gHull: slicing problem, under-approximation problem and over-

approximation problem; see Figure 7.4. In the experiment, we will show that these

problems a�ect the e�ciency of the algorithm in di�erent cases and manners.

Slicing problem. This problem is the result of using a bounded box B to �nd the

Voronoi cells that are unbounded. As some of the bounded cells can extend beyond B,
they are captured although they do not correspond to extreme vertices. Figure 7.4(a)

shows a 2D example where among the �ve cells being captured, only those of the round

white points are unbounded. To reduce the number of wrongly captured Voronoi cells,

we scale the point set to a slightly smaller volume inside B when performing Voronoi

construction (Stage 1).

Under-approximation problem.When we have multiple points projected to the

same pixel, we can only record one point, and thus there are potentially many more

points outside CH(S′). See Figure 7.4(b) for a 2D illustration where the round black

points are kept, the solid line denotes part of CH(S′) and the dashed line denotes part of

CH(S). The round white points are missing points, many of which are outside CH(S′).

Boundary

(a) Slicing (b) Under-approximation (c) Over-approximation

Figure 7.4: Three problems associated with the computation in the digital space.

80

By using an e�cient depth test in point addition (Stage 4) of our implementation and

accurate location of a nearby triangle for every point outside CH(S′), we are able to

construct a good star for that point. This reduces the amount of splaying needed in

hull completion (Stage 5).

Over-approximation problem. This problem is caused by the shifting of points

in Voronoi construction (Stage 1). In certain cases, for example when points are dis-

tributed near the surface of a cube axis-aligned with B, many extreme points are shifted

inward, while many non-extreme points are shifted outward and are legitimately cap-

tured. This possibly leads to a lot more points captured in Stage 1 and need to be

removed in hull approximation (Stage 3). See Figure 7.4(c) for a 2D illustration, where

after Stage 1 all the round black points, after shifted to the square black grid points,

are captured. In our implementation, for each side of B we only shift 2 coordinates of

the points while keeping the third one untouched. This produces a much better digital

restricted Voronoi diagram and thus reduces the e�ect of this problem.

7.4 Experiment

We compare the GPU implementation of gHull with Qhull and CGAL.We also integrate

the experimental results of �Hull shown in the previous chapter.

All the results of gHull are based on the same set of parameters: grid size 10243

(i.e. each slice is of size 10242), while point set is scaled to 80% of the volume of B.
The rendering bu�er in point addition (Stage 4) is �xed at 5122. Using a larger grid

size gives a better approximation at the cost of slower Voronoi diagram computation,

so it gives little running time improvement. A larger bu�er for the depth test is also

not desirable, since it incurs extra rendering cost.

Following the experiment in Section 6.5, we generate points randomly with coordi-

nates between [0.0, 1.0] in four distributions: a cube, a ball of radius 0.5, a box with

thickness of 0.01, and a sphere with thickness of 0.01; see Figure 6.12.

Running time

Figure 7.5 shows the running time of gHull and �Hull on the GPU. As Qhull is much

faster than CGAL, we only show the speedups of gHull and �Hull over Qhull. In

general, gHull is 4 to 17 times faster than Qhull (11 to 70 times faster than CGAL)

for the cube, ball and box distributions. Notably, for the sphere distribution gHull

is up to 30 times faster than Qhull (100 times faster than CGAL), even with all the

computation being exact. This is mainly because the digital restricted Voronoi diagram

gives a very good approximation. However, �Hull runs much faster than gHull for all

the four distributions of points. Notably, �Hull runs around 5 times faster than gHull

for the cube and the box distributions where very few points are extreme.

81

(a) Cube (b) Ball

(c) Box (d) Sphere

Figure 7.5: Running time of gHull and �Hull on the GPU, and their speedups over
Qhull.

Table 7.1 shows the running time of gHull and �Hull for models from the Stanford

3D scanning repository [Sta12]. As we analyze in Section 6.5, most of the points in

these models are close to the surface while only very few points are extreme. In this

test, the running time of gHull and �Hull on the GPU is very close, mainly because

both of them su�er from a large amount of coplanar points. The speedups of gHull

over Qhull are from 3.6 to 7 times; the those over CGAL are from 7.9 to 16.9 times.

Table 7.1: Running time of gHull, �Hull, CGAL and Qhull on 3D models.

Model
Points Running time (ms)

(millions) CGAL Qhull gHull �Hull-GPU

Asian dragon 3.6 1181 540 150 117

Thai statue 5.0 1538 692 168 91

Lucy 13.9 4488 1884 266 192

82

Figure 7.6: gHull v.s. �Hull on the GPU with points on a sphere of di�erent thicknesses.

Sensitivity

The number of points on the convex hull directly a�ects the running time of both �Hull

and gHull. When many points are close to the boundary of the convex hull, gHull will

have serious slicing problem and approximation problem. We study the sensitivity of

gHull to the thickness of the sphere distribution. As same as the previous section, we

test the running time of gHull using 107 points on the sphere distribution with thickness

varying from 0.5 to 0.0001; see Figure 7.6.

The running time of gHull increases quickly as the sphere gets thinner. It slows

down much when the thickness becomes 0.0001, which is only 0.1 pixel width given

that we use a 10243 grid size. The main reason is that gHull cannot obtain a good

approximation by extracting information from the six slices of digital Voronoi diagram

for the under-approximation and the over-approximation problems. Its speedup over

Qhull initially increases as the Quickhull algorithm becomes less e�ective in eliminating

non-extreme vertices, then decreases but is still more than 10 times faster.

In contrast, the �Hull algorithm is also very e�cient when many input points

are close to the boundary of the convex hull. When the thickness of the sphere is

smaller than 0.001, �Hull performs much better than gHull. The main reason is that

�Hull compared with gHull can accurately remove many non-extreme points during its

constructing stage. Another reason is rooted in the simplicity of �ipping.

Scalability on the number of extreme and non-extreme vertices

In order to investigate the e�ect of the number of extreme vertices and non-extreme

vertices on the performance of gHull, we use a di�erent ball distribution, called con-

trolled ball, in which we �rst generate h points randomly on a sphere, and then generate

n− h points randomly inside a ball of slightly smaller radius. This gives us a point set

83

(a) (b)

Figure 7.7: Speedup of gHull over Qhull by (a) �xing the number of extreme vertices
h while varying the total number of points n, and (b) �xing the total number of points
n while varying the number of extreme vertices h.

with n points, out of which h points are extreme vertices.

Figure 7.7(a) shows the speedup of gHull over Qhull when we �x h and vary n

in the range of 106 to 107. As n is larger, the speedup increases from 4 to 15 times.

Note that the speedup with h = 103 and h = 104 is very close, while is slightly lower

when h = 105. This is the consequence of the under-approximating problem when the

texture cannot capture all the extreme vertices due to its limited size.

On the other hand, Figure 7.7(b) shows the speedup of gHull over Qhull when we

�x n and vary h multiplicatively from 20 × 104 to 26 × 104. For n = 106 the speedup

increases as h becomes larger, because gHull can quickly capture extreme vertices and

remove non-extreme vertices compared with Qhull. Also, speedup is higher for larger n,

as re�ected earlier in Figure 7.7(a). On the other hand, the speedup slightly decreases

for n = 107 as h becomes larger because of the under-approximating problem. The

explanation here is that when n is larger, there are more points near the convex hull

boundary, with multiple points falling on the same pixel. As such, many extreme

vertices are not captured.

A similar behavior can be observed when gHull is compared with CGAL, with the

speedup being 3 to 4 times better.

Time breakdown

Figure 7.8 shows the running time of each stage of gHull on di�erent distributions with

107 points. As expected, the behavior di�ers on di�erent distributions. While the

running time of Stage 1 and Stage 4 remains the same since it is not a�ected by how

the points are distributed, the running time of other stages varies signi�cantly. Stage 3

takes more time on the box distribution due to the over-approximation problem, while

84

Figure 7.8: Time breakdown of gHull.

Stage 5 takes more time on the sphere distribution due to the under-approximation

problem. Stage 2 only takes a small portion of running time for all the distributions.

For each distribution, the time of transferring data between the CPU and the GPU

takes 24%�33% of the computing time.

Limitation

While the digital space allows us to perform most processing in parallel with regu-

larized work and localized data, its limitation to approximate the computation in the

continuous space lies in its uniformity. It is possible to design a test case where points

are badly distributed (e.g. points arranged on a thin line convoluted in the space),

resulting in a bad digital approximation, and thus lower overall performance. Such a

case, however, is not common in practice. The next issue with gHull is with the use

of SoS during the star splaying process. Since the digital approximation cannot take

into account the perturbation, the resulting approximation might be di�erent from the

�nal result with SoS, especially when there are many perfectly co-planar points on the

convex hull. In this case, the algorithm performs a large amount of exact computa-

tion for no good purpose. Lastly, our current implementation requires at least 3 times

more memory compared to CGAL and Qhull. Part of the reason is because in order

to achieve a very high level of parallelism, gHull needs to use some large textures and

maintain several auxiliary arrays for parallel primitives. Also, the data structure used

during the star splaying process is more costly than the standard triangulation data

structure used in other approaches.

85

86

CHAPTER 8

Local Transformation to Star-Shaped Polytope

This chapter investigates the local transformation from an arbitrary polytope, possibly

with self-intersection, to a star-shaped polytope in R2 and R3.

Star-shaped polytope is the only known input acceptable to �ip-pop and �ip-�op.

To extend the use of these algorithms, it is interesting to study local transformation to

compute star-shaped polytope from an arbitrary one. On the premise that all simplices

of a polytope are oriented in a consistent manner, we can utilize the orientations of

simplices to guide the transformation. Section 8.1 reviews the notion of coherently

oriented polytope. Section 8.2 introduces a novel twist operation, a local operation on

abstract simplicial complex, and explains twist and �ip on coherently oriented simplicial

complex.

Section 8.3 studies the local transformation to 2D star-shaped polygon. We present

a simple twist algorithm to transform an arbitrary polygon to a star-shaped one w.r.t. a

given point. The algorithm is robust since it only uses orientation checks as predicates.

Section 8.4 attempts to solve the same problem for 3D. We show a provably correct

algorithm called twist-�ip for the special case of polyhedron with one extreme vertex

connecting to all the other vertices of the polyhedron. For the general case of arbitrary

polyhedron, we present our preliminary �ndings toward designing a proper algorithm,

while leaving the problem itself open.

87

8.1 Coherent Orientation

Given a k-simplex C whose vertices are {p0, p1, ..., pk}, we embed it in Rk+1. Let q be an

arbitrary point not on the hyperplane de�ned by C. A vertex ordering 〈pa0 , pa1 , ..., pak〉
of C, where ai ∈ {0, 1, ..., k} for 0 ≤ i ≤ k, is a permutation of its vertices. Two vertex

orderings 〈pa0 , pa1 , ..., pak〉 and 〈pb0 , pb1 , ..., pbk〉 of C are equivalent if∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pa0 , 1

pa1 , 1

..., ...

pak , 1

q, 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pb0 , 1

pb1 , 1

..., ...

pbk , 1

q, 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where | · | denotes the determinant. Simply, two vertex orderings of C are equivalent

if they can be transformed to each other by an even number of swap of vertices.

By the de�nition above, C has exactly two orientations: one corresponds to the

vertex orderings making positive determinant with q and the other corresponds to

those making negative determinant. We usually represent an orientation of C by a

corresponding vertex ordering. Take a 2-simplex (triangle) with three vertices {a, b, c}
for example. One of its orientations is 〈a, b, c〉 (or equivalently 〈b, c, a〉 or 〈c, a, b〉),
while the other is 〈a, c, b〉 (or equivalently 〈c, b, a〉 or 〈b, a, c〉). For a k-simplex, each

orientation corresponds to (k+1)!/2 vertex orderings. In the remaining discussion, any

simplex is associated with an orientation.

The orientation of C induces the orientations of its facets. Let 〈pa0 , pa1 , ..., pak〉 be
a vertex ordering representing the orientation of C. By removing its �rst item, we get

〈pa1 , ..., pak〉; this vertex ordering represents the orientation of the facet whose vertices

are {pa1 , ..., pak}. To determine the orientation of an arbitrary facet of C, we �rst �nd

a vertex ordering of C which is equivalent to 〈pa0 , pa1 , ..., pak〉 and whose �rst vertex is

not in the facet, and then remove that vertex from the ordering. For example, if the

(a) (b)

Figure 8.1: (a) −→vu and −→us are coherently oriented, while −→vu and −→vw are not. (b) 4pab
and 4pbc are coherently oriented, while 4pbc and 4pdc are not. The arrows indicate
orientations.

88

(a) (b)

Figure 8.2: (a) A coherently oriented polygon. (b) A coherently oriented polyhedron.
Orientations are indicated by arrows.

orientation of a triangle is 〈a, b, c〉, the orientations of its three edges are 〈b, c〉, 〈c, a〉,
and 〈a, b〉. Recursively, we can determine the orientations of all the faces of C except

for its vertices.

Given two di�erent k-simplices (k > 1) that share a common facet, they are co-

herently oriented if the orientation of the common facet in the �rst simplex is not

equivalent to that in the second simplex. For the case of 1-simplices (edges), two adja-

cent edges are coherently oriented if their common vertex appears at di�erent positions

in their vertex orderings. We use
−→
ab to represent an edge whose vertex ordering is 〈a, b〉;

−→
ab 6= −→ba. We use 4abc to represent a triangle whose orientation can be represented

by 〈a, b, c〉; 4abc = 4bca = 4cab 6= 4bac = 4acb = 4cba. Figure 8.1 shows some

examples of coherently oriented simplices in R1 and R2.

Recall that a d-dimensional polytope is a pure (d−1)-dimensional abstract simplicial

complex where each ridge is shared by exactly two facets (see Section 2.1). By this

de�nition, a polytope is a (d− 1)-manifold without boundary and homeomorphic to a

(d − 1)-sphere topologically. Therefore a polytope is orientable, i.e., there is a way to

set the orientations of each facet so that every pair of adjacent facets are coherently

oriented. Using this way, we say that the polytope is coherently oriented. Figure 8.2

shows a polygon and a polyhedron both coherently oriented. In the remaining of this

chapter, we assume a polytope is always coherently oriented unless otherwise stated.

8.2 Twist and Flip on Coherently Oriented Triangulation

Given a d-dimensional abstract triangulation (or polytope) T that is coherently ori-

ented, we represent each of its facets as a vertex ordering, and T as a collection of

vertex orderings. A swap on two vertices a and b of T is to replace a with b and replace

b with a in the collection of vertex orderings. A twist on an edge pq is a swap on

p and q. Twist is a local operation because it works on an edge and only changes a

local con�guration, while swap is not. Figure 8.3 and 8.4 show examples of twisting

in polygon and planar triangulation respectively. Note that swap and twist are both

combinatorial operations in the collection of vertex orderings representing T , and thus

89

(a) (b)

Figure 8.3: Twisting edge −→pq of the polygon in (a) leads to the polygon in (b).

(a) (b)

Figure 8.4: Twisting pq transforms the triangulation in (a) to the one in (b). The
triangulation in (a) is {〈p, a, b〉, 〈p, b, q〉, 〈p, q, e〉, 〈p, e, a〉, 〈q, b, c〉, 〈q, c, d〉, 〈q, d, e〉},
and the one in (b) is {〈q, a, b〉, 〈q, b, p〉, 〈q, p, e〉, 〈q, e, a〉, 〈p, b, c〉, 〈p, c, d〉, 〈p, d, e〉}.

do not change the number of the simplices of T . Furthermore, T is still coherently

oriented afterward.

When a �ip is applied in T , the orientations of the newly created facets should be

assigned so that T is still coherently oriented. We show how to decide the orientations

of these facets from those of the removed ones. Let F be the ridge where the �ip is

applied on, and Tc and Tr be the set of all the facets created and removed by the �ip

respectively. By de�nition of �ip, Tc and Tr have the same boundary. The rule is that,

for each ridge on the boundary, its orientation induced from the facets of Tc should

equal to its orientation induced from the facets of Tr. This rule indicates a unique

way to assign orientation to the facets of Tc. In Figure 8.5, for example, we �ip ab,

transforming {〈a, b, c〉, 〈a, d, b〉} to {〈a, d, c〉, 〈c, d, b〉}.

(a) (b)

Figure 8.5: Flipping ab on a coherently oriented triangulation.

90

(a) (b)

Figure 8.6: The twist algorithm twists the edge −→pq in two cases: (a) −→pq does not
intersect with γ and 4spq is clockwise, and (b) −→pq intersects with γ and 4spq is
counter-clockwise, where γ is the ray starting at s with the same direction as positive
x-axis.

8.3 Local Transformation to Star-Shaped Polygon

Given a coherently oriented polygon P with its vertex set S, we design an algorithm

that locally transforms P into a star-shaped polygon of S w.r.t. a given point s inside

CH(S). Since the algorithm applies only twist on the edges of P, we name it twist

algorithm. In the following discussion, we represent P as an ordering of its vertices.

For example, P = 〈p0, p1, ...pn−1〉 contains n vertices {pi | 0 ≤ i ≤ n − 1}, and n

oriented edges {−−−→pipi+1 | 0 ≤ i ≤ n − 1 and pn = p0}. We assume no three points of S

lie on the same line.

Let γ be the ray starting at s and having the same direction as positive x-axis. For

every vertex p of P, de�ne a function g(p) ∈ [0, 2π) as the angle of rotating γ around

s counter-clockwise until γ reaches p. The key idea is to achieve a polygon where all

its vertices are sorted in the ascending order of the function g. By the de�nition of the

twist operation, twisting an edge −→pq swaps the positions of p and q in P. Therefore,

we intend to twist −→pq if g(p) > g(q) unless q is the �rst vertex of P.
As computing g(p) of a vertex p creates numerical error, we instead use 2D orien-

tation check to compare g(p) and g(q) for two vertices p and q. Speci�cally, when −→pq
does not intersect with γ, g(p) > g(q) if 4spq is clockwise; when −→pq intersects with γ,
g(p) > g(q) if 4spq is counter-clockwise. Figure 8.6 illustrates these two cases.

We describe the twist algorithm using the framework shown in Section 3.2. The

geometric structure is a coherently oriented polygon represented as an ordering of

its vertices, and the local operation is twist. The candidate is an oriented edge of

the polygon. The criterion of the twist algorithm is to twist an edge −→pq if (1) q is not
the �rst vertex, and (2) g(p) > g(q). The local check is to test the orientation of an

edge w.r.t. s and the intersection between the edge and γ.

Algorithm 11 shows the pseudocode of the twist algorithm. The input is P and

an arbitrary point s that lies inside CH(S). After pushing all the edges of P into

91

Algorithm 11: The twist algorithm

input : a polygon P and a point s inside CH(S)
output: a star-shaped polygon P w.r.t. s

1 s′ ← (∞, s.y)
2 Q ← { e | e is an oriented edge of P }
3 while Q 6= ∅ do
4

−→pq ← Q.pop()
5 if q is the �rst vertex of P then continue

6 if (s.y − p.y)(s.y − q.y) < 0 and the orientations of 4spq and 4s′pq are
di�erent then

7 if 4spq is counter-clockwise then
8 twist −→pq
9 Q ← {−→rq,−→pt}, where −→rq and −→pt are the adjacent edges of −→qp

10 else

11 if 4spq is clockwise then
12 twist −→pq
13 Q ← {−→rq,−→pt}, where −→rq and −→pt are the adjacent edges of −→qp

a queue Q, the algorithm repeatedly checks the popped edges until Q is empty. In

each iteration (Line 4�13), an edge −→pq is popped from Q and checked unless q is the

�rst vertex of P (which means that p is the last one). In Line 6, we test whether −→pq
intersects with γ. Based on the criterion, we twist −→pq if −→pq intersects with γ and 4vpq
is counter-clockwise (Line 6�9), or if −→pq does not intersect with γ and 4vpq is clockwise
(Line 10�13). After twisting −→pq, we push its adjacent edges into Q for later checks.

Figure 8.7 shows the procedure of transforming a pentagram to a star-shaped poly-

gon w.r.t. its leftmost vertex by the twist algorithm.

Theorem 8.1. The twist algorithm transforms P to a star-shaped polygon w.r.t. s,

given s as an arbitrary point in CH(S).

Proof. By the criterion, the algorithm twists an edge −→pq if q is not the �rst vertex

and g(p) > g(q). This is equivalent to the bubble sort on the vertex ordering using

the function g(p) as the key. The termination of the twist algorithm is promised by

that of bubble sort. When the algorithm terminates, the function g(p) de�ned in P is

monotonically increasing, which implies that P is star-shaped w.r.t. s.

The worst-case time complexity of the twist algorithm is O
(
n2
)
because of bubble

sort. The algorithm needs Θ(n2) twists if P is initially star-shaped w.r.t. s, but all its

edges are clockwise w.r.t. s. When the input polygon is almost star-shaped w.r.t. a

given point, the twist algorithm can be very e�cient. An example is the polygon

constructed via sorting points by their polar angles in Graham's scan.

Although the twist algorithm is described in its sequential version, it can be easily

92

(a) (b)

(c) (d)

Figure 8.7: The initial polygon in (a) is a pentagram 〈a, c, e, b, d〉. From (a) to (d) we

continuously twist
−→
bd,
−→
ed and

−→
ba. The �nal polygon in (d) is a star-shaped polygon

〈a, b, c, d, e〉 w.r.t. a.

adapted for parallel computation since it has free execution order. Furthermore, we use

symbolic perturbation [EM90] to avoid the situation that more than two vertices are

collinear. Note that if our outputs are further used to compute convex hull by �ip-pop,

the same perturbation order must be maintained in order to guarantee the correctness.

8.4 Local Transformation to Star-Shaped Polyhedron

We continue to study the 3D problem: transforming a given polyhedron P to a star-

shaped polyhedron by local operations. Our result for the 2D problem cannot be

directly used for the 3D one, since angle for 3D point is not well de�ned, and even if it

can be de�ned, it can hardly be used for the construction of star-shaped polyhedron.

Furthermore, twisting on a polyhedron is a much heavier operation than that on a

polygon, as it may a�ect the stars of many vertices; see Figure 8.4.

To study the problem, we �rst give a su�cient condition for a coherently oriented

k-dimensional polytope to be star-shaped w.r.t. a given point.

Theorem 8.2. A coherently oriented k-dimensional polytope P is star-shaped w.r.t. a

point s if and only if

(1) all the facets of P have the same orientation w.r.t. s, and

(2) there exists a ray γ starting at s and intersecting exactly one facet of P.

93

Proof. (if) We draw a (k − 1)-sphere S using s as the center. For a point x on P, the
ray −→sx intersects with S at exactly one point y. We map x to y and build a function

f : P → S. Given an arbitrary point p ∈ P, for any x ∈ P that approaches p, the limit

of f(x) exists and is equal to f(p). Therefore, f is continuous. Since P intersects with

γ at exactly one point by Condition (2) and so does S, the degree of f is 1 [Mun84].

By contradiction assume P is not star-shaped w.r.t. s, and thus there is a ray γ′

that starts at s and intersects with P at m points, m > 1. As all the facets of P have

the same orientation w.r.t. s, the existence of γ′ indicates that the degree of f is m, a

contradiction.

(only if) For every ridge of P, the two facets incident to the ridge are coherently

oriented. Hence, when P is star-shaped w.r.t. s, s must be beyond or beneath both of

them, and thus they have the same orientation w.r.t. s. Together with that any two

facets of P is connected, we conclude Condition (1). Condition (2) is naturally proved

by the de�nition of star-shaped polytope.

Considering the possible di�culty resulted from selecting an arbitrary point as

the kernel point, we use the topmost vertex v of P as the kernel point. When v is

(0,0,∞) and all the other vertices of P lie in the plane z = 0, our problem degenerates

into untangling planar triangulation problem, which is to transform a 2D abstract

triangulation, possibly with self-intersection, to a valid triangulation. This problem is

solved by [ASY08] without using local transformation. The main idea of that method is

to �nd the regions a�ected by the triangles with wrong orientations, and re-triangulate

these regions. This algorithm requires that the boundary of the input triangulation is

its convex hull. Our proposed problem, on the other hand, is for a more general input

geometric structure, and focuses on local transformation.

In the remaining of this chapter, we assume all the vertices of P are in general

position. In Section 8.4.1, we focus on a special type of polyhedron, where the top-

most vertex connects to all the other vertices. We design a provably correct twist-�ip

algorithm to transform it to a star-shaped polyhedron w.r.t. the topmost vertex. In

Section 8.4.2, we present our preliminary study on using general polyhedron as input.

8.4.1 Special Case

Let v be the topmost vertex of P. We study a special case where all the vertices of P \
{v} connect to v. Despite being restrictive, this case is useful for learning how to design

a su�cient condition for P to be star-shaped w.r.t. v, how to use twist and �ip together

to ful�ll this condition, and how to promise the termination of twisting and �ipping.

All these techniques are non-trivial and may help to design local transformation for the

general case.

We de�ne a few useful concepts to this special case. Shoot a ray from v to the

interior of CH(link(v)), and select an arbitrary point s 6= v on the ray. We use s as

94

(a) (b)

Figure 8.8: (a) Intersecting the extended cone of star(v) and the horizontal hyperplane
H through s results into a 2D polygon on H. Build the correspondence between link(v)
and the polygon. (b) After transforming the polygon to a star-shaped polygon w.r.t. s,
star(v) is also star-shaped w.r.t. s.

the secondary kernel; see Figure 8.8(a). Actually s can be the centroid of any three

di�erent vertices of link(v). A triangle of P \ star(v) is said to be positive if it is

counter-clockwise w.r.t. v; otherwise it is negative. A triangle of star(v) is positive if

it is counter-clockwise w.r.t. s; otherwise it is negative. An edge shared by a positive

triangle and a negative triangle is called a fold. Given a triangle t, a point p is above t

if t is counter-clockwise w.r.t. p; it is beneath t otherwise.

Our twist-�ip algorithm aims to make all the triangles of P positive, which is

su�cient for P to be star-shaped. The key idea is to �rst make all the triangles

of star(v) positive using twists and then remove all the folds of P using �ips. The

algorithm is thus separated into two stages: the twisting stage and the �ipping stage.

The twisting stage

We simulate the twist algorithm on star(v) in order to make it star-shaped w.r.t. s and

its triangles positive. Imagine a polyhedral cone created by extending star(v) from v to

in�nity, and use the horizontal hyperplane H through s to cut this cone. The resulting

cross section is a polygon P2D with s in the interior of its convex hull. Each vertex

(resp. edge) of P2D corresponds to a vertex (resp., an edge) of link(v); see Figure 8.8.

Now transform P2D to a star-shaped polygon w.r.t. s using the twist algorithm, twisting

the corresponding edges of link(v) when an edge of P2D is twisted. At the end, P2D is

star-shaped w.r.t. s, implying that star(v) is also star-shaped w.r.t. s.

Algorithm 12 shows the pseudocode of the twisting stage, which has the same

work�ow as Algorithm 11. The objects stored in Q are triangles of star(v), which

correspond to edges of P2D. Given a triangle 4vpq, the edge pq needs to be twisted

if it needs to be twisted as an edge of P2D in the twist algorithm; see Line 6�13.

95

Algorithm 12: The twisting stage of the twist-�ip algorithm

input : a polyhedron P with topmost vertex v and secondary kernel s;
all the vertices of P \ {v} connect to v

output: star(v) is star-shaped w.r.t. s and only contains positive triangles
1 s′ ← (∞, s.y, s.z)
2 Q ← { t | t is an oriented triangle of star(v) }
3 while Q 6= ∅ do
4 4vpq ← Q.pop()
5 if q is the �rst vertex of link(v) then continue
6 if the orientations of 4vss′ w.r.t. p and q are di�erent and the orientations

of 4vpq w.r.t. s and s′ are di�erent then
7 if 4vpq is counter-clockwise w.r.t. s then
8 twist pq
9 Q ← {4vrq,4vpt}, where 4vrq and 4vpt are triangles of star(v)

10 else

11 if 4vpq is clockwise then
12 twist pq
13 Q ← {4vrq,4vpt}, where 4vrq and 4vpt are triangles of star(v)

Particularly, Line 6 checks whether CH(−→vp,−→vq) intersects with −→ss′, the ray that starts

at s and has the same direction as the positive x-axis. Note that a twist modi�es not

only star(v) but also P \star(v), and thus P remains a coherently oriented polyhedron

after the twist.

After the twisting stage, for each edge pq of P2D, 4spq is counter-clockwise. There-
fore, all the triangles of star(v) are counter-clockwise w.r.t. s and thus positive. Fur-

thermore, star(v) is star-shaped w.r.t. s because P2D is star-shaped w.r.t. s. Therefore,

we have the following lemma.

Lemma 8.3. The twisting stage transforms P to a polyhedron where star(v) is star-

shaped w.r.t. s and all the triangles of star(v) are positive, given v as the topmost

vertex of P and s as a secondary kernel.

The �ipping stage

In this stage, we make all the triangles of P \ star(v) positive by �ipping the folds of

P. A 3-1 �ip is not allowed since it removes a vertex from P; a 2-2 �ip that creates an

existing edge of P is also not allowed since it breaks the topology of P. Therefore in
this context, an edge of P is �ippable if it is a 2-2 edge and the new edge created is not

already in P; otherwise it is un�ippable. Right after the twisting stage, every edge of

star(v) cannot be a fold as all the triangles of star(v) are already positive, and every

edge of link(v) is un�ippable since all the vertices of P \ {v} connect to v. Therefore,
star(v) and link(v) never change during the �ipping stage, and thus we only focus on

96

(a) The �ip creates two positive triangles

(b) The �ip creates two negative triangles

(c) The �ip creates one positive triangle and one negative triangle

Figure 8.9: Three cases of �ipping a fold ab of the projected triangulation T of P.
In each of these cases, we �ip {4abc,4bad} to {4adc,4bcd}. Negative triangles are
shaded, and folds are represented by thick line segments in red.

the edges of P \ (star(v) ∪ link(v)).

To simplify our presentation, we de�ne the projected triangulation T of P (w.r.t. v

and s) in the following way. First, project each vertex p of P \{v} to the intersection of
−→vp and H; see Figure 8.8. This is always possible because v is the topmost vertex of P.
T is an abstract triangulation embedded on H whose vertices are projected from those

of P\{v} and whose combinatorial is copied from P. More speci�cally, the (topological)

boundary of T corresponds to link(v), and each internal edge corresponds to an edge of

P \(star(v)∪ link(v)). Each triangle of P \star(v) and the corresponding one in T has

the same orientation w.r.t. v; we thus say a triangle of T is positive (resp., negative) if

it is counter-clockwise (resp., clockwise) w.r.t. v. In the subsequent discussion, �ipping

an edge of T also means �ipping the corresponding edge of P.
Consider a fold ab of T , and let 4abc and 4bad be the positive and the nega-

tive triangles incident to it. Flipping ab removes {4abc,4bad} from T , and adds

{4adc,4bcd}. Based on the relative positions of {a, b, c, d}, the �ip is classi�ed to

one of the three cases as illustrated in Figure 8.9. In the �rst case (Figure 8.9(a)),

d ∈ 4abc, and thus the two new triangles (4adc and 4bcd) are positive. In the second

case (Figure 8.9(b)), c ∈ 4bad, and thus the two new triangles are negative. In the

third case (Figure 8.9(c)), neither c nor d lies inside the other triangle, and thus the �ip

creates one positive and one negative triangles. The �rst case is good because the �ip

97

Figure 8.10: 4abc has three containing regions and three opposite regions. The inter-
section of its three containing regions is 4abc.

removes one fold and reduces the number of negative triangles by one. On the other

hand, it is hard to evaluate the latter two cases based on only the numbers of folds

and negative triangles. Instead, we will use the angles in the projected triangulation

to guide the �ipping procedure.

Now consider a triangle 4abc of T . The pair of lines passing through ab and

ac partition H into four regions. Among these regions, the one containing 4abc is

called the containing region of 4abc at vertex a, and denoted as R+(4abc, a); the one

opposite to R+(4abc, a) is called the opposite region of 4abc at vertex a, and denoted

as R−(4abc, a). Using all three pairs of lines passing through the edges of 4abc, we
get in total three containing regions and three opposite regions; see Figure 8.10. These

containing regions overlap at 4abc. As proved later in Lemma 8.5, s can only lie in the

opposite regions of negative triangles and in the containing regions of positive triangles.

Let 4abc be a negative triangle and s lie in R−(4abc, a). The vertex a and the angle

∠bac are respectively called the primary vertex and the primary angle of 4abc.
The key idea of the �ipping stage is to monotonically increase the primary angles

of the negative triangles. Particularly, we �ip a fold if (1) the two created triangles are

both positive (Figure 8.9(a)), or (2) exactly one of the two created triangles is negative

(Figure 8.9(c)) and the new negative triangle has a larger primary angle than that of

the negative triangle being removed. This condition can be further simpli�ed into the

following criterion: �ip a fold ab of T if the primary vertex of its incident negative

triangle is neither a nor b. The local check is to examine if an edge of T is a fold and

if it contains the primary vertex of the negative triangle incident to it.

In the pseudocode of the �ipping stage shown in Algorithm 13, we directly use

the polyhedron P instead of its projected triangulation T in order to maintain the

consistency with Algorithm 12. However, we note that �ipping on P and �ipping on

T are equivalent. In Line 5 and Line 6 we test whether an edge ab is an internal edge

and whether it is a fold respectively. In Line 8, we test if the primary vertex of the

negative triangle incident to ab is not a vertex of ab.

98

Algorithm 13: The �ipping stage of the twist-�ip algorithm

input : a polyhedron P with topmost vertex v and secondary kernel s;
all the vertices of P \ {v} connect to v;
star(v) is star-shaped w.r.t. s and only contains positive triangles

output: a star-shaped polyhedron P w.r.t. v
1 Q ← {ab | ab is an edge of P \ (star(v) ∪ link(v)) }
2 while Q 6= ∅ do
3 ab← Q.pop()
4 let 4abc and 4bad be the two incident triangles of ab
5 if v 6∈ {a, b, c, d} then
6 if 4abc and 4bad have di�erent orientations w.r.t. v then
7 assume 4abc is positive w.l.o.g.
8 if 4bas is clockwise w.r.t. v then
9 �ip ab

10 Q ← {ac, bc, ad, bd}

Correctness of the algorithm

Because of Lemma 8.3, we can assume that star(v) is star-shaped w.r.t. s and all the

triangles of star(v) are positive, and instead focus on the correctness of the �ipping

stage. Since all the vertices of P \ {v} connect to v, all the vertices of T are on its

boundary. We �rst prove that s lies in the opposite region of each negative triangle

and the containing region of each positive triangle of T .

Lemma 8.4. An internal edge pq of T partitions the boundary of T into two chains

of edges. Each chain has a vertex of degree 2, and it is not p or q.

Proof. As all the vertices are on the boundary of T , pq partitions T into two parts, and

thus partitions the boundary of T into two chains. Any vertex on one chain cannot

connect to any vertex in the other chain (other than p and q).

Without loss of generality, we focus on one of the two chains, Lpq. We prove the

claim by induction on k, the number of vertices of Lpq, k ≥ 3. When k = 3, the

vertex of Lpq other than p and q has degree 2, because it can only connect to p and q.

Assume the claim is true when k = m for m ≥ 3. When k = m + 1, we pick a vertex

r ∈ Lpq \ {p, q}, and the proof is �nished if its degree is 2. If the degree of r is larger

than 2, it connects with a vertex u on Lpq other than its two neighbors. Consequently,

r and u cut out a sub-chain of Lpq. This sub-chain contains less than m + 1 vertices,

and thus has a vertex of degree 2. We �nish the proof by induction.

Lemma 8.5. For a triangle 4abc of T , s lies in its opposite regions if and only if it

is negative.

Proof. Recall that star(v) is star-shaped w.r.t. s after the twisting stage, and so is the

boundary of T . Let a′, b′ and c′ in P be the corresponding vertices of a, b and c.

99

(a) (b)

Figure 8.11: 4abc is a triangle in the projected triangulation T of P. Rab is the region

bounded by the rays −→sa and −→sb, and Lab is the chain of edges in the boundary of T that
is completely contained in Rab. (a) When s lies inside R−(4abc, a), 4abc is a negative
triangle. (b) When s lies inside R+(4abc, a), 4abc is a positive triangle.

(only if) Without loss of generality, assume that s lies inside R−(4abc, a). Let

Rab be the region bounded by the rays −→sa and
−→
sb, and Lab be the chain of edges in

the boundary of T that has a and b as its endpoints and does not contain c; see Fig-

ure 8.11(a). Lab is star-shaped w.r.t. s and completely contained in Rab. By Lemma 8.4,

Lab has a vertex r 6∈ {a, b} of degree 2, and the corresponding vertex of r in P has

degree 3. We imaginarily apply a 3-1 �ip on the corresponding vertex of r in P. This
�ip removes r from Lbc. After the �ip, Lab is still star-shaped w.r.t. s, implying that

star(v) is still star-shaped w.r.t. s and all the triangles of star(v) are still positive. We

repeat this ear cutting procedure until ab ∈ link(v) and 4va′b′ ∈ star(v). Now 4va′b′
is counter-clockwise w.r.t. s, and hence clockwise w.r.t. c′ as c and s lie on di�erent

sides of ab. Since P is coherently oriented, 4a′b′c′ is clockwise w.r.t. v. By de�nition,

4a′b′c′ and 4abc are negative.
(if) Assume s lies inside a containing region of 4abc, say R+(4abc, a); see Fig-

ure 8.11(b). Again, we imaginarily apply ear cutting on Lab until ab ∈ link(v) and

4va′b′ ∈ star(v). Then 4va′b′ is counter-clockwise w.r.t. s, and thus is counter-

clockwise w.r.t. c′. Therefore4a′b′c′ is counter-clockwise w.r.t. v. By de�nition,4a′b′c′
and 4abc are positive.

Corollary 8.6. For a triangle 4abc of T , s lies in its containing regions if and only

if it is positive.

The next lemma shows that we do not need to check the �ippability of internal

edges of T .

Lemma 8.7. Any internal edge of T is �ippable.

Proof. An internal edge pq partitions T into two regions, and thus partitions the bound-

ary of T into two chains. As the two triangles incident to pq belong to di�erent re-

gions, the two link vertices of pq are on di�erent chains. As pointed out in the proof

100

of Lemma 8.4, a vertex on one chain cannot connect to any vertex in the other chain

(other than p and q). Therefore the edge connecting the two link vertices of pq cannot

already exist in T , and thus pq is �ippable.

Finally, we show that P is star-shaped when all its triangles are positive, and the

twist-�ip algorithm terminates at such a polyhedron.

Lemma 8.8. P is star-shaped w.r.t. v if all its triangles are positive and star(v) is

star-shaped w.r.t. s.

Proof. By de�nition, all the triangles of star(v) are counter-clockwise w.r.t. s, and all

the triangles of P − star(v) are counter-clockwise w.r.t. v.

Let v′ be a point that lies in the interior of vs and is in�nitely close to v. Hence

all the triangles of P \ star(v) are counter-clockwise w.r.t. v′. Furthermore, since all

the points in the interior of vs are above all the triangles of star(v), star(v) is star-

shaped w.r.t. v′ and all its triangles are counter-clockwise w.r.t. v′. Therefore, all the

triangles of P have the same orientation w.r.t. v′, which satis�es the �rst condition of

Theorem 8.2.

Now shoot a ray from v′ horizontally. Since v′ has a larger z-coordinate than any

vertex of P \ {v}, the ray only intersects with the triangles of star(v). In addition,

as star(v) is star-shaped w.r.t. v′, the ray can intersect with exactly one triangle.

This satis�es the second condition of Theorem 8.2. Therefore, we conclude that P is

star-shaped w.r.t. v′ and hence v.

Theorem 8.9. The twist-�ip algorithm transforms P to a star-shaped polyhedron

w.r.t. its topmost vertex v, under the precondition that all the vertices of P\{v} connect
to v in the input.

Proof. After the twisting stage, star(v) is star-shaped w.r.t. s and all its triangles are

positive, i.e. counter-clockwise w.r.t. s (Lemma 8.3). These properties still exist during

the �ipping stage since we never �ip the edges of star(v) ∪ link(v).

Termination. Denote the primary angle of a negative triangle 4abc of T as

θ(4abc). We de�ne a global score function of T as

φ(T) =
∑

(π − θ(t)) ∀t is a negative triangle of T

We show that a �ip always decreases φ(T). As illustrated in Figure 8.9, there are

three cases of �ipping a fold of T . In the �rst case (Figure 8.9(a)), the vertex d is

surely the primary vertex of 4bad; otherwise assuming a is the primary vertex, s lies

inside R−(4bad, a) and therefore inside R−(4abc, a), which contradicts Lemma 8.5

since 4abc is positive. Hence, we �ip all the folds belonging to the �rst case according

to the criterion. Flipping such a fold removes a negative triangle, and thus decreases

φ(T). In the second case (Figure 8.9(b)), the vertex d cannot be the primary vertex

of 4bad; otherwise s lies in R−(4bad, d) and therefore R−(4abc, c), which contradicts

101

(a) (b)

Figure 8.12: (a) When twist-�ip terminates, T has no negative triangulations. Other-
wise T has a �ippable fold. (b) In the �ipping stage, an initial negative triangle4pa0a1
generates a series of negative triangles. The vertex p is the common primary vertex of
these triangles, and the subscripts of a indicate the appearing order of the vertices in
this series.

Lemma 8.5 again. Hence, we never �ip the folds belonging to the second case. In the

third case (Figure 8.9(c)), we only �ip the fold ab if d is the primary vertex of 4bad.
This �ip removes a negative triangle 4bad and creates another negative triangle 4bcd.
Because c is outside 4bad and lies on the same side of ab with d, θ(4bcd) = ∠bdc >

∠adb = θ(4bad). Again, the �ip decreases φ(T).

As φ(T) is a monotonically decreasing function and the number of vertices is �nite,

the �ipping stage always terminates.

Correctness. By contradiction assume a negative triangle 4a0a1a2 exists in T
when the algorithm terminates, and its primary vertex is a0. Let γ be the ray starting

at s and passing through a0, and u0 be the intersected point of ray γ and a1a2; see

Figure 8.12(a).

Now consider a1a2. Let a′i be the corresponding vertex of ai in P. Suppose on

the contrary that a1a2 is on the boundary of T . Since 4a′0a′1a′2 is negative and thus

clockwise w.r.t. v, 4va′2a′1 must be clockwise w.r.t. a′0 or otherwise P is not coherently

oriented. As s and a0 lie on the same side of a1a2, 4va′2a′1 is also clockwise w.r.t. s,

which contradicts the fact that all the triangles of star(v) are positive.

Therefore a1a2 is an internal edge of T . Furthermore, it cannot be a fold, or

otherwise it should be �ipped by the criterion of the �ipping stage. Hence, the other

triangle incident to a1a2, 4a1a3a2, is also a negative triangle. To promise that s lies

inside the opposite regions of 4a1a3a2 (Lemma 8.5), a3 must lie outside CH(−→sa1,−→sa2).
Without loss of generality, assume a1 is the primary vertex of 4a1a3a2, and thus

CH(−→sa2,−→sa3) contains CH(−→sa1,−→sa2); see Figure 8.12(a). Then a2a3 intersects with γ at

a point u1, |su1| > |su0|.
We continue the argument by replacing4a0a1a2 with4a1a3a2. Again, a2a3 cannot

be on the boundary of T , and the next found triangle 4a2a3a4 must be negative.

102

Without loss of generality, assume a2 is the primary vertex of 4a2a3a4, and thus

CH(−→sa3,−→sa4) contains CH(−→sa2,−→sa3). Therefore, a3a4 intersects with −→sa0 at a point u2

with |su2| > |su1|. Repeat this argument to �nd more negative triangles. As |sui| is
monotonically increasing and the number of the triangles is �nite, this progress must

terminate, and we encounter either an edge on the boundary of T or a fold. However,

as discussed above for 4a0a1a2, the existence of such an edge either contradicts that

P is coherently oriented, or contradicts the termination of the �ipping stage.

Therefore, all the triangles of T and their corresponding ones in P are positive.

Together with that all the triangles of star(v) are positive, we know that all the triangles

of P are positive. By Lemma 8.8, P is star-shaped w.r.t. v.

Time complexity

Let n be the number of the vertices of P. As explained in the twist algorithm in

Section 8.3, the twisting stage of the twist-�ip algorithm has O
(
n2
)
worst-case time

complexity. Let k be the number of the negative triangles at the beginning of the

�ipping stage. Every �ip either removes a negative triangle (see Figure 8.9(a)), or

replaces a negative triangle with one that has a larger primary angle (see Figure 8.9(c)).

In the latter case, the removed and the created triangles share one common edge and

have the same primary vertex. Therefore, a negative triangle at the beginning generates

a series of negative triangles with the same primary vertex, in which the next triangle

is created by �ipping a fold of the previous one and has a larger primary angle; see

Figure 8.12(b). Along the series, each triangle di�ers from the next one by exactly

one vertex, and that vertex cannot appear in any subsequent triangle because of the

monotonicity of the primary angles. Thus, the number of negative triangles in each

series is O
(
n
)
. Therefore the worst-case time complexity of the �ipping stage is O

(
kn
)
,

and the whole algorithm is O
(
n2
)
.

8.4.2 General Case

Lemma 8.5 and Lemma 8.7, which are the basis of the correctness of twist-�ip, rely on

the precondition that all the vertices of P\{v} connect to v. When the input polyhedron

does not satisfy this precondition, twist-�ip does not work. A simple way to make twist-

�ip usable for the general case is to �ip the edges of link(v) until v connects to all the

other vertices before applying it. However, this approach is cumbersome since it may

apply many unnecessary �ips in order to connecting v and other vertices.

In this subsection, we show our preliminary study for the general case of trans-

forming an arbitrary polyhedron to a star-shaped one. Assume that we have applied

the twisting stage on P, and therefore star(v) is star-shaped w.r.t. s and contains

only positive triangles. We introduce the concepts of extended projected triangula-

tion and local winding number, and propose a collection of su�cient conditions to

103

Figure 8.13: The extended projected triangulation T ′ of the polytope P with s being
the secondary kernel. The virtual vertex of T ′ is v′, and link(v′) is a star-shaped
polygon (in red) w.r.t. s. The only negative triangle of T ′ is shaded.

describe star-shaped polyhedron using only local properties (Theorem 8.12). These

conditions possibly help to design local transformation to star-shaped polyhedron. In

order to prove these, we build some important formulas related to local winding number

(Lemma 8.10 and Lemma 8.11).

Recall that the projected triangulation T of P is obtained by projecting P \star(v)

on the horizontal hyperplane H that passes through s. The (topological) boundary of

T is a star-shaped polygon w.r.t. s after the twisting stage. Since T is star-shaped

w.r.t. s, we build the extended triangulation T ′ using T and s, and call it extended

projected triangulation of P; see Figure 8.13. The virtual vertex v′ of T ′ can be seen

as the projection of v, and every triangle of star(v′) is positive so that it is coherently

oriented with the triangles of T .
Given a vertex p of T ′ \ {v′} and an edge ab of link(p), the orientation of ab can be

derived from that of 4pab. Therefore link(p) forms a coherently oriented polygon; see

Figure 8.14. The local winding number of p, denoted as λ(p), is the winding number

of link(p) w.r.t. p. For example, in Figure 8.14(a), p is a vertex not connecting to v′,

and its local winding number is 1. In Figure 8.14(b), p connects to v′ and its local

winding number is 0. A vertex of T ′ \ {v′} is a positive (resp., negative) vertex if its

local winding number is positive (resp., negative). A vertex with local winding number

0 is further called a 0-vertex.

Let n be the number of the vertices of T ′ \ {v′}, and k be the degree of v′ (k ≤ n).
The boundary of T has k vertices. De�ne S+ = {p | p is a positive vertex of T ′ \ {v′}}
and S− = {p | p is a negative vertex or 0-vertex of T ′ \ {v′}}; |S+|+ |S−| = n. Let tp

and tn be the numbers of the positive and negative triangles in T ′\star(v′). By Euler's
Formula we can obtain tp + tn + k = 2(n+ 1)− 4 and thus tp + tn = 2n− 2− k. In the

following two technical lemmas, we build relations between these parameters and the

104

(a) (b)

Figure 8.14: In the extended projected triangulation T ′ with virtual point v′, the link
of a vertex p forms a coherently oriented polygon. (a) p does not connect to v′. (b) p
connects to v′.

local winding numbers of the vertices of T ′ \ {v′}.

Lemma 8.10.
∑

p∈S+∪S−
λ(p) =

∑
p∈S+

λ(p) +
∑

q∈S−
λ(q) = n− tn.

Proof. Given a triangle 4abc, de�ne its signed angle at one of its vertices as the inner

angle at the vertex with the sign decided by the orientation of4abc: the sign is positive
if 4abc is positive; otherwise it is negative. The angles incident to the virtual vertex

v′ are considered to be 0.

Consider the sum of all signed angles in T ′ by summing over all triangles. The

sum over all real triangles is clearly tpπ − tnπ. On the other hand, since the virtual

triangles are all positive, the signed angles that are not incident to v′ in the virtual

triangles, e.g. the angle α in Figure 8.13, are positive. Hence, the sum of these signed

angles is 2kπ− (k− 2)π = (k+ 2)π, where (k− 2)π is the sum of all the inner angles of

the polygon link(v′). Therefore the sum of all signed angles is tpπ − tnπ + (k + 2)π =

(tp − tn + k + 2)π = 2(n− tn)π.

Now consider the sum of all signed angles in T ′ by summing over all stars. An

angle is incident to one and only one vertex, and the sum of all signed angles incident

to a vertex p is λ(p) × 2π. Therefore the sum of all signed angles is
∑

p∈S+∪S−
2λ(p)π.

Equating it with the result of the previous paragraph, we prove the lemma.

Lemma 8.11.

(1)
∑

p∈S+

λ(p)− ∑
q∈S−

λ(q) = n when tn = 0;

(2)
∑

p∈S+

λ(p)− ∑
q∈S−

λ(q) < n when tn > 0.

Proof. (1) Given a vertex p ∈ T ′\{v′}, shoot an arbitrary ray from p. In all the triangles

of star(p) that intersect with this ray (if any), the number of positive triangles minus

the number of negative triangles is equal to λ(p). Thus, a 0-vertex or negative vertex

105

(a) (b)

Figure 8.15:
−→
D is the positive direction of x-axis, and ab is an edge of link(v′). (a)

r(s,
−→
D) 6∈ CH(−→sa,−→sb), and 4v′ab ∈ T+(b,−−→D). (b) r(s,

−→
D) ∈ CH(−→sa,−→sb), and 4v′ab ∈

T+(a,
−→
D) ∩ T+(b,

−→
D).

must be incident to some negative triangles, and hence S− = ∅ when tn = 0. Also, by

Lemma 8.10,
∑

p∈S+

λ(p) = n− tn = n. Therefore,
∑

p∈S+

λ(p)− ∑
q∈S−

λ(q) = n.

(2) Choose a �xed direction
−→
D . Let r(x,

−→
D) be a ray with direction

−→
D from point

x. For each vertex p of T ′ \ {v′} shoot two rays r(p,
−→
D) and r(p,−−→D), where −−→D is

the opposite direction of
−→
D . Perturb the chosen direction if necessary so that the two

rays of any vertex do not pass through another vertex. Let T+(p,
−→
D) and T+(p,−−→D)

be the set of the positive triangles of star(p) intersecting with r(p,
−→
D) and r(p,−−→D)

respectively, and T−(p,
−→
D) and T−(p,−−→D) be the set of the negative triangles of star(p)

intersecting with r(p,
−→
D) and r(p,−−→D) respectively.

For a 0-vertex or a negative vertex q, −λ(q) = |T−(q,
−→
D)| − |T+(q,

−→
D)| =

|T−(q,−−→D)| − |T+(q,−−→D)|, indicating −2λ(q) ≤ |T−(q,
−→
D)| + |T−(q,−−→D)|. Besides,

each negative triangle4abc belongs to exactly one of the set T−(x,Y) with x ∈ {a, b, c}
and Y ∈ {−→D,−−→D}, and thus all the sets T−(·, ·) are non-overlapping. Consequently,

−2
∑

q∈S−
λ(q) ≤ ∑

q∈S−
(|T−(q,

−→
D)|+ |T−(q,−−→D)|) ≤ tn. (i)

For a positive vertex p, λ(p) = |T+(p,
−→
D)| − |T−(p,

−→
D)| = |T+(p,−−→D)| −

|T−(p,−−→D)|, indicating 2λ(p) ≤ |T+(p,
−→
D)| + |T+(p,−−→D)|. Now consider all the sets

T+(·, ·). Each positive triangle that is real also appears only once. On the other hand,

each virtual triangle 4v′ab appears twice if r(s,Y) ∈ CH(−→sa,−→sb) for any direction

Y ∈ {−→D,−−→D}, and appears once otherwise. This is illustrated in Figure 8.15. Nev-

ertheless, since link(v′) is star-shaped w.r.t. s, only two of the virtual triangles are

counted twice. Hence, 2
∑

p∈S+

λ(p) ≤ ∑
p∈S+

(|T+(p,
−→
D)|+ |T+(p,−−→D)|) ≤ tp + k+ 2. (ii)

From (i) and (ii),
∑

p∈S+

λ(q) − ∑
q∈S−

λ(q) ≤ (tn + tp + k + 2)/2 = n. When tn > 0,

T ′ contains negative triangles, and thus has some folds. Let ab be a fold of T ′ incident
to a positive triangle 4abc (c can be v′) and a negative triangle 4bad. Choose the

direction
−→
D so that r(a,

−→
D) intersects with both triangles. Therefore |T−(a,

−→
D)| > 0

and |T+(a,
−→
D)| > 0. Bringing this result back to the previous paragraph, we know that

106

if a is a positive vertex, 2λ(a) < |T+(a,
−→
D)| + |T+(a,−−→D)| and hence 2

∑
p∈S+

λ(p) <

tp + k + 2. Similarly if a is a 0-vertex or a negative vertex, −2λ(a) < |T−(a,
−→
D)| +

|T−(a,−−→D)|, and thus −2
∑

q∈S−
λ(q) < tn. In either case,

∑
p∈S+

λ(p)− ∑
q∈S−

λ(q) < n.

Given a vertex p of T ′ \ {v′}, we say p is a sink if it lies outside the convex hull of

its link; see Figure 8.14(b) as an example. The following lemma provides a collection

of su�cient conditions for star-shaped polyhedron.

Theorem 8.12. Given a polyhedron P with its topmost vertex v and secondary kernel

s, let T ′ be the extended projected triangulation of P. If star(v) is star-shaped w.r.t. s

and contains only positive triangles, then the following statements are equivalent:

(1) P is star-shaped w.r.t. v;

(2) All the triangles of T ′ are positive;
(3) All the edges of T ′ are not folds;
(4) All the vertices of T ′ \ {v′} are positive;
(5) All the vertices of T ′ \ {v′} are not 0-vertices;
(6) All the vertices of T ′ \ {v′} are not sink.

Proof. It is trivial to see that (1) implies all other statements. We prove that each of

the other statements implies (1).

For (2), when all the triangles of T ′ are positive, all their corresponding triangles

in P are positive. In addition, star(v) is star-shaped w.r.t. s and all its triangles are

also positive. Thus T is star-shaped w.r.t. v by Lemma 8.8.

For (3), the virtual triangles of T ′ are positive, thus when T ′ has no folds, all its

triangles are positive. By (2), P is star-shaped w.r.t. v.

For (4), when all the vertices of T ′\{v′} are positive, ∑
q∈S−

λ(q) = 0 and
∑

p∈S+

λ(p) =

n− tn ≤ n (Lemma 8.10). Since the local winding number of each vertex is at least 1,∑
p∈S+

λ(p) ≥ n. Thus, ∑
p∈S+

λ(p) = n and tn = 0. By (2), P is star-shaped w.r.t. v.

For (5), as T ′ has no 0-vertices, the local winding number of each vertex in S−

is at most -1, and thus − ∑
q∈S−

λ(q) ≥ |S−|. Similarly,
∑

p∈S+

λ(p) ≥ |S+|. ∑
p∈S+

λ(p) −∑
q∈S−

λ(q) ≥ |S+|+ |S−| = n. By Lemma 8.11, tn = 0. By (2), P is star-shaped w.r.t. v.

For (6), the sum of all the (absolute) angles in T ′ is tpπ + tnπ + (k + 2)π = 2nπ;

see the proof of Lemma 8.10 for more details. Given a vertex p of T ′ \ {v′}, let θ(p)
be the sum of all the angles incident to p. Note that θ(p) ≥ 2π if p is not a 0-vertex.

Since an angle is incident to exactly one vertex, we conclude
∑

p∈T ′\{v′}
θ(p) = 2nπ.

Assume by contradiction that T ′ has no sinks yet P is not star-shaped w.r.t. v. By

(5), T ′ has some 0-vertices. For each 0-vertex q, it is not a sink by assumption. As

107

(a) (b)

Figure 8.16: For a 0-vertex q, the rays of q intersecting the triangles of star(q) form a
pie (shaded regions). (a) When q is a sink, the angle of the pie is smaller than π, and
(b) when q is not a sink, the angle is larger than π.

shown in the next paragraph, θ(q) > 2π. In addition, θ(p) ≥ 2π for each vertex p that

is not 0-vertex (p 6= v′). Therefore,
∑

p∈T ′\{v′}
θ(p) > 2nπ, which is a contradiction.

We prove that for any 0-vertex q, θ(q) > 2π if q is not a sink. Partition the fan

around q into two sectors: sector R1(q) that is covered by the triangles in star(q), and

sector R2(q) that is not covered (possibly empty); see Figure 8.16. Note that since q is

a 0-vertex, R1(q) is covered at least twice, i.e., every ray starting at q in the interior of

R1(q) intersects with at least two triangles of star(q). Use |Ri(q)| to represent the angle
of the sector; |Ri(q)| 6= π by the assumption of general position and θ(q) ≥ 2|R1(q)|.
Clearly if q is not a sink, |R1(q)| > π and thus θ(q) ≥ 2R1(q) > 2π.

Each of the statements from (2) to (6) in Theorem 8.12 provides a su�cient con-

dition for P to be star-shaped. More importantly, these conditions are veri�able using

local checks and thus they imply some possible monotonic procedure for the local trans-

formation to star-shaped polyhedron. To sum up this section and end this chapter, we

go through each of these statements and discuss their implication.

Statement (2) is about the negative triangles of T ′; it suggests a monotonic proce-

dure of reducing the number of the negative triangles. Similarly, Statement (3) implies

a procedure of decreasing the number of the folds in T ′. However, a �ip like the one

in Figure 8.9(c) does not reduce the number of the negative triangles or the folds.

Statement (4) and Statement (5) focus on the local winding numbers of vertices of T ′.
The local winding number of a vertex may be changed via �ipping a fold. The �ip in

Figure 8.9(a), for example, increases λ(d) by 1, while the one in Figure 8.9(b) decreases

λ(c) by 1. One may attempt to increase the local winding number of some vertices by

�ips until all the vertices are positive. However, a �ip like the one in Figure 8.9(c) does

108

Figure 8.17: T , the projected triangulation of P, is transformed by �ips into one that
contains no negative triangles. The (topological) boundary of T are colored in red,
and its negative triangles are shaded. Assume that the secondary kernel s is located so
that the boundary of T is star-shaped w.r.t. s during the process.

not change any local winding number.

Figure 8.17 shows a �ipping procedure that transforms a projected triangulation

containing negative triangles to one that has no negative triangles. The �rst �ip in the

procedure increases the numbers of the negative triangles and the folds, and decreases

λ(c) from 1 to 0. Hence this procedure does not have the monotonicity suggested by

Statement (2)�(5).

Statement (6) uses sink to prove star-shaped polyhedron: when P is not star-

shaped, T ′ must have a sink. In order to remove a sink p, we should insert more

vertices into star(p). This can be done by �ipping the edges of link(p), which is

actually a reversed action of �ipping the edges of star(p) to decrease the degree of p

in �ip-�op. However, an edge of link(p) is also an edge of the star of another vertex,

say q. Flipping the edge removes a vertex from star(q), possibly making q a new sink.

Figure 8.18 shows an example for this problem.

To sum up, it is challenging to design an algorithm of local transformation from

an arbitrary polyhedron to a star-shaped one. A key step is to �nd a measure for the

monotonicity of the local transformation. As discussed above, such measure can be the

local winding number, the sum of degree, the number of sinks, or something else. As a

basic rule, a proper measure should e�ectively re�ect the monotonicity of a single �ip.

109

(a) (b)

Figure 8.18: The projected triangulation T of P, whose (topological) boundary is in
red and negative triangles are shaded. (a) T has one sink e. (b) After �ipping bd, e
becomes a 0-vertex that is not sink, but d becomes a sink.

110

CHAPTER 9

Flipping in Higher Dimensions

This chapter studies di�erent ways to locally transform one regular triangulation to

another of the same point set in any dimension.

Section 9.1 presents the current state-of-the-art algorithms on transforming from

one triangulation to another in high dimensions. These algorithms work for only a

few limited class of inputs. There is a counter-example to show that two arbitrary

triangulations of a point set are not always reachable from each other through �ips,

whereas it is always possible if both triangulations are regular. We thus pose the

question of designing a local transformation, preferably with free execution order, to

reach any regular triangulation from another.

Section 9.2 proposes a moving model for transforming between regular triangu-

lations and presents a sequential algorithm based on the idea of kinetic data struc-

ture. Speci�cally, the algorithm repeatedly updates the regular triangulation when the

weights of the vertices continuously change to a given target. This approach is derived

straightforwardly from those of [Raj91, Gui98, She03]. This section also discusses the

handling of degeneracy, and presents a novel algorithm for �nding a perturbation order

to realize a strongly regular triangulation.

Section 9.3 further attempts to �nd a �ip algorithm to solve the problem with

free execution order. With the geometric structure cast into a time line, we study the

properties of ridges, and show how these are a�ected by �ips. Our �ndings present a new

perspective to understand the sequential solution of Section 9.2, and more importantly

shed light on the possibility of �nding good strategies for �ipping between regular

triangulations with free execution order.

111

Figure 9.1: Triangle 4pqa2 is locally non-Delaunay and un�ippable because of re�ex
edge pq. Then there must be another locally non-Delaunay triangle in star(pq).

9.1 Literature Review

A �ip algorithm is monotonic if it �ips only locally non-regular ridges. For example,

Lawson's �ip algorithm is a monotonic algorithm, while �ip-�op is not. The arbitrarily

monotonic �ip algorithm particularly refers to the algorithm that arbitrarily picks a

locally non-regular and �ippable ridge to �ip. Lawson's �ip algorithm is the arbitrarily

monotonic �ip algorithm that computes 2D Delaunay triangulation.

Given a triangulation T in Rd, let F be a ridge of T and {a, b} be its link vertices.

Recall that F is �ippable if the induced-subcomplex of F is convex (Section 2.3). Here

we introduce another way to check the �ippability of F . A facet R of F , which is a

(d − 2)-face of T , is said to be convex in F if there exists a hyperplane through R so

that F , a, and b lie on the same side of the hyperplane; otherwise it is re�ex in F . F is

�ippable if every re�ex facet in it has exactly three link vertices [ES92]. In Figure 9.1,

pq is re�ex in 4pqa2. As the degree of pq is more than 3, 4pqa2 is un�ippable.

Arbitrarily Monotonic Flip Algorithm Fails in R3

Joe [Joe89] gives a counter-example to prove that the arbitrarily monotonic �ip algo-

rithm may get stuck when computing Delaunay triangulation from an arbitrary 3D

triangulation. In his example, all the locally non-Delaunay triangles are un�ippable,

and thus any monotonic �ip algorithm cannot continue.

Joe further explains why the arbitrarily monotonic �ip algorithm gets stuck. Ac-

cording to Lemma 9.1, the removal of a locally non-Delaunay and un�ippable triangle

depends on the removal of another locally non-Delaunay triangle. If that other triangle

is also un�ippable, its removal depends on the removal of a third one. When these

dependencies form a cycle, none of the triangles in this cycle is �ippable, and hence

the arbitrarily monotonic �ip algorithm gets stuck.

Lemma 9.1 ([Joe89]). Let T be a triangulation containing tetrahedrons pqa1a2 and

pqa2a3 such that 4pqa2 is locally non-Delaunay and un�ippable; see Figure 9.1. With-

112

out loss of generality, assume pq is a re�ex ridge in 4pqa2. Then there exists another

interior face 4pqai, i 6= 2, that is locally non-Delaunay.

Lemma 9.1 can be extended on three aspects to arrive at Lemma 9.2. First, we

extend Delaunay triangulation to regular triangulation. Second, the conclusion of

Lemma 9.1 can be speci�ed into two cases. Third, we claim the lemma in any di-

mension, as Joe does in [Joe93].

Lemma 9.2. Let T be a triangulation in Rd containing two facets C1 and C2 such that

the ridge F incident to C1 and C2 is locally non-regular and un�ippable, and a1 ∈ C1

and a3 ∈ C2 be the link vertices of F . Without loss of generality, assume that the facet

R of F is re�ex in F and has more than 3 link vertices, and the link vertex of R in F

is a2. Let 〈a1, a2, a3, ..., ak〉 be the ordered link vertices of R for k ≥ 4. Then one of

the following two must be true:

(1) A ridge containing ai (4 ≤ i ≤ k) in star(R) is locally non-regular.

(2) The ridges containing a1 and a3 in star(R) are both locally non-regular.

Proof. See Figure 9.1 for the 3D illustration where R = pq. We lift T by v → (v, v2−w),

where w is the weight of the vertex v, and prove the lemma in the lifted space. In the

following, p, q, ai and R are also used to represent their counterparts in the lifted space.

Let Fi be the ridge consisting R and ai, and Ci be the facet consisting of R, ai and

ai+1, assuming ak+1 = a1 and Fk+1 = F1. Use Hi to denote the hyperplane passing

through Ci.

As F = F2 is locally non-regular, a1 lies below H2 in the half space bounded by

the vertical plane of F2 and containing a1. Now by contradiction assume F3 is locally

regular, meaning that H2 is below H3 in the half space bounded by the vertical plane

of F3 and containing a4. This half space also contains a1 since R is re�ex in F2, and

therefore a1 is below H3. Repeat the analogues argument until Fk: either some Fi for

3 ≤ i ≤ k − 1 is locally non-regular, or a1 is below Hk−1. The latter indicates that Fk

is locally non-regular. Therefore, at least one of {Fi | 3 ≤ i ≤ k} is locally non-regular.

Symmetrically, at lease one of {Fi | 4 ≤ i ≤ k+ 1} is locally non-regular. Summarizing

these results, we �nish the proof.

Arbitrarily Monotonic Flip Algorithm Works for �RT+1� Triangulation

Given a point set S in Rd and its regular triangulation RT (S), we can insert a point

p inside CH(S) into RT (S) by simply applying a 1-(d + 1) �ip. We call the resulting

triangulation an �RT+1� triangulation, and similarly we can de�ne �DT+1� triangula-

tion. As shown later, these classes of triangulations are well-known for being workable

inputs of the arbitrarily monotonic �ip algorithm in any dimension.

Joe proves that the arbitrarily monotonic �ip algorithm works for �DT+1� triangu-

lation, �rst in R3 [Joe91] and then in any dimensional space [Joe93]. Edelsbrunner and

113

Shah [ES92] extend these results to regular triangulation. Speci�cally, they prove that

there is always a �ippable ridge among those locally non-regular ones during �ipping,

which can be found as follows. Lift the triangulation by the function p→ (p, p2 −wp),

where wp is the weight of p. Each facet of the lifted triangulation de�nes a hyperplane,

and the facet whose hyperplane has the highest intersection point with the vertical

line through v must contain a ridge of link(v). This ridge is locally non-regular and

�ippable unless the triangulation is regular.

We note without further explanation that the arbitrarily monotonic �ip algorithm

also works for a �RT+1� extended triangulation.

Arbitrarily Monotonic Flip Algorithm Fails For �RT+2� Triangulation

Analogous to �RT+1� triangulation, we de�ne �RT+2� triangulation as a triangulation

created by inserting two points into a regular triangulation. We design a counter-

example to show that the arbitrarily monotonic �ip algorithm does not work for �RT+2�

triangulation. This result implies that the workable inputs for the arbitrarily monotonic

�ip algorithm are very restricted.

We build an extended triangulation T using seven points {a, b, c, d, e, f, g} as its
vertices and a point s as its kernel point, with the weights of all these points be-

ing 0. Let v be the virtual vertex of T . Table 9.1 lists the coordinates of these

points, and Figure 9.2(a) shows the combinatorial of T . Note that the �gure does

not re�ect the real positions of the vertices. The locally non-regular ridges of T are

{4bce,4cde,4vbc,4vce}, among which 4vbc and 4vce are �ippable. T can be con-

structed by inserting a and g into the extended regular triangulation of {b, c, d, e, f, v},
and thus is an �RT+2� extended triangulation.

Figure 9.2(b) shows the �ip graph created by exploring all possible monotonic �ip

paths. Here a node represents a triangulation and an arrow indicates a �ip from one

triangulation to another. The �ip paths converge to two di�erent terminals. The �rst

terminal, represented by the green node, is the regular triangulation, while the second

terminal, represented by the red node, is a triangulation with all the locally non-regular

triangles being un�ippable. Beginning at T , the arbitrarily monotonic �ip algorithm

may unfortunately get stuck at the red node.

Table 9.1: The coordinates of the vertices in the �RT+2� triangulation where the
arbitrarily monotonic �ip algorithm gets stuck.

a b c d e f g s

x 0.666 0.849 0.298 0.589 0.848 0.648 0.397 0.597

y 0.795 0.780 0.546 0.327 0.635 0.653 0.654 0.530

z 0.546 0.419 0.067 0.463 0.556 0.139 0.253 0.264

114

(a) (b)

Figure 9.2: (a) An extended triangulation built by inserting a and g into the extended
regular triangulation of {b, c, d, e, f} with s as the kernel point. (b) The �ip graph of
the arbitrarily monotonic �ip algorithm on (a). The blue square represents the input
triangulation, while the green node represents the regular triangulation.

By replacing the virtual vertex with several real vertices far away from s, we can

also build a �RT+2� triangulation as counter-example.

Instant Flip Algorithm for Kinetic Data

For �DT+1� triangulation in d dimension (d ≥ 3), Rajan [Raj91] designs a monotonic

�ip algorithm that does not allow arbitrary selection of locally non-Delaunay ridges.

Speci�cally, it �rst lifts the triangulation by p → (p, p2) except for the newly inserted

vertex v, which is lifted so that star(v) with only d + 1 facets is coplanar. Then it

continuously moves the lifted vertex of v to (v, v2), maintaining the convexity of the

lifted triangulation by immediately �ipping ridges that become re�ex. This approach

also works for �RT+1� triangulation.

Rajan's algorithm is in fact an application of kinetic data structure. Kinetic data

structure tracks the combinatorial changes of the geometric structure during the moving

of vertices [Gui98]. By arranging the local updates in the chronological order of �events�,

it can potentially provide a sequence of local updates to �x the geometric structure while

moving. We call a �ip algorithm employing this idea an instant �ip algorithm.

There are also some other instant �ip algorithms. Shewchuk [She03] designs one

to insert a ridge F into a regular triangulation T , given that T already contains all

the facets of F . Using an instant �ip algorithm, Miller and Sheehy [MS13] remove

multiple vertices from Delaunay triangulation, and Cheng et al. [CDE+99] eliminate

�at tetrahedrons from 3D Delaunay triangulation.

Connectivity of Flip Graph

In a more general context, there are several studies on the �ip graph of triangulations

and its connectivity. The �ip graph of a set of triangulations is a graph where each

115

Figure 9.3: The �ip graph of the triangulations of six planar points. The six points
are arranged such that �ve form a regular pentagon with the other one locating at the
center of the pentagon. The �ip graph is combinatorially equivalent to the 1-skeleton
of the secondary polytope of the six points.

node represents a triangulation and each edge between two nodes indicates that the two

triangulations represented by these nodes di�er by exactly one �ip; see Figure 9.3 for

example. A �ip graph is connected if each triangulation can be transformed to any other

one by �ips. The �ip graph of all triangulations of a point set S in R2 is connected,

straightforwardly hinted by Lawson's �ip algorithm. In contrast, the �ip graph of the

triangulations of a point set in Rd (d ≥ 5) may be disconnected [San00, San05, San06].

It is not known whether such a �ip graph in R3 or R4 is connected or not.

Gel'fand et al. [GZK91] map each triangulation of n vertices to a point in Rn,

whose i-th coordinate is the volume of the star of the i-th vertex, and therefore all

the triangulations of a set S of n points are mapped to a set U of points in Rn.

The secondary polytope of S, SP(S), is the convex hull of U . The authors prove

that an extreme vertex of SP(S) corresponds to a regular triangulation of S, and

an extreme edge of SP(S) implies that the two corresponding regular triangulations

are connected by a �ip. Therefore, the 1-skeleton of SP(S) is the �ip graph of all

the regular triangulations of S. An important theoretical result naturally obtained is

that the �ip graph of all the regular triangulations of a point set in any dimension is

connected.

Pournin et al. [PL07] identify in the �ip graph of the regular triangulations of a

point set some particular �ip paths that are monotonic w.r.t. the number of vertices.

116

Based on this, they propose an algorithm to transform one regular triangulation to

another, checking whether a �ip leads to non-regular triangulation or not in each step.

Such checking is computationally ine�cient.

Summing up the above results, we know that it is impossible to design a �ip al-

gorithm to transform an arbitrary triangulation to its regular triangulation in general

dimension because of the disconnectedness of �ip graph. The most general yet possi-

bly solvable problem is transforming one regular triangulation to another of the same

point set given the weight sets for the two [PL07]. This problem is a generalization

of the problem with �RT+1� triangulation [ES92] and the one for deleting multiple

vertices [MS13].

In the next section, we use an instant �ip algorithm to solve the above mentioned

problem, and focus on handling the degeneracy problem.

9.2 Instant Flipping between Regular Triangulations

Let S be a set of n points in Rd (d < n), and W be a weight set of S. With the

SoS technique [EM90], we can assume that all the points of S are in general position.

Recall that SW is the lifted point set of S ⊕W . Given a triangulation T (S), the lifted

triangulation of T (S) w.r.t.W , denoted as T W (S), is built by replacing all the vertices

of T (S) with their lifted vertices in SW . By this de�nition, RT W (S ⊕W) is the lower

hull of SW in Rd+1.

In a lifted triangulation, let C1 and C2 be two facets sharing a common ridge F , and

a ∈ C1 and b ∈ C2 be the link vertices of F . F is re�ex if a is beneath the hyperplane

through C2 (equivalently, if b is beneath the hyperplane through C1). Similarly it is

convex if a is above the hyperplane. Otherwise it is �at. The ridges on the boundary

are convex by default.

Our problem is to design a �ip algorithm to transform RT (S⊕W) to RT (S⊕U),

where U is another weight set of S. Assume that every vertex of RT (S ⊕ U) belongs

to RT (S ⊕W) so that the less relevant issue of point insertion does not need to be

considered.

We build a moving model for instant �ipping as follows. Maintain a weight set V

of S and initialize V with W so that SV are located in the position of SW . Move

each point of SV from time 0 to 1 at a constant speed along the axis of the (d + 1)-

th coordinate so that SV �nally arrives at the position of SU . We represent V as a

function of time t: V (t) = {vi(t) | vi(t) = (1− t)wi + tui, 0 ≤ i ≤ n− 1} for 0 ≤ t ≤ 1.

In the moving model, the time when a ridge F changes from convex to �at is called

the failure time of F . The failure time of F is decided by the vertices of F ∪ link(F):

their coordinates in S and their weights in W and U . Note that a ridge may have no

failure time, or its failure time is not in the range (0,1). The former case happens when

the ridge is on the boundary or it becomes �at from re�ex.

117

Algorithm 14: The monotonic instant �ip algorithm

input : a point set S, its two weight sets W and U , and RT (S ⊕W)
output: RT (S ⊕ U)

1 T (S)← RT (S ⊕W)
2 Q is a priority queue of ridges with failure time as key
3 foreach ridge F in T (S) do
4 tF ← the failure time of F
5 if tF 6= null and tF ∈ (0, 1) then Q ← 〈F, tF 〉
6 while Q 6= ∅ do
7 F ← Q.extractMin()
8 if F ∈ T (S) then
9 �ip F

10 foreach boundary facet G of the induced-subcomplex of F do

11 tG ← the failure time of G
12 if tG 6= null and tG ∈ (0, 1) then Q ← 〈G, tG〉

13 RT (S ⊕ U)← T (S)

9.2.1 The Monotonic Instant Flip Algorithm

We show an instant �ip algorithm built based on the moving model, named monotonic

instant �ip algorithm. Conceptually, we maintainRT V (t)(S⊕V (t)), which isRT W (S⊕
W) when t = 0, from time 0 to 1 by instant �ipping. At time 1, RT V (t)(S ⊕ V (t)) =

RT U (S ⊕ U) gives RT (S ⊕ U).

Algorithm 14 shows the pseudocode of the proposed algorithm. T (S), initialized as

RT (S ⊕W), is the geometric structure for �ipping. A priority queue Q is maintained

so that it always pops the ridge that has minimum failure time. In Line 3�5, all the

existing ridges whose failure time is in (0,1) are pushed into Q. The ridge F with the

minimum failure time in Q is extracted from Q in each iteration, and is �ipped if F is

still in T (S) with the same link vertices (Line 7�9). The ridges on the boundary of the

induced-subcomplex of F are then pushed intoQ for further consideration (Line 10�12).

This process is repeated until Q is empty.

The proof of correctness of the monotonic instant �ip algorithm is straightforwardly

inherited from that of kinetic data structure and thus is omitted. Nevertheless, such

an algorithm implies the following interesting theorem, according to which the trian-

gulation presented in [Joe89] is a non-regular triangulation.

Theorem 9.3. A monotonic �ip algorithm only gets stuck at non-regular triangulation.

Proof. Assume this algorithm aims to transform a triangulation of a point set S to

RT (S ⊕ U) for some weight set U . By contradiction assume that the algorithm gets

stuck at a regular triangulation T (S) where all the ridges that are locally non-regular

w.r.t. U are un�ippable. Let W be a weight set so that T (S) ≡ RT (S ⊕ W). To

118

transform RT (S ⊕W) to RT (S ⊕ U), the monotonic instant �ip algorithm �nds the

�rst ridge to �ip. This ridge is locally non-regular and �ippable; a contradiction.

Let F = 〈a1, a2, ..., ad〉 be a ridge, and C1 = 〈a1, a2, ..., ad, ad+1〉 and C2 =

〈a2, a1, ..., ad, ad+2〉 be the two facets sharing F . Given a time t, the orientation of

C1 w.r.t. ad+2 can be computed by the following (d+ 2)× (d+ 2) determinant:

Orientd+1(SF , t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1, a1
2 − w1 + t(w1 − u1), 1

a2, a2
2 − w2 + t(w2 − u2), 1

..., ..., ...

ad, ad
2 − wd + t(wd − ud), 1

ad+1, ad+1
2 − wd+1 + t(wd+1 − ud+1), 1

ad+2, ad+2
2 − wd+2 + t(wd+2 − ud+2), 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (9.1)

where SF = 〈a1, a2, ..., ad, ad+1, ad+2〉 is the ordered point set of F plus its link, and wi

and ui are the weights of ai in W and U respectively for 1 ≤ i ≤ d + 2. Note that

ai
2 −wi + t(wi − ui) is the height of ai at time t in the moving model. At time t, F is

convex if Orientd+1(SF , t) > 0, re�ex if Orientd+1(SF , t) < 0, and �at otherwise. The

failure time of F , if exists, can be computed from Orientd+1(SF , t) = 0.

The following lemma states that a ridge removed by the algorithm never reappears.

It relies on the fact that all the vertices move at constant speed in the moving model.

Lemma 9.4. Any ridge appears at most once in the monotonic instant �ip algorithm.

Proof. Let F be a ridge removed, and SF = 〈a1, a2, ..., ad, ad+1, ad+2〉 be the ordered

point set of F plus its link. Let tF ∈ (0, 1) be the failure time of F and ε be a su�ciently

small positive number. By de�nition, Orientd+1(SF , tF) = 0, Orientd+1(SF , tF − ε) >
0, and Orientd+1(SF , tF + ε) < 0. By representing any time t > tF as tF + λε where

λ > 0, we have

λOrientd+1(SF , tF − ε) +Orientd+1(SF , tF + λε) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1, (λ+ 1)[a1
2 − w1 + tF (w1 − u1)] + (−λε+ λε)(w1 − u1), 1

a2, (λ+ 1)[a2
2 − w2 + tF (w2 − u2)] + (−λε+ λε)(w2 − u2), 1

..., ..., ...

ad, (λ+ 1)[ad
2 − wd + tF (wd − ud)] + (−λε+ λε)(wd − ud), 1

ad+1, (λ+ 1)[ad+1
2 − wd+1 + tF (wd+1 − ud+1)] + (−λε+ λε)(wd+1 − ud+1), 1

ad+2, (λ+ 1)[ad+2
2 − wd+2 + tF (wd+2 − ud+2)] + (−λε+ λε)(wd+2 − ud+2), 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ+ 1)Orientd+1(SF , tF) = 0.

119

Hence Orientd+1(SF , tF + λε) < 0. Therefore, at any time t > tF , F cannot appear

on the lower hull of SF and thus not on the lower hull of S.

Indeed, we can further prove that a face appears at most once using a similar proof.

Lemma 9.4 implies two properties of the monotonic instant �ip algorithm. First, any

vertex removed cannot reappear. Second, if a simplex belongs to both RT (S⊕W) and

RT (S ⊕ U), it is never modi�ed by the algorithm.

Each �ip of the monotonic instant �ip algorithm either creates or removes one bd/2c-
simplex [Law87], and there are nbd/2c+1 bd/2c-simplices by enumerating all among n

points of S. Since any simplex removed cannot reappear in the triangulation, there are

at most nbd/2c+1 �ips to create bd/2c-simplices and at most nbd/2c+1 �ips to remove

them. Because each �ip creates at most d facets, the number of facets created is at

most 2dnbd/2c+1. The cost of maintaining the priority queue in each �ip is therefore

O
(
log(2dnbd/2c+1)

)
= O

(
bd/2c log n

)
. Thus the worst-case time complexity of the

monotonic instant �ip algorithm is O
(
bd/2cnbd/2c+1 log n

)
.

9.2.2 Computing and Comparing Failure Time

We show how to compute the failure time of a ridge (Line 4 and Line 11 of Algo-

rithm 14). Given a ridge F and the ordered point set SF = 〈a1, a2, ..., ad, ad+1, ad+2〉
of F plus its link, de�ne Orientd(SF , ai) as the minor of Orientd+1(SF , t) by deleting

the i-th row and the (d+ 1)-th column:

Orientd(SF , ai) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1, 1

..., ...

ai−1, 1

ai+1, 1

..., ...

ad+2, 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (9.2)

This (d + 1) × (d + 1) determinant is indeed that computed during an orientation

check on d + 1 points in Rd and is not related to the time in the moving model. In

addition, it cannot be 0 because of the assumption that the points of S are in general

position. Let tF be the time when F is �at. Then we have

Orientd+1(SF , tF) = 0

⇔ ∑d+2
i=1 {[ai2 − wi + tF (wi − ui)]×Orientd(SF , ai)(−1)d+1+i} = 0

⇔ Orientd+1(SF , 0) + tF
∑d+2

i=1 [(wi − ui)×Orientd(SF , ai)(−1)d+1+i] = 0

⇔ Orientd+1(SF , 0) + tF [Orientd+1(SF , 1)−Orientd+1(SF , 0)] = 0,

120

and thus

tF = Orientd+1(SF , 0)/[Orientd+1(SF , 0)−Orientd+1(SF , 1)]. (9.3)

When Orientd+1(SF , 0) = Orientd+1(SF , 1), the dihedral angle between the hyper-

planes passing through the two incident facets of F is unchanged during the movement.

When Orientd+1(SF , 0) < Orientd+1(SF , 1), F becomes �at from re�ex at tF . In both

cases, F has no failure time. When Orientd+1(SF , 0) > Orientd+1(SF , 1), tF is the

failure time of F .

Numerical error may happen if we directly store the failure time as real num-

bers and compare these numbers in the priority queue. Instead, we can compare

failure time without explicitly computing its value. Let F and G be two ridges

having failure time tF and tG, and SF and SG be their corresponding ordered

point set respectively. By Equation 9.3, the sign of tF − tG is equal to that of

Orientd+1(SF , 1)×Orientd+1(SG, 0)−Orientd+1(SF , 0)×Orientd+1(SG, 1). As such,

the latter equation can be directly evaluated using exact computation when comparison

of failure time is needed.

Two ridges may have the same failure time. We avoid this by symbolically perturb-

ing the weights of the input points, similar to the techniques in [She03, DT11]. We

�x an order of the points of S called perturbation order, and symbolically add a small

positive value called perturbing value to the weight of each point so that the perturbing

value of a point p dominates those of the points behind p in the perturbation order. The

perturbing values are so small that they do not a�ect the comparison of two unequal

failure time, while they help to prevent equal failure time.

Let S∗F be the set of the perturbed points of SF , and ε(p) be the perturbing value

of p. Then we have

Orientd+1(S∗F , t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1, a1
2 − w1 − ε(a1) + t(w1 − u1), 1

a2, a2
2 − w2 − ε(a2) + t(w2 − u2), 1

..., ..., 1

ad, ad
2 − wd − ε(ad) + t(wd − ud), 1

ad+1, ad+1
2 − wd+1 − ε(ad+1) + t(wd+1 − ud+1), 1

ad+2, ad+2
2 − wd+2 − ε(ad+2) + t(wd+2 − ud+2), 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and

Orientd+1(S∗F , t) = Orientd+1(SF , t)−
d+2∑
i=1

(−1)d+i+1Orientd(SF , ai)ε(ai) (9.4)

Under the perturbation, the sign of tF − tG is equal to the sign of

Orientd+1(S∗F , 1)×Orientd+1(S∗G, 0)−Orientd+1(S∗F , 0)×Orientd+1(S∗G, 1),

121

which can be decomposed into a main term

Orientd+1(SF , 1)×Orientd+1(SG, 0)−Orientd+1(SF , 0)×Orientd+1(SG, 1)

and many minor terms, each of which is a multiplication of a perturbing value and

its coe�cient. The main term decides the sign of tF − tG if it is not 0; otherwise the

non-zero coe�cient of the largest perturbing value does. If all the terms are 0, SF and

SG have the same points, and F and G are removed by the same �ip. Note that the

algorithm uses one perturbation order for the whole point set for the sake of consistency

and thus the correctness of the algorithm.

When we do not have the assumption of general position in the input point set S,

the symbolic perturbation should also be used to prevent degeneracy in Rd. In this

case, the coordinates and the weight of each point should be all symbolically perturbed.

Then the solution becomes the general symbolic perturbation in Rd+1 [EM90].

9.2.3 Finding Perturbation Order

In a special case, the input triangulation RT (S⊕W) is a weakly regular triangulation,

i.e., RT W (S⊕W) contains some �at ridges. The perturbation order used for comparing

failure time must be able to make these �at ridges convex, or otherwise the monotonic

instant �ip does not have a valid input. In this case, we should specially select a

perturbation order for S so that RT (S ⊕W) is a strongly regular triangulation under

it. In this section, we present an algorithm to achieve this target.

Let T (S ⊕W) be a weakly regular triangulation of S ⊕W . Let F be an arbitrary

ridge such that Orientd+1(SF , 0) = 0, and SF be the ordered point set of F plus its

link. We intend to �nd a perturbation order so that Orientd+1(S∗F , 0) > 0, where

S∗F is the perturbed version of SF . By Equation 9.4, we decompose Orientd+1(S∗F , 0)

into Orientd+1(SF , 0) and a linear function of the perturbing values of the points in

SF . The key idea is to guarantee that the largest perturbing value in this function has

a positive coe�cient. With this guarantee, Orientd+1(S∗F , 0) > 0. According to the

mentioned decomposition, we de�ne the positive point set of F , Sp(F), as the points

of SF whose perturbing values have positive coe�cients; and similarly we de�ne the

negative point set of F , Sn(F).

Algorithm 15 shows the pseudocode to produce such a correct perturbing order A
of the points in S. Assume all the points of S appear in T (S ⊕W) for simplicity in

explanation. For a ridge F with Orientd+1(SF , 0) = 0, we use perturbed(F) to record

if it has been successively perturbed, i.e., one point of Sp(F) has been put into A. For
a point p, negDegree(p) stores the number of the ridges that have not been perturbed

and contain p in their negative point sets, and posRidges(p) is the set of all the ridges

that contain p in their positive point sets. These variables are initialized in Line 1�9.

The queue Q stores all the points whose negDegree is 0 (Line 10). In each iteration, a

point p is popped from Q and appended to the end of A (Line 12�13). For every ridge

122

Algorithm 15: Finding the perturbation order

input : Weighted point set S ⊕W and a regular triangulation T (S ⊕W)
output: A list A of S

1 A ← ∅
2 foreach point p ∈ S do negDegree(p)← 0; posRidges(p)← ∅
3 foreach ridge F ∈ T (S ⊕W) do
4 if Orientd+1(SF , 0) = 0 then
5 perturbed(F)← false
6 foreach p ∈ Sn(F) do negDegree(p)← negDegree(p) + 1
7 foreach p ∈ Sp(F) do posRidges(p)← posRidges(p) ∪ F
8 else

9 perturbed(F)← true

10 Q ← {p | p ∈ S and negDegree(p) = 0}
11 while Q 6= ∅ do
12 p← Q.pop()
13 A.append(p)
14 foreach F ∈ posRidges(p) do
15 if perturbed(F) = false then
16 perturbed(F)← true
17 foreach q ∈ Sn(F) do
18 negDegree(q)← negDegree(q)− 1
19 if negDegree(q) = 0 then Q← q

F in posRidges(p) whose perturbed(F) is false, set perturbed(F) to be true as a point

in Sp(F) has been perturbed, decrease negDegree(q) by 1 for each point q in Sn(F),

and push q into Q if negDegree(q) becomes 0 (Line 14�19).

Theorem 9.5. Algorithm 15 outputs a correct perturbation order if there exists one to

realize the input triangulation as a strongly regular triangulation.

Proof. The algorithm always terminates, because negDegree(p) of a point p is mono-

tonically decreasing and thus p can be pushed into Q at most once. Let O be a

perturbation order that realizes T (S ⊕W) as a strongly regular triangulation.

By contradiction assume that when the algorithm terminates, there remain some

points whose negDegree(·) are larger than 0. Let p be the point with the highest

rank in O among all the remaining ones. At least one ridge F containing p in Sn(F)

is not perturbed; otherwise negDegree(p) = 0. All the points in Sp(F) have their

negDegree(·) larger than 0, or else F should be perturbed. These points are thus not

perturbed, and therefore have lower ranks than p in O by the choice of p. This indicates

that F is locally non-regular by perturbation under O; a contradiction.

Therefore, all the points of S are in A. For a ridge G with Orientd+1(SG, 0) > 0,

the perturbation does not a�ect it. For a ridge F with Orientd+1(SF , 0) = 0, a point

123

in Sn(F) is appended into A only after F is perturbed. This indicates that among all

the points in SF , the one with the highest rank in A must come from Sp(F), and thus

Orientd+1(S∗F , 0) > 0. Consequently, all the ridges are locally regular under A.

Let |S| be the number of points and |T | be the number of facets of T (S ⊕ W).

The number of the ridges of T (S ⊕W) is thus O
(
d|T |

)
. Let u be the number of the

�at ridges, and Dk be the time complexity of computing a k × k determinant. The

running time of Line 2 and Line 10 is O
(
|S|
)
. In each iteration of the loop in Line 3�

9, in order to decide Sp(F) and Sn(F) and compute Orientd+1(SF , 0), we compute

Orientd(SF , ai) for 0 ≤ i ≤ d + 2 in O
(
dDd+1

)
. Therefore the time complexity of

this loop is O
(
d2Dd+1|T |

)
. In the loop of Line 11�19, each point is popped from Q

once, and each ridge can exist in the posRidges(·) of at most d points. Thus the

number of the times of executing Line 17�19 is O
(
du
)
, and the time complexity of

Line 11�19 is thus O
(
d2u
)
. Therefore, the worst-case time complexity of Algorithm 15

is O
(
d2(Dd+1|T |+ u)

)
, and is O

(
|T |
)
when d is a constant.

9.3 Extended Moving Model

In this section we extend the moving model and further introduce the novel concepts of

changing direction and changing time of ridges, aiming to discover new �ip algorithms

of transforming between regular triangulations. We visualize these properties of the

ridges on a time line, and study how they are a�ected by �ips. We �nally discuss the

implication of this extended moving model.

The extended moving model is built as follows. The lifted point set SV (t) of S

moves in parallel to the axis of the (d+ 1)-th coordinate in the time period (−∞,+∞)

and it overlaps with SW and SU at time 0 and 1 respectively; each point of SV (t) moves

at a constant speed. Therefore, V (t) = {vi(t) | vi(t) = (1 − t)wi + tui, 0 ≤ i ≤ n − 1}
for −∞ < t < +∞.

Given a triangulation T of SV (t), let F be a ridge of T not on the boundary, and

SF be the ordered point set of F plus its link. During the movement of SV (t) from

t = −∞ to t = +∞, F may deform from re�ex to convex or reverse. We use changing

direction of F to indicate this property of F , and denote it as σ(F). F has positive

changing direction, i.e., σ(F) = +, if it deforms from re�ex to convex, and has negative

changing direction, i.e., σ(F) = −, if reverse. For simplicity, F is positive (resp.,

negative) if σ(F) = + (reps., −). By this de�nition, a ridge may have a di�erent

changing direction and changing time when its link vertices are changed. Therefore in

the remaining discussion, we assume two ridges having the same vertices are di�erent

if they have di�erent links.

Because Orientd+1(SF , t), which determines the convexity of F , is a linear function

of time t, F cannot deform between re�ex and convex more than once, and its changing

124

(a) (b)

Figure 9.4: (a) A time line that is not well-separated and (b) a well-separated time line
at t = 2. Positive nodes are in black while negative ones are in white.

direction is thus �xed and equals to the sign of Orientd+1(SF , 1) − Orientd+1(SF , 0).

The changing time of F , denoted as τ(F), is the time when F becomes �at;

Orientd+1(SF , τ(F)) = 0. Especially, for a ridge G that is always convex in (−∞,+∞),

de�ne σ(G) = + and τ(G) = −∞; for a ridge G′ that is always re�ex, de�ne σ(G′) = −
and τ(G′) = −∞. We assume that T does not have a ridge that is always �at in

(−∞,+∞), since such a ridge can be eliminated by symbolic perturbation (see Sec-

tion 9.2.2).

The time line of the triangulation T is a time axis spanning (−∞,+∞) with em-

bedded nodes, each of which represents a ridge of T ′. The node N representing a ridge

F is called the node of F , and F is called the ridge for N . De�ne the changing direction

and changing time of N as those of F . N is placed at τ(N) on the time line, and is

larger (resp., smaller) than another node N ′ if it is on the right (resp., left) of N ′, i.e.

τ(N) is larger (resp., smaller) than τ(N ′).

A time line is well-separated at a time t if τ(N+) ≤ t ≤ τ(N−) for any positive node

N+ and any negative node N−. Figure 9.4 shows two examples of time line. Using

the symbolic perturbation in Section 9.2.2, we can assume that two nodes cannot have

the same changing time unless they are included in the same �ip. Note that a time

line spans the whole time period (−∞,+∞), and thus is a static description of a

triangulation or its subset.

Theorem 9.6. T is a regular triangulation if its time line is well separated.

Proof. Let t0 be a time so that the time line of T is well separated at t0. At time t0, the

ridge for each positive node is convex by the de�nition of changing direction; similarly,

the ridge for each negative node is also convex. Therefore in the original space, all

these ridges are locally regular. By Theorem 2.2, T is equal to RT (S ⊕ V (t0)).

Given T as the time line of T , a �ip on T not only changes T , but also a�ects T.
In order to explain these changes in T concisely and clearly, we use a circle to represent

T; see Figure 9.5. The time −∞ and +∞ overlap at the so-called in�nity boundary,

and the nodes whose changing time is −∞ are placed in that position. All the nodes

are located so that their relative positions are retained.

We �rst show that how a �ip a�ects the nodes of the ridges that it creates and

removes using the following lemma.

125

Figure 9.5: A circular time line is created by bending a time line and joining the time
−∞ and +∞.

Lemma 9.7. For a �ip on T , all the nodes removed have the same changing direction

σr and changing time τr, and all the nodes created have the same changing direction σc

and changing time τc. Furthermore, σr = −σc and τr = τc.

Proof. We only prove the lemma for σr = +. Similar arguments can be used to prove

the lemma for σr = −. Let SF be the set of vertices included in the �ip. Clearly, both

τr and τc are the time when the points of SF are coplanar, and thus τr = τc. Since

σr = +, all the facets removed by the �ip form the upper hull of SF before τr and the

lower hull of SF after τr. Conversely, all the facets created by the �ip form the lower

hull of SF before τc and the upper hull of SF after τc. Therefore σr = −σc. Note that
the lemma is still valid if τr = τc = −∞.

By Lemma 9.7, all the ridges created by a �ip can be represented by the same node,

so can all the ridges removed. Furthermore, as the ridges created and removed do not

exist in T at the same time, we use the same node for all these ridges and allow the

�ip to change the properties of the node. The next lemma states how a �ip a�ects the

nodes of the ridges on the boundary of its induced-subcomplex.

Lemma 9.8. For a �ip on T , let N in T be the node of all the ridges created and

removed, and N ′ be the node of one ridge on the boundary of the induced-subcomplex

before and after the �ip. Then the �ip pulls N ′ nearer to N if σ(N ′) = σ(N) before

the �ip; otherwise pushes N ′ further from N . When N ′ crosses the in�nity boundary,

its changing direction is inverted.

Proof. Let F be a ridge removed by the �ip and SF be the set of the vertices included

in the �ip. Let G and G′ be the ridges for N ′ before and after the �ip respectively.

126

(a) (b)

Figure 9.6: For a 3D �ip and its related induced-subcomplex, a boundary ridge and its
two incident facets (a) before and (b) after the �ip.

G and G′ have the same vertices, but di�er in one link vertex. Let C be the facet of

the induced-subcomplex incident to G before the �ip, and C ′ be the one incident to G′

after the �ip. The vertices p ∈ C and p′ ∈ C ′ are respectively link vertices of G and

G′. Let Ch be the other facet incident to G and G′ (not in the induced-subcomplex),

and q ∈ Ch be a link vertex of G and G′. See Figure 9.6 for an illustration in R3.

At time τ(F), C and C ′ lie on the same hyperplane, and therefore the status of

G′ (i.e., whether it is convex, �at or re�ex) is the same as that of G. At time τ(G),

since C and Ch lie on the same hyperplane, the relation between p′ and the hyperplane

passing through Ch is equal to that between p′ and the hyperplane passing through C;

the latter relation re�ects whether F appears on the lower hull or the upper hull of SF .

Therefore the status of G′ is the same as that of F at time τ(G). Note that this result

is still valid if one of τ(F) and τ(G) is −∞. We use these important results to prove

the following case analysis.

Without loss of generality, assume that σ(F) = +. Based on the results in the

previous paragraph, we can list all the cases based on σ(G) and the relation between

τ(F) and τ(G):

(1) if σ(G) = + and τ(G) < τ(F), then σ(G′) = + and τ(G) < τ(G′) < τ(F)

(2) if σ(G) = + and τ(F) < τ(G), then σ(G′) = + and τ(F) < τ(G′) < τ(G)

(3) if σ(G) = − and τ(G) < τ(F), then either

(a) σ(G′) = − and τ(G′) < τ(G) < τ(F), or

(b) σ(G′) = + and τ(G) < τ(F) < τ(G′)

(4) if σ(G) = − and τ(F) < τ(G), then either

(a) σ(G′) = − and τ(F) < τ(G) < τ(G′), or

(b) σ(G′) = + and τ(G′) < τ(F) < τ(G)

In (1), σ(G) = + and τ(G) < τ(F) indicate that F is re�ex at τ(G) and G is

convex at τ(F). Therefore G′ is re�ex at τ(G) and convex at τ(F), which implies that

σ(G′) = + and τ(G) < τ(G′) < τ(F). Similarly in (2), G′ is re�ex at τ(F) and convex

at τ(G); therefore σ(G′) = + and τ(F) < τ(G′) < τ(G). In (3), G′ is re�ex at both

τ(G) and τ(F), implying two cases: if σ(G′) = +, τ(G′) must be larger than both τ(G)

and τ(F); otherwise τ(G′) must be smaller than both τ(G) and τ(F). In (4), G′ is

127

convex at both τ(F) and τ(G). Therefore, τ(G′) must be smaller than τ(G) and τ(F)

if σ(G′) = +, or be larger than τ(G) and τ(F) otherwise.

Note that the above cases include the consideration of time −∞. When τ(F) be

−∞, τ(G) and τ(G′) cannot be −∞ or smaller because of the symbolic perturbation.

Then (1), (3) and (4.a) automatically become invalid while the rests are still true. On

the other hand, (2), (4) and (3.a) become invalid when τ(G) is −∞.

Note that a �ip never changes the ridges outside induced subcomplex. Summarizing

this fact together with Lemma 9.7 and Lemma 9.8, we have the following theorem.

Theorem 9.9. For a �ip on T , use a node N in T for all the removed and created

ridges, and use a node N ′ for one ridge on the boundary of the induced-subcomplex

before and after the �ip. Then the following statements are true:

(1) The �ip does not change τ(N), but inverts σ(N).

(2) The �ip pulls N ′ nearer to N if σ(N ′) = σ(N) before the �ip, otherwise pushes

N ′ further from N . When N ′ crosses the in�nity boundary, its changing direction

is inverted.

(3) The �ip does not a�ect any ridge outside the induced subcomplex.

We review the monotonic instant �ip algorithm based on Theorem 9.9. As discussed

in Section 9.2.1, the monotonic instant �ip algorithm always �ip the ridge that has the

minimum failure time. That ridge corresponds to the minimum negative node on the

time line, and �ipping it keeps the time line being well-separated, as shown in the

following lemma.

Lemma 9.10. If T is well-separated, the ridge F of T for the minimum negative node

is �ippable, and T is still well-separated after �ipping F .

Proof. Let NF be the minimum negative node of T and ε be a su�ciently small positive

value. At τ(F) + ε, F is re�ex, while all the other facets are convex. By Lemma 9.2,

F is �ippable, or otherwise there must be some other re�ex ridges. As indicated in

Theorem 9.9, �ipping F will remove the negative nodes at τ(F) from T, and insert

some positive nodes at τ(F) into T.
Let G be a ridge on the boundary of the induced-subcomplex of F , and G′ be

the corresponding ridge of G after the �ip. G and G′ have the same vertices, but

di�er at one link vertex. If σ(G) = −, then τ(G) > τ(F), and therefore σ(G′) = −
and τ(F) < τ(G′) < τ(G) after the �ip. If σ(G) = +, then τ(G) < τ(F), and thus

either (a) σ(G′) = + and τ(G′) < τ(G) < τ(F) or (b) σ(G′) = − and τ(G′) > τ(F).

Whichever case happens, T after �ipping F is well-separated at τ(F) + ε.

In the monotonic instant �ip algorithm, the time line of the initial triangulation,

RT (S ⊕W), is well-separated at time 0. By �ipping the �rst ridge F1, the new time

line is also well-separated. In the new time line, the changing time of the maximum

128

positive node is τ(F1) while that of the minimum negative node is larger than τ(F1).

The algorithm repeats this procedure until it obtains a time line where the changing

time of the maximum positive node is smaller than 1 and that of the minimum negative

node is larger than 1. This �nal time line is well-separated at time 1, and thus the

triangulation is RT (S ⊕ U). By Theorem 9.6, all the triangulations created during

the algorithm are regular. As a summary, the criterion of the monotonic instant �ip

algorithm is to �ip the minimum negative node on the time line of the triangulation.

The concepts of changing direction and changing time in the extended moving model

provide new information for local transformation between regular triangulations. While

two locally non-regular ridges have not much di�erences in the traditional monotonic

�ip algorithm, they are distinctive when we look at their changing direction and chang-

ing time. The time line extracts and presents the changing direction and the changing

time of the ridges in a simple 1D structure (i.e., a circle). On the other hand, it does not

display the �ippability of ridges. However, we can derive the �ippability of some ridges

from the time line, e.g. in Lemma 9.10. As another example, Lemma 9.11 identi�es a

�ippable ridge locally in a star.

Lemma 9.11. Given a (d− 2)-face R of T and the time line TR of star(R), the ridge

for the minimum negative node in TR is �ippable if TR is well-separated.

Proof. This follows directly from Lemma 9.2, similar to the proof of Lemma 9.10.

To sum up, the concepts presented in this section open a new way to understand

and analyze �ipping procedure, and we hope they can assist in making a breakthrough

on �ipping triangulations in higher dimensions.

129

130

CHAPTER 10

Conclusions

Coming to the end of the thesis, we hereby summarize our understanding of local trans-

formation till date, and provide insights on a possible future journey on the subject.

10.1 Local Transformation Revisit

Around the topics of local transformation, we study and develop a series of algorithms

involving around �ipping, splaying and twisting.

On �ipping, it turns out that one can relax the hill-climbing approach to develop

the powerful �ip-�op algorithm to solve the 2D regular triangulation and the 3D convex

hull problems. However, �ip-�op, as it is, does not move beyond 3D convex hull to

higher dimensions.

On splaying, it was known to be very powerful with the ability to �x convex hull

in any dimension, but not clear on its use in practice to e�ciently compute the convex

hull of a point set. The thesis implements a way, through the digital restricted Voronoi

diagram of the given point set, to provide a set of convex stars as input to the star-

splaying algorithm.

On twisting, it is a new operation introduced in this thesis. This was motivated by

the need to obtain a star-shaped polygon from an arbitrary, possibly self-interesting,

polygon. This operation is also used in an attempt to transform a polyhedron to a star-

shaped one. The latter is solved with the twist-�ip algorithm only for the restricted

case of input polyhedron with an extreme vertex connecting to all the other vertices.

The general problem remains open.

On the whole, the work also recognizes some possible disadvantages of the algo-

rithms of local transformation. The major one is the known worst case time complex-

ities of quadratic for 2D Lawson's �ip algorithm and 2D twist algorithm, and cubic

for 3D �ip-�op algorithm and 3D star-splaying algorithm. Nevertheless, such time

complexities are hardly observed or even possible in practice.

The simplicity of algorithms of local transformation remains an important advan-

131

(a) (b) (c)

Figure 10.1: A triangulation of 3n points from which �ipping according to the V-
and the D-criterion may contain Θ(n3) �ips. Locally non-regular edges are drawn as
dashed. Flipping by the V-criterion from (a) to (b) may contain Θ(n2) �ips. Then �ip
the edge bicj in link(a1) by the V-criterion until (c) is obtained. In (c), a1 is identi�ed
as redundant because of a1a2. Flipping the edges of star(v) by the D-criterion removes
a1, resulting into a triangulation similar to (a). Repeat this procedure until an−1 is
removed. The whole process has n− 1 rounds; each contains Θ(n2) �ips.

tage for their potential or already extensive uses in practice. For example, twist-�ip,

which is the most complicated algorithm among all the proposed ones in this thesis, em-

ploys only twist and �ip as operations, and uses fairly simple criteria. In addition, such

algorithms are powerful as a repairing tool, and can be mapped to parallel machines

when they allow free execution order. In short, we demonstrate that these algorithms

can be e�cient in practice, and in particular when they are implemented on the GPU.

Open problem: What is the time complexity of �ip-�op?

The obvious worst-case time complexity of �ip-�op is O
(
n3
)
, when the triangulation

has O
(
n
)
redundant vertices and each is discovered after O

(
n2
)
�ips. Figure 10.1 shows

such a triangulation of 3n vertices with n non-extreme ones. The �ip-�op algorithm

indeed uses Θ(n3) �ips if it strictly follows the �ipping sequence mentioned in the

caption of the �gure. This, however, does not prove that cubic is a tight bound, as

there remains �exibility in �ip-�op to operate in di�erent ways. For example, we can

132

immediately focus on removing a vertex as soon as it is identi�ed as redundant. In this

way, the triangulation in Figure 10.1 is transformed to regular triangulation in O
(
n2
)
.

10.2 Dimensional Dependency of Geometric Structures

As discussed in Chapter 2, convex hull and regular triangulation are closely related

structures. Here we further present another interpretation about their relation that

can be expanded to understand the relation between triangulation and star-shaped

polytope. From the latter, we can understand why star-shaped polytope is a workable

input for our �ip algorithms of computing 2D and 3D convex hull.

On one hand, a k-dimensional regular triangulation can be obtained from the (k+1)-

dimensional convex hull of its lifted vertices. On the other hand, a (k+ 1)-dimensional

convex hull is the boundary of a (k + 1)-dimensional regular triangulation of its ver-

tices. From these relations, (k + 1)-dimensional convex hull can be seen as a regular

triangulation whose dimension is between k and k + 1. We therefore interpret it as a

k.5-dimensional regular triangulation.

An analogous argument can be applied on triangulation and star-shaped polytope.

On one hand, a k-dimensional extended triangulation can be deduced from a (k + 1)-

dimensional star-shaped polytope, by realizing the virtual point to be a point in the

(k+1)-th dimension. On the other hand, a (k+1)-dimensional star-shaped polytope is

the boundary between the real and the virtual facets of a (k+ 1)-dimensional extended

triangulation. Hence, a (k + 1)-dimensional star-shaped polytope can be seen as a

k.5-dimensional extended triangulation.

Furthermore, as explained next, a (k + 1)-dimensional star-shaped polytope trian-

gulates a set of (k + 1)-dimensional points in a k-dimensional manner. Each facet of

the polytope, when associated with the kernel point, corresponds to a subspace that

is the convex hull of all the rays starting at the kernel point and passing through the

vertices of the facet (e.g., the cone de�ned in Section 6.1). The subspaces of all the

facets partition Rk+1 without any overlapping, and thus we say the polytope triangu-

lates these points. Yet, the polytope is actually a k-manifold without boundary, and

thus we say such a triangulation is done in a k-dimensional manner.

Because of this understanding, we successfully use �ip-�op, which originally works

for 2D regular triangulation, to transform an arbitrary star-shaped polyhedron to its

convex hull. Therefore, �ip-�op works for both 2D and 2.5D problems. In Figure 10.2

we list the �ip algorithms that compute regular triangulation with free execution order.

In some way related to this, we develop twist-�ip to transform a polyhedron with one

extreme vertex connecting to all other vertices into a star-shaped polyhedron.

133

Figure 10.2: Flip algorithms that compute regular triangulation with free execution
order, sorted by dimensions.

Open problem: How to use the spirit of �ip-�op in 3D regular triangulation?

The major breakthrough of �ip-�op compared with the traditional hill-climbing �ip

algorithm is its ability to identify and remove redundant vertices so as to avoid getting

stuck at a local optimum. However, it is di�cult to be extended for 3D triangulation,

where monotonic �ipping gets stuck not only because of redundant vertices but also

because of redundant edges. A major di�culty is that a redundant vertex or a redun-

dant edge may not be removable by �ipping the triangles of its stars, since all these

triangles can be un�ippable; see Figure 10.3 as an example for redundant vertex. The

keys of solving this problem rely on how to escape from local optimum and how to

prevent reappearance of redundant edges.

10.3 Concluding Remarks

Before this research, it was open for the following sample of computational problems:

Question 1: Can one perform �ipping to transform an arbitrary 2D triangulation

to its regular triangulation?

Question 2: Can one perform �ipping to transform an arbitrary 3D triangulation

to its regular triangulation?

Question 3: Can one perform �ipping to transform between two regular triangula-

Figure 10.3: This triangulation is created by successively inserting e, f and g into the
tetrahedron abcd. Set the weight of e to be very small so that e is redundant. All the
triangles of star(e) are un�ippable.

134

tions of the same point set in an arbitrary dimension?

Question 4: Can one perform local transformation to compute star-shaped polytope

from an arbitrary polytope?

Question 1 is solved with our �ip-�op in Chapter 5. The bonus of this is also a

solution to the 3D convex hull problem. One remaining open problem here is the time

complexity of �ip-�op.

On the other hand, Question 2 remains open still, though the success demonstrated

by the �ip-�op algorithm is an indication that one could possibly look for relaxation

of the hill-climbing �ip algorithm to solve this question. As mentioned in the previous

section, this is really challenging.

As for Question 3, it is a�rmative when �ips are structured in some sequence, but

remains elusive whether a free execution order is possible. Upon re�ection, a successful

�ip algorithm should either use monotonic �ips while avoiding getting stuck at some bad

con�guration, or use non-monotonic �ips in escaping from the bad con�guration. The

algorithm in Chapter 9, which has sequential execution order, belongs to the former,

while �ip-�op in Chapter 5 and Chapter 6 belongs to the latter. The introduction of

time line to the study of changing time and changing direction of ridges in Chapter 9

is one hope to understand this problem.

For Question 4, the thesis positively answers its 2D version and part of its 3D

version by devising the twist and the twist-�ip algorithms. It remains open how to

locally transform a general polyhedron to a star-shaped polyhedron. Such a problem

becomes even more di�cult if the given kernel point is an arbitrary point in the convex

hull of the polyhedron or if the dimension is higher than three.

Augmenting Table 3.1 with new algorithms presented in this thesis and an addi-

tional column about output geometric structures, Table 10.1 summarizes the current

understanding about algorithms of local transformation. With the local transformation

framework dealing with geometric structure, local operation, criterion, and local check,

plus consideration of whether local operations need to be ordered in some way, we leave

behind more to be understood to expand upon the table!

135

Table 10.1: Algorithms of local transformation and their features.

Algorithm Dimension Input Output Operation Order

Graham's scan 2 star-shaped polygon convex hull 2-1 �ip sequential

�ip-pop 2 star-shaped polygon convex hull 2-1 �ip free

Lawson's �ip algorithm 2 triangulation Delaunay triangulation 2-2 �ip free

�ip-�op
2 triangulation regular triangulation 2-2/3-1 �ip free

3 star-shaped polyhedron convex hull 2-2/3-1 �ip free

Joe's �ip algorithm any �DT+1� triangulation Delaunay triangulation �ip free

Rajan's �ip algorithm any �RT+1� triangulation regular triangulation �ip sequential

Edelsbrunner-shah's �ip algorithm any �RT+1� triangulation regular triangulation �ip free

star splaying any a set of stars* convex hull splaying free

monotonic instant �ip algorithm any regular triangulation regular triangulation �ip sequential

twist algorithm 2 polygon star-shaped polygon twist free

twist-�ip 3 special polyhedron� star-shaped polyhedron twist, �ip free

*The star of each vertex must contain a lexicographically smaller vertex
�The input polyhedron has an extreme vertex that connects to all the other vertices; the output polyhedron is star-shaped w.r.t. this extreme vertex

136

Bibliography

[ACHS05] Neal R. Amundson, Alexandre Caboussat, Jiwen He, and John H. Seinfeld.

An optimization problem related to the modeling of atmospheric organic

aerosols. Comptes Rendus Mathematique, 340(10):765 � 768, 2005.

[ACK01] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust.

In Proceedings of the sixth ACM symposium on Solid modeling and appli-

cations, SMA '01, pages 249�266, New York, NY, USA, 2001. ACM.

[Alb03] Lyuba Alboul. Optimising triangulated polyhedral surfaces with self-

intersections. In Michael Wilson and Ralph Martin, editors, Mathematics

of Surfaces, volume 2768 of Lecture Notes in Computer Science, pages

48�72. 2003.

[AP93] Nancy M. Amato and Franco P. Preparata. An NC parallel 3D convex

hull algorithm. In SoCG '93: Proc. 9th Symp. Computational Geometry,

pages 289�297, New York, NY, USA, 1993. ACM.

[ASY08] Pankaj K. Agarwal, Bardia Sadri, and Hai Yu. Untangling triangulations

through local explorations. In Proceedings of the Twenty-fourth Annual

Symposium on Computational Geometry, SCG '08, pages 288�297, New

York, NY, USA, 2008. ACM.

[AT78] Selim G. Akl and Godfried T. Toussaint. A fast convex hull algorithm.

Information Processing Letters, 7(5):219 � 222, 1978.

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The

Quickhull algorithm for convex hulls. ACM Trans. Mathematical Soft-

ware, 22(4):469�483, 1996.

[BFS90] Louis J. Billera, Paul Filliman, and Bernd Sturmfels. Constructions and

complexity of secondary polytopes. Advances in Mathematics, 83(2):155

� 179, 1990.

137

[BMHT99] G. E. Blelloch, G. L. Miller, J. C. Hardwick, and D. Talmor. Design and

implementation of a practical parallel Delaunay algorithm. Algorithmica,

24(3-4):243�269, 1999.

[BMPS09] Vicente H.F. Batista, David L. Millman, Sylvain Pion, and Johannes Sin-

gler. Parallel geometric algorithms for multi-core computers. In Proceed-

ings of the Twenty-�fth Annual Symposium on Computational Geometry,

SCG '09, pages 217�226, New York, NY, USA, 2009. ACM.

[Bow81] A. Bowyer. Computing Dirichlet tessellations. In Comput. J. 24, pages

162�166, 1981.

[BSDMH05] Tilo Beyer, Gernot Schaller, Andreas Deutsch, and Michael Meyer-

Hermann. Parallel dynamic and kinetic regular triangulation in three

dimensions. Computer Physics Communications, 172(2):86 � 108, 2005.

[CDE+99] Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A.

Facello, and Shang-Hua Teng. Sliver exudation. In Proceedings of the

�fteenth annual symposium on Computational geometry, SCG '99, pages

1�13, New York, NY, USA, 1999. ACM.

[CGA12] CGAL. CGAL, computational geometry algorithms library, 2012. http:

//www.cgal.org.

[Cha96] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two

and three dimensions. Discrete and Computational Geometry, 16(4):361�

368, 1996.

[Cig98] P. Cignoni. DeWall: a fast divide and conquer Delaunay triangulation

algorithm in Ed. Computer-Aided Design, 30(5):333�341, April 1998.

[CK70] Donald R. Chand and Sham S. Kapur. An algorithm for convex polytopes.

J. ACM, 17(1):78�86, January 1970.

[CTMT10] Thanh-Tung Cao, Ke Tang, Anis Mohamed, and Tiow-Seng Tan. Parallel

banding algorithm to compute exact distance transform with the GPU.

In I3D '10: Proc. ACM Symp. Interactive 3D Graphics and Games, pages

83�90, New York, NY, USA, 2010. ACM.

[CUB14] CUB. CUB, CUDA data parallel primitives library, 2014. http://nvlabs.

github.io/cub.

[CUD12] CUDPP. CUDPP, CUDA data parallel primitives library, 2012. http:

//gpgpu.org/developer/cudpp.

138

http://www.cgal.org
http://www.cgal.org
http://nvlabs.github.io/cub
http://nvlabs.github.io/cub
http://gpgpu.org/developer/cudpp
http://gpgpu.org/developer/cudpp

[DDD+95] Frank Dehne, Xiaotie Deng, Patrick Dymond, Andreas Fabri, and Ash-

faq A. Khokhar. A randomized parallel 3D convex hull algorithm for

coarse grained multicomputers. In SPAA '95: Proc. 7th ACM Symp. Par-

allel Algorithms and Architectures, pages 27�33, New York, NY, USA,

1995. ACM.

[DLRS10] Jesus A. De Loera, Jorg Rambau, and Francisco Santos. Triangulations:

structures for algorithms and applications. Springer Publishing Company,

Incorporated, 1st edition, 2010.

[DT11] Olivier Devillers and Monique Teillaud. Perturbations for Delaunay and

weighted Delaunay 3D triangulations. Comput. Geom. Theory Appl.,

44(3):160�168, April 2011.

[Dwy87] Rex Dwyer. A faster divide-and-conquer algorithm for constructing De-

launay triangulations. Algorithmica, 2(1):137�151, November 1987.

[Edd77] William F. Eddy. A new convex hull algorithm for planar sets. ACM

Trans. Math. Softw., 3(4):398�403, December 1977.

[Ede01] Herbert Edelsbrunner. Geometry and topology for mesh generation.

Springer-Verlag, 2001.

[EM90] Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity:

a technique to cope with degenerate cases in geometric algorithms. ACM

Trans. Graphics, 9:66�104, January 1990.

[ES91] Herbert Edelsbrunner and Weiping Shi. An O(nlog2h) time algorithm for

the three-dimensional convex hull problem. SIAM J. Comput., 20:259�269,

March 1991.

[ES92] Herbert Edelsbrunner and N. R. Shah. Incremental topological �ipping

works for regular triangulations. In SCG '92: Proc. 8th Symp. Computa-

tional Geometry, pages 43�52, New York, NY, USA, 1992. ACM.

[Fer01] J.A. Ferrez. Dynamic triangulations for e�cient 3D simulation of granular

materials. 2001.

[FGE01] Olac Fuentes, Ravi K. Gulati, and Optica Y Electronica. Prediction of

stellar atmospheric parameters from spectra, spectral indices and spectral

lines using machine learning. In Experimental Astronomy 12:1, pages 21�

31, 2001.

[For97] Steven Fortune. Handbook of discrete and computational geometry. CRC

Press, Inc., Boca Raton, FL, USA, 1997.

139

[Gol94] C. M. Gold. A review of potential applications of Voronoi methods in

geomatics. In In Proceedings of Canadian Conference on GIS, pages 1647�

1656, 1994.

[Gra72] R.L. Graham. An e�cient algorithm for determining the convex hull of a

�nite planar set. In Information Processing Letters, pages 132�133, 1972.

[GS85] Leonidas Guibas and Jorge Stol�. Primitives for the manipulation of

general subdivisions and the computation of Voronoi. ACM Trans. Graph.,

4(2):74�123, April 1985.

[GS03] Neelima Gupta and Sandeep Sen. Faster output-sensitive parallel algo-

rithms for 3D convex hulls and vector maxima. J. Parallel and Distributed

Computing, 63(4):488 � 500, 2003.

[Gui98] Leonidas J. Guibas. Kinetic data structures: a state of the art report.

In Proceedings of the third workshop on the algorithmic foundations of

robotics on Robotics : the algorithmic perspective: the algorithmic perspec-

tive, WAFR '98, pages 191�209, Natick, MA, USA, 1998. A. K. Peters,

Ltd.

[GZK91] I. M. Gel'fand, A. V. Zelevinskii, and M. M. Kapranov. Discriminants of

polynomials in several variables and triangulations of Newton polyhedra.

Leningrad Mathematical Journal, 2(3):449�505, 1991.

[HDSB01] Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith, and Ted G.

Byrom. The �nite element method for engineers. Wiley, New York, NY,

USA, 2001.

[HH06] Hernsoo Hahn and Youngjoon Han. Recognition of 3D object using at-

tributed relation graph of silhouette's extended convex hull. In Advances

in Visual Computing, volume 4292 of Lecture Notes in Computer Science,

pages 126�135. 2006.

[Jar73] R.A. Jarvis. On the identi�cation of the convex hull of a �nite set of points

in the plane. Information Processing Letters, 2(1):18 � 21, 1973.

[JD11] Tomasz Jurkiewicz and Piotr Danilewski. E�cient quicksort and 2D con-

vex hull for CUDA, and MSIMD as a realistic model of massively parallel

computations. November 2011. http://www.mpi-inf.mpg.de/~tojot/

papers/chull.pdf.

[Joe89] Barry Joe. Three-dimensional triangulations from local transformations.

SIAM J. Scienti�c and Statistical Computing, 10(4):718�741, July 1989.

140

http://www.mpi-inf.mpg.de/~tojot/papers/chull.pdf
http://www.mpi-inf.mpg.de/~tojot/papers/chull.pdf

[Joe91] Barry Joe. Construction of three-dimensional Delaunay triangulations

using local transformations. Computer Aided Geometric Design, 8(2):123�

142, May 1991.

[Joe93] Barry Joe. Construction of K-dimensional Delaunay triangulations using

local transformations. SIAM J. Sci. Comput., 14(6):1415�1436, November

1993.

[KKS06] Dong-Soo Kang, Yun-Jin Kim, and Byeong-Seok Shin. E�cient large-scale

terrain rendering method for real-world game simulation. In Proceedings

of the First international conference on Technologies for E-Learning and

Digital Entertainment, Edutainment'06, pages 597�605, Berlin, Heidel-

berg, 2006. Springer-Verlag.

[KS86] David G Kirkpatrick and Raimund Seidel. The ultimate planar convex

hull algorithm. SIAM J. Comput., 15:287�299, February 1986.

[Law72] C. L. Lawson. Transforming triangulations. Discrete Mathematics,

3(4):365�372, 1972.

[Law77] C. L. Lawson. Software for C1 surface interpolation. In J. R. Rice, editor,

Mathematical Software III, pages 161�194, New York, 1977. Academic

Press.

[Law87] Charles L. Lawson. Properties of n-dimensional triangulations. Comput.

Aided Geom. Des., 3(4):231�246, January 1987.

[LNSV06] Marc Lanctot, Nicolas Ng, Man Sun, and Clark Verbrugge. Path-�nding

for large scale multiplayer computer games. Technical report, 2006.

[LZB08] Rong Liu, Hao Zhang, and James Busby. Convex hull covering of polyg-

onal scenes for accurate collision detection in games. In GI '08: Proc.

Graphics Interface, pages 203�210, Toronto, Ont., Canada, Canada, 2008.

Canadian Information Processing Society.

[Mei75] G.H. Meisters. Polygons have ears. The American Mathematical Monthly,

82(6):648 � 651, 1975.

[MII96] Tomonari Masada, Hiroshi Imai, and Keiko Imai. Enumeration of regular

triangulations. In Proceedings of the twelfth annual symposium on Com-

putational geometry, SCG '96, pages 224�233, New York, NY, USA, 1996.

ACM.

141

[MK04] Pavel Maur and Ivana Kolingerová. The employment of regular triangu-

lation for constrained Delaunay triangulation. In ICCSA 2004: Interna-

tional Conference of Computational Science and Its Applications, volume

3045, pages 198�206. Springer, 2004.

[MS88] R. Miller and Q.F. Stout. E�cient parallel convex hull algorithms. IEEE

Trans. Computer, 37(12):1605�1618, 1988.

[MS13] Gary L. Miller and Donald R. Sheehy. A new approach to output-sensitive

Voronoi diagrams and Delaunay triangulations. In Proceedings of the

Twenty-ninth Annual Symposium on Computational Geometry, SoCG '13,

pages 281�288, New York, NY, USA, 2013. ACM.

[Mun84] J.R. Munkres. Elements of algebraic topology. Advanced book classics.

Perseus Books, 1984.

[MY06] Hai Mao and Yee-Hong Yang. Particle-based immiscible �uid-�uid col-

lision. In GI '06: Proc. Graphics Interface, pages 49�55, Toronto, Ont.,

Canada, Canada, 2006. Canadian Information Processing Society.

[NHS11] Cristobal Navarro, Nancy Hitschfeld, and Eliana Scheihing. A parallel

GPU-based algorithm for Delaunay edge-�ips. In EuroCG '11: 27th Euro-

pean Workshop on Computational Geometry, pages 75�78. I. M. Ho�mann,

Ed., 2011.

[OII03] K. Okada, M. Inaba, and H. Inoue. Walking navigation system of hu-

manoid robot using stereo vision based �oor recognition and path plan-

ning with multi-layered body image. In IROS '03 Int'l Conf. Intelligent

Robots and Systems, pages 2155 � 2160 vol.3. IEEE, 2003.

[O'R98] Joseph O'Rourke. Computational geometry in C. Cambridge University

Press, New York, NY, USA, 2nd edition, 1998.

[PH77] Franco P. Preparata and S. J. Hong. Convex hulls of �nite sets of points

in two and three dimensions. Communication of ACM, 20(2):87�93, 1977.

[PL07] L. Pournin and Th. M. Liebling. Constrained paths in the �ip-graph of

regular triangulations. Comput. Geom. Theory Appl., 37(2):134�140, July

2007.

[PS85] Franco P. Preparata and Michael I. Shamos. Computational geometry: an

introduction. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[QCT12] Meng Qi, Thanh-Tung Cao, and Tiow-Seng Tan. Computing 2D con-

strained Delaunay triangulation using the GPU. In I3D '12: Proc. ACM

142

SIGGRAPH Symp. Interactive 3D Graphics and Games, pages 39�46, New

York, NY, USA, 2012. ACM.

[Qhu12] Qhull. Qhull, computational geometry algorithms library, 2012. http:

//www.qhull.org.

[Rad21] Johann Radon. Mengen konvexer körper, die einen gemeinsamen punkt

enthalten. Mathematische Annalen, 83(1-2):113�115, 1921.

[Raj91] V. T. Rajan. Optimality of the Delaunay triangulation in Rd. In SCG

'91: Proc. 7th Symp. Computational Geometry, pages 357�363, New York,

NY, USA, 1991. ACM.

[San00] Francisco Santos. A point set whose space of triangulations is discon-

nected. Journal of the American Mathematical Society, 13(3):611�637,

2000.

[San05] Francisco Santos. Non-connected toric hilbert schemes. Mathematische

Annalen, 332(3):645�665, 2005.

[San06] Francisco Santos. A non-connected graph of triangulations in general

position, 2006.

[SGES12] Ayal Stein, Eran Geva, and Jihad El-Sana. CudaHull: Fast parallel 3D

convex hull on the GPU. Computers & Graphics, 36(4):265�271, 2012.

[She97] Jonathan Richard Shewchuk. Adaptive precision �oating-point arithmetic

and fast robust geometric predicates. Discrete & Computational Geome-

try, 18(3):305�363, October 1997.

[She03] Jonathan Richard Shewchuk. Updating and constructing constrained De-

launay and constrained regular triangulations by �ips. In Proceedings of

the nineteenth annual symposium on Computational geometry, SCG '03,

pages 181�190, New York, NY, USA, 2003. ACM.

[She05] Jonathan Richard Shewchuk. Star splaying: an algorithm for repairing

Delaunay triangulations and convex hulls. In SCG '05: Proc. 21st ACM

Symp. Computational Geometry, pages 237�246. ACM, 2005.

[SRKN11] Srikanth Srungarapu, Durga Prasad Reddy, Kishore Kothapalli, and P. J.

Narayanan. Fast two dimensional convex hull on the GPU. In Proceedings

of the 2011 IEEE Workshops of International Conference on Advanced In-

formation Networking and Applications, WAINA '11, pages 7�12, Wash-

ington, DC, USA, 2011. IEEE Computer Society.

143

http://www.qhull.org
http://www.qhull.org

[Sta12] Stanford. The Stanford 3D scanning repository, 2012. http://graphics.

stanford.edu/data/3Dscanrep/.

[Str04] Morten Strandberg. Robot path planning: an object-oriented approach.

PhD Thesis, KTH Royal Institute of Technology, 2004.

[Thr14] Thrust. Thrust, CUDA data parallel primitives library, 2014. http:

//http://code.google.com/p/thrust.

[TO12] Stanley Tzeng and John D. Owens. Finding convex hulls using Quickhull

on the GPU. CoRR, abs/1201.2936, 2012.

[TSBP93] Y. A. Teng, F. Sullivan, I. Beichl, and E. Puppo. A data-parallel algorithm

for three-dimensional Delaunay triangulation and its implementation. In

Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, Su-

percomputing '93, pages 112�121, New York, NY, USA, 1993. ACM.

[TyZTM12] Min Tang, Jie yi Zhao, Ruofeng Tong, and Dinesh Manocha. GPU accel-

erated convex hull computation. Computers & Graphics, 36(5):498 � 506,

2012.

[Wat81] D. F. Watson. Computing the n-dimensional Delaunay tesselation with

application to Voronoi polytopes. In Comput. J. 24, pages 167�172, 1981.

[Wen95] R. Wenger. Randomized quick hull. Algorithmica, 17, 1995.

[WLYZ+09] Yong Wang, Wu Ling-Yun, Ji-Hong Zhang, Zhong-Wei Zhan, Zhang

Xiang-Sun, and Chen Luonan. Evaluating protein similarity from coarse

structures. IEEE/ACM Trans. Computational Biology and Bioinformat-

ics, 6(4):583�593, 2009.

[Zem09] Michal Zemek. Regular triangulation in 3D and its applications. Technical

report, University of West Bohemia, 2009.

144

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://http://code.google.com/p/thrust
http://http://code.google.com/p/thrust

List of Publications

[1] Mingcen Gao, Thanh-Tung Cao, Tiow-Seng Tan and Zhiyong Huang, �Flip-�op:

convex hull construction via star-shaped polyhedron in 3D�, in Proceedings of the ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, (New York, NY),

pp.45-54, ACM, 2013.

[2] Mingcen Gao, Thanh-Tung Cao, Ashwin Nanjappa, Tiow-Seng Tan and Zhiyong

Huang, �gHull: a GPU algorithm for 3D convex hull�, in ACM Transactions on Math-

ematical Software, Volume 40 Issue 1, September 2013.

[3] Thanh-Tung Cao, Ashwin Nanjappa, Mingcen Gao and Tiow-Seng Tan, �A GPU

accelerated algorithm for 3D Delaunay triangulation�, in Proceedings of the ACM SIG-

GRAPH Symposium on Interactive 3D Graphics and Games, (New York, NY), ACM,

2014.

145

	Summary
	List of Tables
	List of Figures
	Introduction
	Convex Hull and Its Algorithms
	Regular Triangulation and Its Algorithms
	Local Transformation
	Outline of the Thesis

	Geometric Background
	Convex Hull and Triangulation
	Delaunay and Regular Triangulation
	Flip on Triangulation

	Algorithms of Local Transformation
	Overview
	Framework
	Examples
	Lawson's Flip Algorithm
	Star Splaying Algorithm

	Parallel Flip Algorithms for 2D Convex Hull
	Flip-pop
	Parallel Graham's Scan
	Parallel Graham's Scan via Insertion
	Experiment

	Flip Algorithm for 2D Regular Triangulation
	Flip-flop for 2D Regular Triangulation
	Proof of Correctness
	Compute Regular Triangulation of a Point Set
	Experiment

	Flip Algorithm for 3D Convex Hull
	Star-Shaped Polyhedron
	Flip-flop for 3D Convex Hull
	Proof of Correctness
	Compute Convex Hull of a Point Set
	GPU Implementation
	Exact Computation and Robustness

	Experiment

	Algorithm using Splaying for 3D Convex Hull
	The gHull Algorithm
	Implementation Details
	Digital Approximation Issues
	Digital Depth Test
	Convex Hull Approximation

	Experiment

	Local Transformation to Star-Shaped Polytope
	Coherent Orientation
	Twist and Flip on Coherently Oriented Triangulation
	Local Transformation to Star-Shaped Polygon
	Local Transformation to Star-Shaped Polyhedron
	Special Case
	General Case

	Flipping in Higher Dimensions
	Literature Review
	Instant Flipping between Regular Triangulations
	The Monotonic Instant Flip Algorithm
	Computing and Comparing Failure Time
	Finding Perturbation Order

	Extended Moving Model

	Conclusions
	Local Transformation Revisit
	Dimensional Dependency of Geometric Structures
	Concluding Remarks

	Bibliography
	List of Publications

