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Abstract

Flipping is a local and efficient operation to construct the convex
hull in an incremental fashion. However, it is known that the tra-
ditional flip algorithm is not able to compute the convex hull when
applied to a polyhedron in R3. Our novel Flip-Flop algorithm is
a variant of the flip algorithm. It overcomes the deficiency of the
traditional one to always compute the convex hull of a given star-
shaped polyhedron with provable correctness. Applying this to con-
struct convex hull of a point set in R3, we develop ffHull, a flip al-
gorithm that allows nonrestrictive insertion of many vertices before
any flipping of edges. This is unlike the well-known incremental
fashion of strictly alternating between inserting a single vertex and
flipping. The new approach is not only simpler and more efficient
for CPU implementation but also maps well to the massively paral-
lel nature of the modern GPU. As shown in our experiments, ffHull
running on the CPU is as fast as the best-known convex hull im-
plementation, qHull. As for the GPU, ffHull also outperforms all
known prior work. From this, we further obtain the first known
solution to computing the 2D regular triangulation on the GPU.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modelling—Geometric algorithms I.3.1 [Com-
puter Graphics]: Hardware Architecture—Graphics processors

Keywords: Lawson’s flip, flipping, regular triangulation, Delau-
nay triangulation, incremental insertion, GPGPU

1 Introduction

Flipping is a local operation to transform one triangulation to an-
other. In particular, any triangulation of a set of points S in R2

can be transformed into the Delaunay triangulation (DT) of S by
Lawson’s flip algorithm [1977]. This algorithm repeatedly flips any
edge in the triangulation that is not locally Delaunay till none ex-
ists, after which the result is the DT. The flipping operation can
also be generalized to higher dimensions, but unlike the case in
R2, Joe [1989] shows that in R3 the flip algorithm can be stuck at
a local optimum. At that stage, there still are non-locally Delau-
nay facets but flipping them creates self-intersection. Edelsbrunner
and Shah [1992] demonstrate the same situation when flipping on
a regular triangulation (a generalization of the DT with weights on
vertices) in R2. Figure 1(a) shows the example by Edelsbrunner
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Figure 1: (a) The stuck configuration when flipping to the 2D reg-
ular triangulation, and (b) an analogous configuration in 3D when
flipping on a star-shaped polyhedron. The dashed edges need to be
flipped, but are all not flippable.

and Shah where the weights of the vertices of the small triangle in
the center are set so that the dashed edges are not locally regular,
but flipping them creates self-intersection. To avoid being stuck at
a local optimum, Joe [1991] proposes to insert points one by one
followed by flipping to get to the DT after each insertion. That
work is later extended to higher dimensions by Rajan [1991] and
Edelsbrunner and Shah [1992].

The flipping operation can also be generalized to flipping on a poly-
hedron. In fact, by lifting the points in Rn into Rn+1, the problem
of constructing the regular triangulation in Rn becomes the prob-
lem of constructing the lower hull in Rn+1 [Edelsbrunner and Sei-
del 1986]. Just for R3, to transform a polyhedron into the convex
hull of its vertices, one repeatedly flips reflex edges to increase its
volume. If self-intersection needs to be avoided after each flip, it
is known that the flip algorithm also does not always terminate at
the required convex hull [Aichholzer et al. 2002]. This is true even
when the polyhedron is star-shaped; see Figure 1(b). In this ex-
ample, the upper part of the star-shaped polyhedron is constructed
similar to Figure 1(a). The three vertices of the small triangle in the
center are pushed down slightly so that all dotted edges are reflex,
but are not flippable. On the other hand, if self-intersection is per-
mitted during flipping, it is possible to transform a polyhedron to
the convex hull for the restricted case when all vertices are extreme
vertices that appear on the boundary of the convex hull [Alboul
2003]. In a relevant development, Shewchuk [2005] proposes star
splaying, a different kind of local transformation, which is capable
of transforming any polyhedron, even with topological error, into
the convex hull, but the splaying process is much more complex
and less efficient than flipping.

Our work aims to better understand flipping for its simplicity and
locality nature having a strong potential for efficient parallel com-
putation. Towards this end, the paper has the following contribu-
tions:

• A novel flip algorithm, called Flip-Flop, to provably transform
any star-shaped polyhedron to its convex hull.

• An algorithm, called ffHull, to construct the exact 3D convex
hull using flipping that works well on both CPUs and GPUs.

• The first known algorithm, called ffRT, to construct the 2D
regular triangulation on the GPU.

The Flip-Flop algorithm flips not only reflex edges as in the Law-
son’s flip algorithm, but also convex ones (hence the “flop” part)
when suitable. The salient point of Flip-Flop is its ability to dis-
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cover automatically all the non-extreme vertices that do not appear
on the boundary of the convex hull and to remove them, both using
the local flipping operation. Though working for only star-shaped
polyhedra, Flip-Flop is used as the key component for ffHull to
construct the convex hull of a point set in R3 and for ffRT to con-
struct the regular triangulation of a point set in R2, with prov-
able correctness. Our algorithm allows nonrestrictive insertion of
many vertices, both extreme and non-extreme, before any flipping
of edges. Besides, by enforcing an invariant that the polyhedron is
always star-shaped after each flip, which is achieved using only lo-
cal checks, we ensure no self-intersection checks are needed. These
not only maintain the simplicity and locality of the flip algorithm,
but also map well to the massively parallel nature of the modern
GPUs. Our extensive experiments show that ffHull and ffRT run-
ning on the CPU are as fast as the best known implementations
for computing convex hull and regular triangulation. As for the
GPU, with an implementation in CUDA, ffHull and ffRT demon-
strate their suitability for parallel computation by outperforming all
known prior work, while remaining robust and exact.

The rest of the paper is organized as follows. Section 2 presents
the Flip-Flop algorithm in R3. Section 3 introduces ffHull and Sec-
tion 4 extends it to ffRT. Section 5 gives the experiment results of
our algorithms on both the CPU and the GPU. Finally, Section 6
concludes the paper with some potential directions for future work.
The proof of correctness of the Flip-Flop algorithm and thus of
ffHull and ffRT is provided in Appendix A.

2 Flip-Flop Algorithm

We present the Flip-Flop algorithm that takes a star-shaped polyhe-
dron in R3 as input and produces the convex hull of the points of
the polyhedron.

2.1 Definitions

Let S be a set of points in R3, assuming in general positions. The
convex hull of S, denoted as CH(S), is the collection of points
where each is a convex combination of the points in S. This collec-
tion is also the smallest convex set containing S, and the boundary
of CH(S) is thus a convex polyhedron. Similarly, the convex hull
for a set R of rays, denoted as CH(R), is the collection of points
where each is a convex combination of some points on the rays of
R. CH(R) extends to infinity.

Given a point s ∈ R3 and three points a, b, c ∈ S, the cone of
triangle abc w.r.t. s, denoted as Cs(4abc), is the convex hull of the
three rays {−→sa,

−→
sb,−→sc}. Two cones overlap if they contain some

common points not on their boundaries. Let T be a polyhedron
with vertices in S and with faces that are triangles. We say T is a
star-shaped polyhedron w.r.t. s if and only if s is in the interior of
T and the cones of any two triangles of T w.r.t. s do not overlap
each other. This means the boundary of a star-shaped polyhedron is
entirely visible from s. s is called the kernel of T .

In T , given an edge e = ab with endpoints a and b, e is incident
to two triangles t1 = abc and t2 = bad. {c, d} is called the link
of e. The two sides of a triangle are the two half-spaces defined by
the plane containing the triangle. e is a reflex edge (w.r.t. s) if c and
s lie on different sides of t2; otherwise it is a convex edge. Indeed,
since T is star-shaped, c and s lie on two different sides of t2 if
and only if d and s lie on two different sides of t1. Convexity and
reflexivity are local properties of edges of T . On the other hand, if
T has no reflex edges, then it is the convex hull of its vertices.

Since T is topologically a 2D triangulation, flips on T can be clas-
sified into 3-1 flips, 2-2 flips and 1-3 flips [Edelsbrunner and Shah

Figure 2: Flipping on a 3D polyhedron.

1992]; see Figure 2. A 3-1 flip removes a vertex from T , while a
1-3 flip inserts a new vertex into T . For the discussion of Flip-Flop,
we do not concern with 1-3 flips. Given an edge e = ab ∈ T with
{c, d} being its link, the induced subcomplex of e, denoted as σe,
is the set of triangles in T that span {a, b, c, d}. Clearly, flipping e
is a 2-2 flip if |σe| = 2. We call e in this case a 2-2 edge. Similarly,
e is a 3-1 edge if |σe| = 3. We say that e is flippable w.r.t. s if
firstly s is outside the tetrahedron abcd, and secondly the union of
the cones of the triangles of σe is equal to CH({−→sa,

−→
sb,−→sc,

−→
sd}).

Otherwise, e is unflippable. If e is a 3-1 edge, the second condition
is always true, while if e is a 2-2 edge, the second condition is true
if and only if any vertex among {a, b, c, d} is outside the cone of
the triangle formed by the other three vertices. If a 2-2 edge is flip-
pable, we also call it 2-2 flippable for short. Similarly, a 3-1 edge
that is flippable is called 3-1 flippable.

Flipping a flippable edge that is reflex turns it into a convex one, and
vice versa. Moreover, the definition ensures that flipping a flippable
edge of a star-shaped polyhedron w.r.t. s results in a polyhedron
that remains star-shaped w.r.t. s. In another view, no intersections
are introduced during such flips, and the check for the flippability
of an edge is purely local. As such, flipping can be used as a local
operation to transform a star-shaped polyhedron into the convex
hull of its vertices.

2.2 Flipping Criteria

Traditionally, we only flip a flippable edge e if it is reflex. This
flip increases the volume of T , and we refer to this flipping cri-
terion as the V-criterion (V for Volume). Clearly, the convex hull
has the maximum volume possible, and thus this flip algorithm is a
hill climbing method. It works when all vertices in T are extreme
vertices, but possibly gets stuck at a local optimum when not all
vertices are extreme vertices, as shown in Figure 1(b).

We can show that any 3-1 edge that is reflex is always flippable. On
the other hand, any 2-2 edge that is reflex is flippable; otherwise it
has a non-extreme vertex as its endpoint. If all these non-extreme
vertices are removed, we would be able to flip T to its convex hull.
A direct way to remove a vertex is to delete all triangles incident to
it and re-triangulate the resulting hole. This is difficult to do while
still keeping T star-shaped. Moreover, it is no longer a local opera-
tion when we try to avoid self-intersection. Instead, we observe that
to remove a vertex, one can attempt to use 2-2 flips to first reduce
its degree to 3; see Figure 3. Then, a 3-1 flip can be applied to com-
plete the vertex removal. A relevant approach has been proposed
by Ledoux et al. [2005], but the input needs to be a DT.

Based on the above mentioned observation, we introduce a new
criterion for our flip algorithm. We flip a flippable edge as long as

Figure 3: The star of v as seen from the kernel point. To remove v,
we successively flip ve and vc to reduce the degree of v to 3. Then,
v is removed by a 3-1 flip.



it is incident to a non-extreme vertex. This decreases the degree of
a non-extreme vertex in T . However, this might lead to flipping an
edge back and forth if multiple vertices are labeled as non-extreme.
To avoid this, e is only flipped if that decreases the degree of the
vertex with the smallest index among all non-extreme vertices in
{a, b, c, d}. We refer to this as the D-criterion (D for Degree).

2.3 Flip with V- and D-criterion

The Flip-Flop algorithm is designed based on both the V-criterion
and the D-criterion. We follow the D-criterion to remove non-
extreme vertices while at the same time we use the V-criterion to
move closer to the convex hull. In order to apply the D-criterion,
we analyze 2-2 unflippable edges to label non-extreme vertices; see
Figure 4(a). Algorithm 1 shows the detailed pseudocode of Flip-
Flop. The input of the algorithm is a star-shaped polyhedron T
w.r.t. a given point s. The output is CH(T ), i.e. the convex hull
of all vertices of T . The algorithm repeatedly checks the edges in
T and flips them if necessary. For efficiency, we use a queue Q to
keep track of edges that need to be checked. An edge that has been
checked need not be checked again unless its incident triangles are
changed or one of its adjacent vertices is labeled as non-extreme.
Each time we flip an edge, we push all the newly created edges into
Q. Note that an edge in Q is attached to its two incident triangles,
and thus is considered outdated if any one of these triangles are
removed from T due to some flips.

We now discuss Algorithm 1 in details. First of all, all the vertices
of T are labeled as unknown (Line 1) to indicate that we do not
know whether they are non-extreme vertices or not. All edges of
T are pushed into Q for checking (Line 2). The loop in Line 3–
20 repeats until no more edges in T need to be checked, by which
T has no reflex edges and thus the algorithm reaches the required
output. Let e = ab be an edge popped in one iteration, and let
{c, d} be its link. If e is outdated, we can just ignore it (Line 5).

First, consider the situation that e is a 3-1 edge (Line 7–10). Either
a or b must lie inside the cone of the triangle formed by the other 3
vertices; see Figure 4(b). Without loss of generality, let a be inside
Cs(4bcd). If a is labeled as non-extreme or e is reflex (which also
implies that a is non-extreme), we flip e to remove a. In both cases,
e is flippable (see Appendix A).

Second, consider the situation that e is a 2-2 edge (Line 11–20).
There are two cases, depending on whether the union of the cones
of the triangles of σe is equal to CH({−→sa,

−→
sb,−→sc,

−→
sd}) or not

(Line 12). If this condition is true, then e fulfills the second condi-
tion of being flippable. We flip e either if e is reflex and no vertices
among {a, b, c, d} are labeled as non-extreme vertices (Line 13–
14), or if s is outside the tetrahedron abcd and a or b is the non-
extreme vertex with smallest index among all non-extreme vertices
labeled in {a, b, c, d} (Line 15-16). This is a combination of the D-

(a) (b)

Figure 4: (a) ab is a 2-2 edge that is reflex and unflippable. (b) ab
is a 3-1 edge that is reflex. In both cases, a is a non-extreme vertex
since it lies inside the tetrahedron sbcd.

Algorithm 1 Flip-Flop

Input: a star-shaped polyhedron T w.r.t. s
Output: CH(T )

1: label all vertices of T as unknown
2: Q ← { e | e is an edge of T }
3: while ¬Q.isEmpty() do
4: e← Q.pop()
5: if e is outdated then continue
6: let e = ab, {c, d} be its link and x ∈ {a, b, c, d} be the

non-extreme vertex with smallest index
7: if e is a 3-1 edge then
8: let a be inside Cs(4bcd)
9: if a is labeled as non-extreme or e is reflex then

10: flip e;Q ← {bc, cd, db}
11: else // e is a 2-2 edge
12: if a 6∈ Cs(4bcd) and b 6∈ Cs(4acd) then
13: if x does not exist and e is reflex then
14: flip e;Q ← {ac, bc, ad, bd}
15: else if x ∈ {a, b} and s 6∈ CH({a, b, c, d}) then
16: flip e;Q ← {ac, bc, ad, bd}
17: else if e is reflex then
18: let a be inside Cs(4bcd)
19: label a as non-extreme
20: Q ← { e′ | e′ is an edge of T with a as an endpoint }

criterion and the V-criterion, with priority given to the D-criterion
to reduce the degree of non-extreme vertices and eventually remove
them. On the other hand, if the condition in Line 12 is false, then e
is unflippable. In this case, if e is reflex, without loss of generality
we assume a is inside Cs(4bcd), then a is a non-extreme vertex.
We label it in Line 19 so that it is removed in subsequent flips using
the D-criterion. Also, all the edges incident to a need to be checked
again due to the labeling of a, so we push them intoQ.

Note that the algorithm presented above is just one approach of
using the V-criterion together with the D-criterion. In fact the flips
can vary, and a stack, for example, can be used to replace the queue
Q. Another variant, referred to as the V-biased Flip-Flop, is to
keep performing the flipping according to the V-criterion first, until
no more flipping can be done. After that, we can start labeling
the non-extreme vertices and use flipping due to the D-criterion to
remove them. The process is then repeated until all the non-extreme
vertices are identified and removed.

3 Convex Hull Construction

Convex hull is a very fundamental problem in computational geom-
etry, and has been well studied for many years [Preparata and Hong
1977; Clarkson and Shor 1988; Chan 1996]. The most practical
algorithm for the CPU is QuickHull [Barber et al. 1996], a variant
of the incremental insertion approach where the outermost point is
inserted in each round.

There are also several solutions to construct the convex hull with
the help of the GPU. For the simple 2D case, efficient GPU al-
gorithms are proposed by Jurkiewicz and Danilewski [2011] and
Srungarapu et al. [2011]. For 3D and higher dimensions, Tang et
al. [2012] adapt the incremental insertion approach of QuickHull
on the GPU to construct a filter to cull away most of the interior
points, while sending the rest to a CPU algorithm to construct the
convex hull. This approach is not very useful when there are many
extreme vertices. Tzeng and Owens [2012] propose CudaQuick-
Hull and Stein et al. [2012] present CudaHull, both of which apply
the idea of QuickHull on the GPU. However, their approaches ei-
ther overlook the difficulty that the points inserted in parallel might



not be extreme vertices, or use the traditional flipping algorithm
which cannot always produce the convex hull. More specifically, in
the correctness proof for CudaHull, the authors claim that the algo-
rithm flips all concave edges, while in fact their algorithm does not
flip edges that lead to self-intersections. As a result, in some cases
the output polyhedron is not a convex hull because some concave
edges remain. Recently, Gao et al. [2012] propose the gHull algo-
rithm, using the digital Voronoi diagram to construct an approxi-
mation followed by several other fixing steps including the use of
star splaying [Shewchuk 2005] on the GPU. Due to the use of an
approximation from the digital space, their algorithm cannot handle
point sets from a non-uniform distribution very efficiently.

The Flip-Flop algorithm is a powerful tool to transform any star-
shaped polyhedron into its convex hull. We introduce a new al-
gorithm, termed ffHull, that uses Flip-Flop to construct the convex
hull of a set of point S in R3. The main idea is to quickly construct a
star-shaped polyhedron T that is close to CH(S) by an incremental
insertion approach, followed by applying Flip-Flop.

3.1 Algorithm

Algorithm 2 ffHull

Input: a set S of points in R3

Output: CH(S)
1: let a, b, c, d be any 4 extreme vertices. S ← S \ {a, b, c, d}
2: T ← CH({a, b, c, d}); s← the centroid of T
3: associate each p ∈ S to4abc ∈ T s.t. p ∈ Cs(4abc)
4: while ¬S.isEmpty() do
5: for each4abc associated by some points do
6: let v be the furthest point associated to4abc
7: T ← T ∪{4vab,4vbc,4vca}\{4abc}; S ← S\{v}
8: for each p ∈ S do
9: let p be associated to4abc, into which v is just inserted

10: associate p to t ∈ {4vab,4vbc,4vca} s.t. p ∈ Cs(t)
11: if p and s lie on the same side of t then S ← S \ {p}
12: apply Flip-Flop on T

Algorithm 2 shows the pseudocode of ffHull. There are two stages:
constructing a star-shaped polyhedron (Line 1–11), and transform-
ing it to the convex hull using Flip-Flop (Line 12). In the first stage,
from the initial star-shaped polyhedron T with 4 extreme vertices
(Line 1), we incrementally process input points: an input point is
either inserted to become a vertex of the polyhedron or removed if
found to be inside the polyhedron constructed so far. Specifically,
during the process, we use the centroid s of the initial star-shaped
polyhedron as the kernel point (Line 2). For each point p in S,
we associate p with a unique 4abc of T if p is inside the cone of
4abc. We remove p if it is inside the tetrahedron sabc, i.e. when p
and s lie on the same side of4abc, since it is a non-extreme point.
In subsequent loop, T is grown by inserting the furthest point v as-
sociated to each triangle t ∈ T into T (Line 5–7). This is done by
replacing t with three new triangles. Each point inserted into T is
removed from S. Each insertion splits a cone Cs(t) into three new
disjoint cones. This guarantees that T is still star-shaped after the
insertion. Line 8–11 update the triangle each point p ∈ S is asso-
ciated to, or remove p if it is a non-extreme point. This “growing”
process is repeated until S is empty. In the second stage, we simply
apply the Flip-Flop algorithm to transform T to CH(S).

We have two notes for the above algorithm. Firstly, Flip-Flop actu-
ally works for any star-shaped polyhedron. It is thus not necessary
to always find the furthest point to insert into T , even though do-
ing so helps to remove non-extreme points in S quickly. In fact,
it is costly to find such furthest points because of numerical error.

In practice, we often choose the almost furthest points to insert to
construct the star-shaped polyhedron. Secondly, the algorithm pre-
sented above is just one approach to use Flip-Flop to construct the
convex hull. Another possibility is to alternate between inserting
points and flipping in multiple iterations. That is, however, ob-
served to have lower parallelism during flipping in our experiments.

3.2 GPU Implementation

We use CUDA for our implementation of ffHull on the GPU. The
polyhedron is represented as an array of triangles, each containing
the indices of its three vertices and the indices of the triangles shar-
ing its three edges. This is similar to the data structure of triangula-
tion used in CGAL [Boissonnat et al. 2002] and GPU-DT [Qi et al.
2012]. Furthermore, some auxiliary arrays are also used for inter-
mediate computation. For example, we need an array to store the
index of the furthest point for each triangle and an array to store for
each point the index of the triangle it is associated to. The arrays are
dynamically expanded rather than pre-allocated since usually only
a small number of points appear in the polyhedron.

We use two techniques to simplify (and at the same time optimize)
the implementation of ffHull. Let orient(p, t) be the determinant
used to determine whether the point p lies beneath or beyond the
triangle t. The first technique is to maintain the orientation of each
triangle t in the polyhedron so that the kernel point s is beneath
t. With this, to perform Line 11 of Algorithm 2, we only need
to compute orient(p, t). Similarly, we can check the reflexivity
of an edge, without using s. The second technique is to reuse
|orient(p, t)|, which is the volume of the tetrahedron formed by
p and the triangle t, when finding the furthest point to t instead of
actually computing the distance.

The details on the implementation of ffHull is as follows. In the
first stage, constructing a star-shaped polyhedron, we have four ma-
jor CUDA kernels. The first kernel (Line 3 of Algorithm 2), with
one thread processing one input point p, finds the triangle in the
initial triangulation T that p is associated to and at the same time
participates in the search for the furthest point of each triangle. We
use two arrays in the global memory to store for each triangle the
furthest point and its distance, with the initial value being 0. The
thread processing and associating p to a triangle t uses orient(p, t)
to judge whether p is beneath t or not, and marks p as deleted if it is
beneath. Otherwise, the distance from p to t (actually orient(p, t)
is used) is compared with the currently recorded value and if the
new distance is larger, p is recorded as the furthest point of t, and
the distance is updated.

The second kernel (Line 5–7), with one thread processing one trian-
gle t, inserts one point associated to t into the polyhedron. A point
being inserted into t replaces it with three new triangles. The first
one is stored in the original slot, while the other two are appended
into the end of the array of triangles. Then, the third kernel, with
one thread processing one triangle, updates the full adjacency infor-
mation of all new triangles and those adjacent to them. A separate
kernel is necessary here since updating directly in the second kernel
may create memory read and write conflict. The fourth kernel (Line
8–11), with one thread processing one point p, updates p’s associ-
ated triangle if p is still outside T . For p with t being the previous
associated triangle, we first read the slot in the triangle array that
previously stored t, which now stores the first new triangle. From
its adjacency information, we obtain the other two new triangles.
Among these three, we identify the triangle t′ that p is now associ-
ated to. Then the furthest point for t′ is updated similar to the first
kernel mentioned above. Note that in the first and fourth kernels,
since the threads are executed in parallel, we do not always get the
furthest point for each triangle. However, this approach is efficient



without compromising on the correctness. During this stage, the
index of the associated triangle of a point is set to−1 if the point is
found to be inside the polyhedron, and that point will not be revis-
ited in the subsequent computation.

In the second stage, the Flip-Flop stage, the flipping is done in mul-
tiple iterations. In each iteration, we use two kernels, a checking
kernel and a flipping kernel, to perform multiple flips in parallel,
similar to the technique described in [Qi et al. 2012] and [Navarro
et al. 2011]. In the checking kernel, we assign one thread to one
triangle to check if one of its edges can be flipped (based on the V-
and D- criterion). The difficulty is that the induced sub-complexes
of some edges share some triangles, thus the flips are conflicting
and cannot be done in the same iteration. To avoid this, if a thread
in charge of4abc wants to flip the edge e = ab, it uses the atomic
minimum operation to label the triangles of σe with the index of
4abc. In the flipping kernel, we also assign one thread to one tri-
angle. The thread in charge of 4abc only flips e if the triangles
of σe are still labeled with the index of 4abc. This guarantees no
conflicting flips are performed in the same iteration, and in each
iteration at least one flip can be done. Note that only up to three
threads write to the same memory location during the labelling, so
the use of the atomic operation does not affect the efficiency much.

3.3 Exact Computation and Robustness

The only predicate we use, the 3D orientation predicate, is adapted
from the exact predicate of Shewchuk [1997]. Instead of using a
multiple-stages adaptive arithmetic, we only use two stages: a fast
computation with all arithmetic operations being done using native
floating-point numbers, and an exact computation with all arith-
metic operations being fully expanded into arrays of floating-point
numbers. To verify whether the fast computation gives the correct
sign of the determinant being computed or not, we use the forward
error analysis approach described by Shewchuk. The error bounds
are pre-computed using a single CUDA kernel, and stored for later
used by all kernels that need exact computation.

The exact computation code requires a lot of registers and local
memory, so each kernel that needs exact computation is split into
two kernels. The first one performs only fast computations, and
uses the error bounds to determine whether it requires exact com-
putation or not. In second kernel, only the threads that need exact
computation are active. By doing this, the first kernel requires less
registers and local memory, and thus can run with higher paral-
lelism. The second kernel, on the other hand, has very little work
to do.

We also use the SoS technique of Edelsbrunner and Mucke [1990]
to handle degeneracy. The implementation is as described in their
original paper. All the computation of the subdeterminants are done
with exact arithmetics. One small note is that although SoS re-
quires computing many different subdeterminants, the CUDA code
is written in such a way that the call to exact predicate appears only
once, inside a loop with different subdeterminants being passed to
it. Consequently, we can force inline the exact predicate function
without worrying about the kernel code being too large to compile.

With the use of exact predicates and SoS, we can guarantee the ex-
actness and robustness of our implementation. The only source of
inexact computation is when computing the kernel point s. If the
initial tetrahedron is almost flat, its centroid computed inexactly can
lie outside. By carefully choosing the first four extreme points, we
make sure they are far away from each other to avoid the undesir-
able situation, unless all the input points are almost co-planar.

4 Extension to Regular Triangulation

The regular triangulation of a set S of weighted points in R2 is often
computed using the incremental insertion approach by Edelsbrun-
ner and Shah [1992]. On the other hand, the regular triangulation is
closely related to the convex hull of S when lifted into R3. The lift
map is π : (x, y) 7→ (x, y, x2 + y2 − w) where w is the weight of
the point. Let the lifted point set be S′. The lower hull of the convex
hull of S′ is equivalent to the regular triangulation of S. Existing
GPU algorithms to construct convex hull are not suitable for con-
structing the regular triangulation for several reasons. First, most
of the points are expected to appear in the final triangulation, so
the filtering method presented by Tang et al. [2012] is not very use-
ful. Second, the range of the z-coordinates is very large compared
to that of the x- and y-coordinates, thus using the digital Voronoi
diagram as proposed by Gao et al. [2012] is not very suitable.

The Flip-Flop algorithm does not have any of the disadvantages
mentioned above. Thus we extend ffHull to ffRT, a new algorithm
to compute the regular triangulation of a set of weighted points in
R2. Conceptually, we lift the input point set S into R3 to get S′,
simulate ffHull on S′ to get CH(S′) and finally return its lower hull
as output. The actual implementation of ffRT is adapted from that
of ffHull with some modification to improve the efficiency. We ini-
tialize the star-shaped polyhedron T with a tetrahedron containing
3 extreme vertices {u, v, w} of S′ and a virtual vertex p̂ with the z-
coordinate being +∞, and thus the kernel point ŝ is the centroid of
{u, v, w} but with the z-coordinate being +∞. This makes all up-
per hull triangles being incident to p̂ and thus can easily be removed
before we output the triangulation.

During the growing process, there are two kinds of triangles in T :
virtual triangles that are incident to p̂ and real triangles that are
not. The cone of a real triangle abc is the space bounded by the
three vertical planes going through the edges ab, bc, and ca. The
cone of a virtual triangle abp̂ can be seen as the space bounded by
the vertical planes going through aŝ and bŝ intersecting with the
half space defined by the vertical plane going through ab that does
not contain ŝ. Similarly, in the flipping stage there are three kinds
of edges: internal edges that are incident to two real triangles; vir-
tual edges to two virtual triangles; and silhouette edges to one real
triangle and one virtual triangle. A virtual edge is always flippable,
and checking its reflexivity is done using a 2D oriengation check. A
silhouette edge is always convex, while an internal edge is treated
as a normal edge in ffHull.

5 Experimental Results

Our algorithms are implemented on the GPU using the CUDA pro-
gramming model by Nvidia, and can easily be ported to OpenCL.
All the experiments are conducted on a PC with an Intel i7 2600K
3.4GHz CPU, 16GB of DDR3 RAM and an Nvidia GTX 580 Fermi
graphics card with 3GB of video memory. All implementations are
compiled with all optimizations enabled.

5.1 Convex Hull

We compare the performance of our implementations of the ffHull
algorithm on both the CPU and the GPU with the two fastest convex
hull implementations on the CPU, qHull and CGAL, as well as with
gHull, the recently published GPU algorithm by Gao et al. [2012].
Both CGAL and gHull use exact predicates, similar to our imple-
mentations, while qHull produces a convex hull with “thick” facets.
According to our experiment results, qHull runs faster than CGAL
in most cases, so all the speedup reported in this subsection is with
respect to qHull.
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Figure 5: Running time of ffHull compared to qHull, CGAL (on the
CPU) and gHull (on the GPU).

Running time. First, we show an experiment on some representa-
tive point distributions. We generate points randomly with coordi-
nates between [0.0, 1.0]. Following Gao et al.’s work, we use four
representative distributions of points to test: a cube, a ball of ra-
dius of 0.5, a sphere of thickness of 0.01 and a box with thickness
of 0.01. The cube and the box distributions have very few points
on the convex hull, while the ball and the sphere distributions have
many. The box and the sphere distributions have most points close
to the convex hull, making it difficult for the Quickhull algorithm
to remove non-extreme points.

Figure 5 shows the running time of the CPU algorithms and the
speedup of the GPU algorithms when compared to qHull. Clearly,
our CPU implementation of ffHull outperforms CGAL in all the
tested distributions. Our CPU version of ffHull is also as fast as
qHull, while always producing an exact convex hull rather than just
an approximation like qHull does. On the other hand, our GPU
implementation of ffHull achieves up to 30x speedup compared to
qHull, and is faster than gHull in all the cases. As mentioned by
Gao et al. [2012], their algorithm does not perform well in the cube
and the box distributions due to the use of approximation in the
digital space. Our ffHull is not affected by this, and thus runs much
faster than gHull for these cases.

We also use models of over a million points from the Stanford 3D
scanning repository to test the ffHull algorithm; see Table 1. These
models have very few points on the convex hull, while most other
points are distributed near the surface, with many points being co-
planar. Once again, our ffHull implementation on the GPU outper-
forms gHull in all cases. The CPU implementation, though slower
than qHull due to a large amount of exact computation required,
still outperforms CGAL.

Model # Points Running time (ms)
(millions) qHull CGAL ffHull-CPU gHull ffHull-GPU

Asian dragon 3.6 540 1181 997 214 141
Thai statue 5.0 692 1538 1240 180 125

Lucy 13.9 1884 4488 3664 297 263

Table 1: Running time on different 3D models.

(a) (b)

Figure 6: (a) ffHull vs gHull on the GPU with points on a thin
sphere of different thicknesses. (b) The number of flips performed
by ffHull on the CPU.

Sensitivity. The number of points on the convex hull directly af-
fects the running time of all convex hull algorithms. The Flip-Flop
algorithm uses only simple and local operations, thus it works very
well in parallel, especially when there are many vertices on the in-
put polyhedron. As such, the ffHull algorithm which uses Flip-Flop
is also very efficient when many input points are on the convex hull.
Figure 6(a) shows our experiment results with the sphere distribu-
tion of various thickness, ranging from 0.5 (which is the ball distri-
bution) to 10−4. The total number of points is 107. The thinner the
sphere is, the more points are on the convex hull, and we see that the
speedup of ffHull on the GPU compared to qHull increases sharply
from 20x to 50x. In contrast, gHull slows down significantly when
the sphere gets thinner due to the use of digital approximation.

Time breakdown. We also measure the running time of the two
stages of the algorithm on the GPU separately: the time taken to
construct a star-shaped polyhedron and the time taken to transform
it to the convex hull. The same experiment setting as above is used,
with 107 points on the sphere distribution of various thickness. As
more points are on the convex hull, both stages of the algorithm
take more time, but the ratio between the two also changes. At
thickness 0.5, the second stage only takes about 45% as much time
as the first stage. However, at thickness 10−4, this ratio increases to
nearly 100%. This is because the number of points on the convex
hull affects the first stage at a logarithmic rate (i.e. only affects the
number of loops) while it affects the second stage at a linear rate in
our experiment.

Number of flips. In Figure 6(b), we present the total number of
flips performed by ffHull on the CPU when running on different
distributions with varying number of points. For the cube and the
box distributions, due to the small number of points on the convex
hull, the numbers of flips needed are very small, as shown by the
two overlapping curves near the horizontal axis. On the other hand,
for the ball and the sphere distributions, the numbers of flips are
nearly linear to the number of points. This result matches with the
result of Lawson’s traditional flip algorithm when computing the
2D DT in practice.

5.2 Regular Triangulation

We compare the implementation of the ffRT algorithm on both the
CPU and the GPU with CGAL. We randomly generate points in
uniform distribution with coordinates between [0.0, 1.0]. In Fig-
ure 7(a), the weights of the points are randomly chosen from 0.0
to 10−5, so that the number of points in the resulting regular tri-
angulation is approximately 20% of the number of input points. In
Figure 7(b) the weight range is [0.0, 2 × 10−7], and thus approx-
imately 99% of the points appear in the output. In both cases, our
CPU implementation achieves a performance close to CGAL, while
the GPU implementation gives an 8x speedup on average. Note that
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Figure 7: Performance comparison between CGAL and ffRT on the
CPU and the GPU where the number of points in the output is (a)
20% and (b) 99% of the number of input points.

in both cases, the number of points that can be eliminated is not as
high as in the convex hull problem, as such the Flip-Flop algorithm
has a lot of work to do. Nevertheless, it can robustly produce the
correct result.

6 Concluding Remarks

This paper presents a novel algorithm, Flip-Flop, to construct the
convex hull from any 3D star-shaped polyhedron. There are several
benefits when using Flip-Flop. First, it is provably correct, and thus
can always produce the exact convex hull (or regular triangulation).
Second, the algorithm uses only the simple flipping operation, with
all computations being purely local. Third, Flip-Flop works with
any star-shaped polyhedron, thus during the convex hull (or regular
triangulation) construction, many points can be inserted at the same
time instead of one at a time in the previous approaches. Last but
not least, the flips can be performed in any order as long as they
obey the V-criterion and the D-criterion. With all these benefits,
it is very suitable for parallel computation. The implementations
of ffHull and ffRT, which use Flip-Flop to construct the convex
hull in R3 and the regular triangulation in R2, perform well on the
CPU compared to other popular implementations of existing algo-
rithms. Our implementations on the GPU give significant speedup
over the sequential implementations, and also outperform other ex-
isting GPU solutions.
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A Proof of Correctness

We show that the Flip-Flop algorithm can successfully transform
any star-shaped polyhedron in R3 into its convex hull. It then fol-
lows that the ffHull algorithm computes correctly the convex hull
of a point set. In the following discussion, let T be a star-shaped
polyhedron in R3 with respect to a given kernel point s. Let F (v)
denote the set of triangles incident to the vertex v of T , and L(v)
be the set of vertices and edges in F (v) excluding those incident to
v. F (v) and L(v) are called the fan and the link of v respectively.
Given an edge e = ab ∈ T with {c, d} being its link, the induced
subcomplex of e, denoted as σe, is the set of triangles in T that
span {a, b, c, d}. We use Cs(F (v)) to denote

⋃
t∈F (v) Cs(t), and

similarly for Cs(σe).

A.1 Properties of Star-Shaped Polyhedra

Lemma 1. For any vertex v of T , none of the vertices of T \L(v)
except v lies inside Cs(F (v)). Moreover, v does not lie on the
boundary of Cs(F (v)).

Proof. This follows immediately from the definition of the star-
shaped polyhedron.

Lemma 2. Any 3-1 edge e = ab of T that is reflex is flippable.

Proof. Let the link of e be {c, d}. Without loss of generality, let
σe = {4abc,4bad,4acd}; see Figure 4(b). Since e is reflex, s
and d lie on different sides of4abc, so s is outside the tetrahedron
abcd. On the other hand, by Lemma 1, a lies inside Cs(σe), and
thus inside CH({−→sa,

−→
sb,−→sc,

−→
sd}). Therefore, e is flippable.

Lemma 3. Any 2-2 unflippable edge e = ab that is reflex is incident
to a non-extreme vertex.

Proof. Let the link of e be {c, d}. Since e is reflex, s and d
lie on different sides of 4abc, therefore s is outside the tetrahe-
dron abcd. As such, by the definition of the unflippable edge,
the union of Cs(4abc) and Cs(4bad) must not be equal to
CH({−→sa,

−→
sb,−→sc,

−→
sd}); see Figure 4(a). This implies that either a

is inside Cs(4bcd) or b is inside Cs(4acd), which results in a non-
extreme vertex since e is reflex.

A.2 Star-Shaped Polyhedra with all Extreme Vertices

We prove that any star-shaped polyhedron with all vertices being
extreme vertices can be transformed into its convex hull by flippings
with the V-criterion. Using the invariant that T is still star-shaped
w.r.t. s after flipping any flippable edge, we show that in this case,
any reflex edge is in fact flippable, which implies that we can flip
all the reflex edges of T to get to its convex hull.

(a) (b)

Figure 8: (a) v is locally covered by b, e and f on v’s link. (b) v is
not locally covered because no cone defined by three points on v’s
link contains it.

Lemma 4. If all vertices of T are extreme vertices, any reflex edge
e of T is 2-2 flippable.

Proof. The edge e cannot be a 3-1 edge; otherwise by the same
argument in the proof of Lemma 3, we can show that there is a non-
extreme vertex in T . On the other hand, if e is 2-2 unflippable, by
Lemma 3 we also have a non-extreme vertex in T . Therefore, e is
2-2 flippable.

Theorem 1. Flipping according to the V-criterion can transform
T into its convex hull if all the vertices of T are extreme vertices.

Proof. Any reflex edge in T is flippable and thus is flipped ac-
cording to the V-criterion. Flipping a reflex edge e of T increases
its volume, and any edge that becomes reflex after the flip is also
subsequently flipped. Since T is free from self-intersection, its vol-
ume is bounded, thus the flipping process always terminates with a
star-shaped polyhedron with no reflex edges. Since no vertices are
removed, the result is the convex hull of the vertices of T .

A.3 Star-Shaped Polyhedra with Non-Extreme Vertices

We introduce several new concepts for the proofs in this section.
Let v, a, b, c be different vertices of T . The cone Cs(4abc) is
called the cover of v if v lies inside it. It is then called the minimal
cover of v if no other vertices of T lie inside it. Note that v might
have more than one minimal cover. We say v is locally covered
if it has a cover formed by three vertices on its link; see Figure 8.
We show that any non-extreme vertex v is locally covered, and we
can always find a flippable edge incident to it. Thus we can use the
D-criterion to decrease the degree of v and eventually remove it.

Lemma 5. If v is a non-extreme vertex, then v is locally covered.

Proof. By contradiction, assume that v is not locally covered. This
means no cone of three vertices of L(v) is a cover of v. We con-
struct CH(L(v)) and the line vs, as shown in Figure 9(a). By
Lemma 1, v is inside Cs(F (v)), so the line vs must intersect
CH(L(v)) at two triangles t1 and t2. Note that t1 and t2 are possi-
bly the same triangle when L(v) has only 3 vertices. Since Cs(t1)
and Cs(t2) are not covers of v, v and s must lie on the same side of
both triangles with v being further. Without loss of generality, let
the intersection of t1 and the line vs be nearer to s than that of t2,
and let H be the plane through s and parallel to t1.

We prove that all vertices of T lie on the half-space of H not con-
taining v. Let Rt be this half-space, clearly CH(L(v)) lies inside
Rt. Consider any vertex p in T other than v and those in L(v).
Consider the plane through p, v and s, the half-plane defined by
vs and containing p must intersect L(v) at a point q. The point
p must lie outside the angle v̂sq; otherwise it falls into Cs(F (v)),
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Figure 9: (a) If v is not locally covered, the line passing through v
and s intersects CH(L(v)), and v is in fact an extreme vertex. The
solid edges are of the link of v. (b) The cone of {a, b, c} ∈ L(v)
is a cover of v, and if another p ∈ L(v) is inside Cs(4abc), p
subdivides the cone into three and v lies inside one of them.

contradicting Lemma 1. Since q lies in Rt, p also lies in Rt. Thus
all vertices of T other than v lie inside Rt and therefore v is an
extreme point, a contradiction.

Lemma 6. If v is locally covered, it has a minimal cover with ver-
tices on its link.

Proof. Let Cs(4abc) be a cover of v such that {a, b, c} ⊆ L(v). If
there is another vertex p ∈ L(v) that lies inside Cs(4abc), without
loss of generality we assume that v lies inside Cs(4pab); see Fig-
ure 9(b). In this case, we replace 4abc with 4pab and repeat the
argument. Since Cs(4pab) is inside Cs(4abc), this process cannot
go on forever.

Now let us assume that no other vertex in L(v) lies in-
side Cs(4abc). We argue that Cs(4abc) is completely inside
Cs(F (v)). Otherwise, an edge pq on L(v) must cut through
Cs(4abc) and thus Cs(4vpq) overlaps one of the cones of the tri-
angles incident to the edge va, vb and vc. This violates the fact that
T is star-shaped.

By Lemma 1, vertices in T \ L(v) cannot lie inside Cs(4abc).
Therefore, Cs(4abc) is a minimal cover of v.

Lemma 7. If the degree of a non-extreme vertex v is 3, any edge
incident to it is 3-1 flippable.

Proof. By Lemma 5, v is locally covered. Let {a, b, c} be the ver-
tices of the link of v. First, s lies outside the tetrahedron vabc;
otherwise v is not locally covered. Second, similar to the proof of
Lemma 2, we have Cs(σe) = CH({−→sa,

−→
sb,−→sc,−→sv}), therefore any

edge incident to v is flippable.

Lemma 8. If the degree of a non-extreme vertex v is more than 3,
there exists a 2-2 flippable edge incident to v.

Proof. From Lemma 5 and Lemma 6, let Cs(4abc) be the minimal
cover of v where a, b and c are vertices of L(v). The three vertices
partition the link of v into three chains of vertices: Lab, Lbc and
Lca, each of which goes between two of these vertices and does
not include the third one; see Figure 10. Since the degree of v is
more than 3, there is at least one chain with more than 2 vertices.
Without loss of generality, let Lab be (a, p1, p2, . . . , pn, b) such
that n ≥ 1. We prove that there exists a vertex pm (1 ≤ m ≤ n)
such that the edge vpm is 2-2 flippable.

LetDsva be the half plane through v, s, a that is defined by the line
vs and contains a. Similarly we define Dsvb and Dsvc. Let Rab

be the region bounded by Dsva and Dsvb and containing the edge

Figure 10: If the chain of vertices Lab has more than 2 vertices,
there exists a vertex pm such that the edge vpm is 2-2 flippable.

ab. Cs(4abc) is a cover of v, thus a and b must lie on two different
sides of4svc. To go from a to b without going into Rab, the chain
Lab must intersect with Dsvc at an edge e = pq ∈ Lab, and as a
result Cs(4vpq) overlaps one of the cones of the triangles incident
to vc, violating the fact that T is star-shaped. Therefore, Lab goes
through Rab. By the same argument, Lab cannot intersect Dsva or
Dsvb at an edge, therefore Lab lies completely inside Rab.

Now we show how to find the vertex pm. Let Hsab be the
plane through s, a and b. Since Cs(4abc) is a minimal cover
of v, Lab cannot go through Cs(4abc); otherwise some cones
of the triangles of T would overlap. Consider the convex hull of
{−→sv,−→sa,−→sp1, . . . ,−→spn,

−→
sb}, there must be a vertex pm (1 ≤ m ≤

n) on its boundary. Let pm−1 and pm+1 be its two neighbours in
Lab (pm−1 = a if m = 1 and pm+1 = b if m = n). Clearly,
pm lies outside Cs(4vpm−1pm+1). Since pm−1, pm and pm+1 lie
inside Rab, v is outside Cs(4pm−1pmpm+1). Therefore, vpm is a
2-2 edge and the union of Cs(4vpm−1pm) and Cs(4vpmpm+1) is
equal to CH({−→sv,−→spm−1,

−→spm,−→spm+1}). On top of that, since v,
pm−1, pm and pm+1 are inside Rab, s is surely outside the tetrahe-
dron vpm−1pmpm+1. As a result, vpm is a 2-2 flippable edge.

Theorem 2. The Flip-Flop algorithm computes the convex hull of
any star-shaped polyhedron.

Proof. The Flip-Flop algorithm definitely terminates, since each
flip performed either increases the volume of T or decreases the
degree of a non-extreme vertex without increasing the degree of
any other non-extreme vertex with smaller index. The algorithm
flips all flippable edges, and if there is any unflippable edge, by
Lemma 3, we can identify a non-extreme vertex, and by Lemma 7
and Lemma 8, we can flip and remove it. As such, when the algo-
rithm terminates, the result is the convex hull.

Theorem 2 promises the correctness of Flip-Flop in sequential ex-
ecution. When we execute it in parallel, conflicting flippings may
break the validity of the star-shaped polyhedron. By using atomic
operations, we avoid this problem. Since the Flip-Flop algorithm
follows the V- and D- criterion and the number of non-extreme ver-
tices is limited, the algorithm always terminates after removing all
non-extreme vertices and flipping all reflex edges. Thus, the proof
of Theorem 2 applies to the parallel execution as well.

Theorem 3. The ffHull algorithm computes the convex hull of any
point set in R3.

Proof. The point insertion process in the first phase of ffHull gener-
ates a star-shaped polyhedron from the input points, with those cer-
tainly non-extreme vertices being excluded. The rest of the proof
follows from Theorem 2.




