
A GPU Algorithm for Convex Hull ∗

Mingcen Gao Thanh-Tung Cao Ashwin Nanjappa Tiow-Seng Tan
National University of Singapore

Zhiyong Huang
Institute for Infocomm Research Singapore

Abstract

We present a novel algorithm to compute the convex hull of a point
set in R3 using the graphics processing unit (GPU). By exploiting
the relationship between the Voronoi diagram and the convex hull,
we derive the answer from the former. Our algorithm only requires
a few simple atomic operations and does not need explicit locking
or any other concurrency control mechanism, thus it can maximize
the parallelism available on the modern GPU.

Our implementation using the CUDA programming model on
Nvidia GPUs is robust, exact, and efficient. The experiments show
that it is up to an order of magnitude faster than other sequential
convex hull implementations running on the CPU for inputs of mil-
lions of points. We further extend our GPU approach to obtain the
Delaunay triangulation of points in R3 by computing their 4D con-
vex hull. Our works demonstrate that the GPU can be used to solve
non-trivial computational geometry problems with significant per-
formance benefit, without sacrificing accuracy or robustness.

This is an updated version of Technical Report # TRA3/11 with im-
provement to the algorithm/results.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modelling—Geometric algorithms I.3.1 [Com-
puter Graphics]: Hardware Architecture—Graphics processors

Keywords: GPGPU, Voronoi diagram, Delaunay triangulation,
star splaying

1 Introduction

The convex hull C(S) of a set S of input points is the small-
est convex polyhedron enclosing S (Figure 1). Our problem is
to compute for a given set S in R3 its convex hull represented
as a triangular mesh, with vertices that are points of S, bound-
ing the convex hull. Each point of S on the boundary of C(S)
is called an extreme vertex. The convex hull, along with the De-
launay triangulation and the Voronoi diagram (VD) are some of
the most basic yet important geometric structures. In particular,
the convex hull is useful in many applications and areas of re-
search. In scientific visualization and computer games, convex
hull can be a good form of bounding volume that is useful to
check for intersection or collision between objects [Liu et al. 2008;
Mao and Yang 2006]. In robotics, it is used to approximate robots
and obstacles for the purpose of path planning [Okada et al. 2003;
Strandberg 2004]. In astronomy, it is a basic structure used to
analyze the characteristics of the atmosphere [Fuentes et al. 2001;
Amundson et al. 2005]. In general, convex hull is also a useful
tool in biology and genetics [Wang et al. 2009] and visual pattern
matching [Hahn and Han 2006].

Many CPU-based 3D convex hull algorithms have been devel-
oped and implemented over the decades. Among them, Quick-
Hull [Barber et al. 1996] has been the most efficient and pop-

∗{ mingcen | caothanh | ashwinna | tants}@comp.nus.edu.sg; zyhuang@i2r.a-
star.edu.sg

Figure 1: Convex hull of the Asian dragon model. Lines behind are
hidden for clarity.

ular one in practice. There are also parallel convex hull al-
gorithms [Miller and Stout 1988; Amato and Preparata 1993], but
these are theoretical works with no practical implementations.

In recent years, the computational capability of the GPU has sur-
passed that of the CPU and is being used to solve large scale prob-
lems such as physical and biological simulation. However, this
enormous power of the GPU has not been effectively exploited to
solve computational geometry problems like convex hull. Exist-
ing parallel convex hull algorithms do not seem to map well to the
current GPU architecture that supports tens of thousands of compu-
tational threads. The main difficulty is that such computation gen-
erally needs “global” consideration of all input data, and thus does
not map well to the massively multi-threaded model of the GPU,
which requires regularized work on localized data to achieve good
performance. QuickHull, using an incremental insertion approach,
is very difficult to be implemented efficiently on the GPU for R3

and higher dimensions, because there are many dependencies dur-
ing the insertion of points.

In this report, we establish that the GPU is a useful tool to com-
pute the convex hull in 3D with substantial speedup over sequential
algorithms. The main idea of our proposed 3D GPU convex hull al-
gorithm is to exploit the relationship between 3D Voronoi diagram
and 3D convex hull so as to maximize the parallelism. From the
3D Voronoi diagram computed in digital space, we derive a good
approximation which is then transformed into the desired convex
hull. Our implementation uses simple data structures and does not
require any explicit locking or concurrency control techniques and
thus scales well with the number of cores on the GPU. We further
extend our approach to compute the 3D Delaunay triangulation by
obtaining it from the lower envelope of the convex hull of the points
lifted to R4.

The report is organized as follows: Section 2 reviews the related
work for sequential and parallel convex hull algorithms. Section 3
outlines our 3D convex hull algorithm, while Section 4 details our
implementation techniques. Some issues regarding the use of digi-
tal space computation are discussed in Section 5. Our experimental
results and analysis are presented in Section 6. Section 7 extends
the algorithm to compute the 3D Delaunay triangulation, and finally
Section 8 concludes the report.

National University of Singapore, School of Computing, Technical Report # TRA1/12, Jan 2012

2 Related Work

In this section we look at a few of the related sequential and parallel
algorithms for convex hull. We also briefly discuss the star splaying
algorithm [Shewchuk 2005] in R3 which we adapt to the GPU for
our algorithm as explained later.

2.1 Convex Hull Algorithms for the CPU

The incremental insertion algorithm [Clarkson and Shor 1988] con-
structs the convex hull by inserting points incrementally using the
point location technique. QuickHull [Barber et al. 1996] is a vari-
ant of such approach. Another technique is divide-and-conquer,
which is used in the algorithm of Preparata and Hong [1977]. Both
the incremental insertion and the divide-and-conquer approaches
have a time complexity of O(n logn). In 2D and 3D, the opti-
mal output-sensitive convex hull algorithm has a time complexity of
Θ(n log h) [Chan 1996] where h is the number of extreme vertices.
There is no known efficient implementation of this algorithm. Em-
pirically, QuickHull is found to have the same output-sensitive time
complexity. Because of the good time complexity and low over-
head in practice, QuickHull has been a popular approach adopted
by many applications over the years.

Parallel algorithms for computational geometry in general and con-
vex hull in particular have been extensively studied in the last few
decades. For example, Miller and Stout [1988] and Amato and
Preparata [1993] describe O(logn) parallel algorithms for n points
using O(n) processors. These algorithms are only of theoretical in-
terest and not yet of practical value as there are no known efficient
implementations of them. One of the reasons is that these algo-
rithms are complex, making them hard to scale on a fine-grained
data-parallel massively-multithreaded architecture like the GPU.
For the current multi-core systems with a small number of indepen-
dent processors, algorithms designed by Dehne et al. [1995] and
Gupta and Sen [2003] may be applicable, but these algorithms have
no known implementations that demonstrate their uses.

2.2 Algorithms for the GPU

There has been a growing interest in using the GPU for computa-
tional geometry in recent years. Hoff et al. [1999] and Fischer and
Gotsman [2006] compute the digital VD by adapting the traditional
graphics pipeline of the GPU. An exact algorithm for such a com-
putation is recently proposed by Cao et al. [2010b], using the more
flexible computation model available on newer generation GPUs.
Rong et al. [2008] make the first serious attempt to compute the 2D
Delaunay triangulation using the GPU. Our approach of using the
digital VD as an approximation to the continuous result resembles
their approach. However, their work requires that the dualization
produces a valid mesh, free from topological and geometrical prob-
lems, and a very subtle proof [Cao et al. 2010a] is needed for their
2D problem. Such a neat result is not known for 3D. Also, using
bilateral flipping to transform an arbitrary polyhedron into its con-
vex hull is not always possible [Joe 1989]. In another development,
Jurkiewicz and Danilewski [2011] make the first successful imple-
mentation of the QuickHull algorithm on the GPU, but only for the
simple 2D case.

2.3 Star Splaying in R3

Star splaying [Shewchuk 2005] is a very efficient algorithm to re-
pair convex hulls. Here we briefly outline the algorithm in R3

which we adapt to the GPU.

In R3, each vertex s of a polyhedron has a set of edges and triangles
incident to it, referred to as the star of s. The set of edges opposite

t

(a)

s

t

(b)

Figure 2: Star splaying algorithm. (a) A star with its link (in bold).
(b) Beneath-beyond insertion.

to s in the triangles of its star form a ring, referred to as the link
of s (Figure 2(a)). By extending the star of s to infinity, we get
a cone. If the polyhedron is convex, then the cone of each of its
vertices is convex too, and it encloses the rest of the vertices of the
polyhedron.

The stars of the vertices of a polyhedron are consistent with each
other. That is, if the star of s contains the triangle stu, then the
stars of t and u also contain this triangle. Conversely, a set of con-
sistent stars uniquely define a surface triangulation. However, an
arbitrary collection of stars not coming from a polyhedron may not
be consistent with each other.

The star splaying algorithm is based on the idea that if the cones
of all the points are made convex and their corresponding stars are
made consistent, then these stars uniquely define the convex hull of
the point set. Using the set of stars with their cones being convex,
the algorithm repeatedly checks for each triangle stu in the star of
s whether this triangle exists in the star of t (and u). If stu does not
exist in the star of t, some points (s, u or both) will be inserted into
t’s star in an attempt to splay it to include the triangle. The insertion
of a point into the star of t is done using the traditional beneath-
beyond method [Edelsbrunner 1987] to guarantee that the cone of t
is still convex (Figure 2(b)). If these insertions fail, implying that
the triangle is enclosed by the cone of t, then some points from
the link of t will be inserted into the star of s to splay it further to
remove stu. In case a star of a point splays too wide that it cannot
be contained in a half space, then that point is guaranteed not to be
an extreme vertex. Such a star is called a dead star.

A nice feature of the star splaying algorithm is that creating stars
having convex cones and enforcing their consistencies can both be
done independently for each star. This is well suited for the paral-
lel computation model of the GPU since stars can be checked and
modified in stages without requiring any locking or concurrency
control. We adapt star splaying to efficiently transform our approx-
imation of the convex hull of S into C(S). In the following section,
we describe our convex hull algorithm in more detail.

3 Algorithm Overview

The main idea of our algorithm is to utilize the relationship be-
tween the 3D Voronoi diagram and the convex hull computed from
the same point set S. In particular, only the Voronoi cells of the
extreme vertices of S are unbounded, i.e., extend to infinity. Thus,
one can first identify these Voronoi cells to derive the extreme ver-
tices of S. Traditionally, this observation is not computationally
useful as the Voronoi diagram V(S) structure is harder to manage
than the convex hull, and is just as expensive to compute. But, on
the GPU the Parallel Banding Algorithm (PBA) [Cao et al. 2010b]
can compute the digital VD very efficiently and it is a good starting
point to derive an approximation of C(S).

2

National University of Singapore, School of Computing, Technical Report # TRA1/12, Jan 2012

(a) (b)

Figure 3: (a) Digital restricted VD. (b) Stars constructed from the
digital restricted VD; they might not be consistent.

In our algorithm, we enclose the input point set S in a large enough
box B which contains integer grid points, each corresponding to one
unit cell of B. We use the boundary (six faces) of B to capture the
unbounded Voronoi cells of S. Theoretically, if B is large enough,
dualizing V(S) restricted to the faces of B, i.e. the restricted VD
(Figure 3(a)), gives us C(S). However, since the VD we compute is
in digital space, and due to the finite size of B, we can only obtain
an approximation of the convex hull. We apply the star splaying al-
gorithm [Shewchuk 2005] to transform the approximation into the
solution. Our algorithm can be split into five steps:

Step 1: Voronoi Construction. Compute the 3D digital VD of S
restricted to the boundary of B. Let S′ be the set of points
whose Voronoi regions appear on it.

Step 2: Star Creation. We first dualize the restricted VD to obtain
for each point s in S′ a set of neighbors, called working set of
s. Then we use that to construct a convex cone, represented as
a star, for the point.

Step 3: Hull Approximation. Apply the star splaying algorithm
to obtain the convex hull C(S′).

Step 4: Point Addition. Collect points of S that lie outside C(S′)
and for each of them construct its star using its nearby vertices
of C(S′).

Step 5: Hull Completion. Perform star splaying again on our ap-
proximation to transform it into C(S).

3.1 Step 1: Voronoi Construction

Our aim is to approximate V(S) restricted to the six faces of B. We
first translate and then scale the input points such that their bound-
ing box fits inside a 3D grid B consisting of grid cells. Then, we
compute the digital VD of S intersecting each side of the bound-
ary of B on the GPU. For each side, we project the points onto it,
recording one nearest point among those that fall onto the same 2D
grid cell. The two coordinates of a point are shifted to the center of
the nearest 2D grid cell, while the third coordinate (the distance to
the side we are projecting on) is unmodified. We then apply PBA
to compute the digital VD.

3.2 Step 2: Star Creation

We dualize the restricted VD obtained in the previous step to get
a set of triangles. The corners of grid cells are grid vertices, each
of which is incident to a maximum of 4 different Voronoi regions.
Each grid vertex incident to 3 or 4 different Voronoi regions is du-
alized into one or two non-intersecting triangles respectively.

Ideally, dualizing the restricted VD of S on a closed box results
in a 3D polyhedron, not necessarily convex, approximating C(S′).

However, in the digital restricted VD, a Voronoi cell can be, for
example, disconnected, resulting in the dualized polyhedron having
holes or duplicated triangles. Instead of constructing a polyhedron,
we only record the information on the adjacencies of the Voronoi
cells. For each triangle abc thus obtained, we add b and c to the
working set of a, and similarly for b and c.

For each s in S′ in parallel, we create its star (in the continu-
ous space) from its working set such that its cone is convex (Fig-
ure 3(b)). Each GPU thread handling a point s first creates an initial
star from 3 points in the working set, and then incrementally inserts
the rest using the beneath-beyond algorithm.

3.3 Step 3: Hull Approximation

Star splaying is an iterative approach. Stars are repeatedly checked
for inconsistency, and insertions are performed using the beneath-
beyond algorithm to splay the stars when needed.

To perform the star splaying algorithm in parallel while achieving
regularized work for different GPU threads, we carry out the con-
sistency checking and the insertions of points in two separate steps,
alternately performed until all the stars are consistent. For ease
of implementation, the consistency checking is performed on each
edge of each star in parallel, rather than on triangles. An edge is
consistent if the stars of its two endpoints have the same two tri-
angles incident to this edge; otherwise, it is inconsistent. Any in-
consistency can generate up to 4 insertions. The insertion step is
done by first sorting the set of insertions by the indices of the stars
they are destined for, and then each parallel thread can perform the
insertions into a star independent of others.

It is possible to use a CPU sequential algorithm to compute C(S′),
since the set S′ derived from the digital restricted VD is quite small.
However, since the stars constructed from the previous step are
already very close to C(S′), a parallel implementation of the star
splaying algorithm on the GPU gives much better performance.

3.4 Step 4: Point Addition

Due to C(S′) being an approximation, there might be extreme ver-
tices of S that are missing in it. We use C(S′) to check the points in
S and remove those that are inside the hull. The rest of the points
can potentially be extreme vertices. This is the reason why we per-
form star splaying in Step 3. We first perform the checking in dig-
ital space by rendering the triangles of C(S′) with the view direc-
tion orthogonal to each side of B in turn. Then, we use a depth
test to eliminate points that clearly lie inside C(S′). Each GPU
thread handling a point s in S projects s onto each side of B and
compares its depth value ds with the value d on the depth map on
that side (with depth value increasing in the viewing direction). If
ds − d ≤ τ where τ denotes the threshold, then s is potentially an
extreme vertex. The depth test is done in digital space, so a conser-
vative threshold (which is equal to 1 pixel width) is used to safely
remove non-extreme vertices; see Section 5.1.

To further eliminate non-extreme vertices, we perform another
round of checking in continuous space. For each point s that passes
the depth test, we also record a triangle A that covers its projection
in one of the viewing directions. Notice that A is close to s. Pick an
arbitrary point r on C(S′). The point s is either beyond one of the
triangles in the star of r, or the ray r⃗s intersects C(S′) at a triangle
B. Using a technique similar to point location, starting from A we
can quickly find B, and accurately determine whether s is inside or
outside C(S′). If s is outside, we use B to form a star for s, oth-
erwise it is eliminated. All this computation can be done on each
point independently in parallel. The new stars together with C(S′)
form an approximation of C(S).

3

National University of Singapore, School of Computing, Technical Report # TRA1/12, Jan 2012

3.5 Step 5: Hull Completion

Our approximation now contains all possible extreme vertices of S
and a few more. By performing star splaying again, as detailed in
Step 3, we transform our approximation into the convex hull of S.

4 Implementation Details

We implement our algorithm using the CUDA programming model
and OpenGL on Nvidia GPUs. Due to the nature of the GPU, it
is more efficient to allocate memory in large chunks rather than
dynamically allocate many small blocks. For our implementation,
we use two lists to store the description of the stars and their edges,
called the star list and the edge list, as shown in Figure 4. Each star
has a contiguous chunk of memory whose size is enough to store all
of its current edges plus a certain amount of free space. Each star
records the coordinates of its point, its status (whether it is dead or
not), the number of edges, the size of memory allocated for it, and
the starting location of its storage in the global edge list. Each edge
of a star records the index of the other endpoint, and a flag used
when checking for consistency. The edge list of a star represents its
link vertices in counter-clockwise order.

The difficulty here is that the edge list has a dynamic size as stars
are shrinking as well as expanding during the star splaying process.
Any time a star uses up its chunk of allocated storage, we have to
expand the edge list. When such an expansion occurs we also use
the opportunity to shrink or expand the storage of all the stars to
maintain a “healthy” ratio (say 1.2) of available storage for each.
This helps to reduce the number of times we need to reallocate the
edge list. Also, since we start star splaying on a good approximation
of the convex hull, the stars typically do not grow drastically.

Stars

Edges

Figure 4: Data structures for stars and edges. × indicates a dead
star.

4.1 Step 1: Voronoi Construction

Before applying the PBA, we need to project the points on the six
sides of the box B. This operation entails a lot of random atomic
memory access to the global memory that is highly inefficient on
the GPU. Instead, we perform all the projections on the GPU shared
memory to speed up this step.

B is partitioned into bricks, each of size k × k × k. For each point
in S, we find the brick that encloses it using a CUDA kernel. We
accumulate the points that belong to the same brick into a contigu-
ous chunk using CUDA radix sort. We identify the starting offset
of each such chunk in the sorted list using another CUDA kernel.

We use six textures to store the projections on the six sides of B.
For each k× k tile of a texture, we use a block of CUDA threads to
process the points enclosed in the bricks that project onto this tile.
When many points project onto a single pixel, we store the point
closest to the tile by using the atomic minimum operation. This is
applied on a shared memory array of the block and thus is highly
efficient compared to using it on global memory. k can typically
be chosen to be 32, so that the k × k tile can fit in shared memory.
Though we use floating point for the point-to-tile distance, we can
still use the CUDA integer atomic minimum operation. This is be-
cause positive floating point numbers can be compared as integers,

with the same binary representation, without affecting their order.
The result of these projections is coherently written out to global
memory to apply PBA and obtain the restricted VD.

4.2 Step 2: Star Creation

We construct the working set for each point by scanning the result-
ing VD textures constructed in the previous step. For each triangle
identified, we generate 6 pairs, each pair (a, b) indicating that b is in
the working set of a. First, we let one CUDA kernel count the num-
ber of pairs generated by each grid corner. Next, we pre-allocate an
array to store the pairs, and use CUDA parallel prefix sum primitive
to compute for each corner the offset in the array to store its pairs.
After that, we call another kernel to scan the textures again, gener-
ating the working set pairs. Lastly, we sort the list of pairs using
CUDA radix sort, remove duplicates and identify the working set
for each point as a contiguous chunk of pairs.

Based on the working sets thus constructed, we allocate the storage
for the star list and the edge list. A CUDA kernel is used to con-
struct an initial star consisting of 3 link points for every point in S′.
Each CUDA thread constructing an initial star takes 3 points from
its working set, checks the 3D orientation and stores these points in
the edge list of that star in counter-clockwise order.

After that, the rest of the working set of each point is inserted into its
star in a single kernel. Each CUDA thread processes the working set
of a point, independent of other points. For each insertion of t into
s, we go through the star of s, identifying a (continuous) series of
beneath triangles, removing their corresponding edges and inserting
t into the edge list of s accordingly.

The beneath-beyond insertion relies heavily on the 3D orientation
predicate. It is important that the predicate is computed exactly
and co-planar cases are handled correctly. More importantly, the
predicate should give the same result when checked from differ-
ent stars for the star splaying algorithm to converge. In order to
achieve this, all our predicates are performed with the Simulation
of Simplicity (SoS) technique [Edelsbrunner and Mücke 1990] and
exact arithmetic [Shewchuk 1997]. The flexibility of the CUDA
programming model makes such complex computation possible on
the GPU.

4.3 Step 3: Hull Approximation

Algorithm 1 Star splaying on the GPU

1: flag all edges to be checked for consistency
2: repeat
3: collect the edges that are flagged
4: allocate space for possible insertions
5: check the flagged edges and generate insertions
6: sort and compact the list of insertions
7: if a star needs more space then
8: expand the edge list
9: perform the insertions to splay stars

10: flag edges that need to be checked in the next iteration
11: until there are no more flagged edges

The pseudocode of the star splaying implementation on GPU is out-
lined in Algorithm 1. In Line 3, we do a parallel stream compaction
on the edge flags to obtain the list of edges to be checked for con-
sistency. Each inconsistent edge can potentially lead to up to four
insertions into different stars (see Section 2.3). We pre-allocate
storage for these possible insertions in Line 4. In Line 5, we use
a CUDA kernel where each thread processes one edge.

4

National University of Singapore, School of Computing, Technical Report # TRA1/12, Jan 2012

The insertions are sorted and compacted in Line 6 and duplicates
are removed. Each star then checks if it has enough free space in its
edge list and the edge list is expanded if needed (Line 7 and Line 8).
This expansion is done by computing the required space for each
star using a kernel, allocating a new edge list, and then copying the
edges over. The insertions (Line 9) are performed similar to those
in Step 2. In Line 10, we flag all newly created edges. Also, during
the insertions, if an edge ab in the star of a is deleted, then the edge
ba in the star of b, if any, needs to be flagged too.

4.4 Step 4: Point Addition

The first round of checking in this step is carried out in OpenGL,
which works seamlessly with other steps done in CUDA. As we
keep edges rather than triangles, we first use a CUDA kernel to
generate a list of triangles in C(S′) from the stars. To avoid gen-
erating duplicate triangles, each triangle abc is created only by the
star of a where a has the smallest index among the three. Similar to
other steps, we first count, then use parallel prefix sum to compute
the offset before actually generating the triangle list.

When a triangle is rendered, we record in the color buffer the index
of one of the three vertices so that we can use it as the starting point
for our point location in the second round of checking. After the
rendering, the depth buffer is processed by a CUDA kernel. Each
thread processing a point in S − S′ checks the depth value to see
whether the point can potentially be outside or not. If outside, this
point becomes a candidate for the next round of checking.

In the second round of checking, we use one CUDA thread to check
one candidate found in the previous round. Let the candidate be s
and the corresponding point recorded at the projection of s in the
color buffer be c. Also, let r be an arbitrary point in S′ where r ̸= c.
In order to determine the triangle B in C(S′) that is intersected by
the ray r⃗s, we start walking from c. Each vertex t on the link of
c together with the line rc form a plane, and we are interested in
the half-plane defined by rc that contains t. The collection of these
half-planes partitions the space into several unbounded subspaces
around rc; one of such subspaces contains s, which can be iden-
tified using 3D orientation checks. This subspace tells us which
vertex on the link of c gets us closer to s, until we reach B. After
that, using one more 3D orientation check, we can determine accu-
rately if s is outside C(S′), in which case the three vertices of B
form the initial star of s.

5 Digital Approximation Issues

In this section, we discuss some issues of the use of digital space
computation to approximate that in the continuous space.

5.1 Digital Depth Test

In Step 4, we use the six sides of the boundary of B as the viewing
planes. We compare the depth ds of each point s with the mini-
mum depth value of C(S′) at the corresponding projection of s to
quickly exclude points that are inside C(S′). However, since the
depth buffer we obtain when rendering C(S′) is of finite resolution,
the depth value d of the projection of s is actually the depth value of
the center of the cell containing this projection. Depending on the
triangle covering that projection, (ds − d) can be arbitrarily large;
see Figure 5. The following claim shows that as long as we keep
every point s that has (ds − d) < 1 in one of the projections, we
do not miss any point outside C(S′). This tight bound allows us to
throw away most of the points that are inside C(S′).

Claim 1. Let s ∈ S − S′ be a point outside C(S′). In (at least) one
of the six renderings of C(S′) orthogonal to a side of B, we have

x

T

s

inside

outside

1.0 ds − d

Figure 5: The digital depth test of a point s against a triangle T on
the boundary of C(S′) when s is outside C(S′).

(ds − d) ≤ τ where τ = 1 pixel width.

Proof. The point s is inside a unit cell of B whose center is the
grid point (x̄, ȳ, z̄). The coordinate of s is (x̄+ δx, ȳ+ δy, z̄+ δz)
where δx, δy, δz ∈ [−0.5, 0.5]. Let T be the triangle covering the
cells containing the projections of s in different viewing directions,
and the plane equation of T be ax + by + cz + K = 0. Without
loss of generality we assume that a ≥ b ≥ c.

Since T appears in the depth buffer, and C(S′) is convex, T must
be visible from three different viewing directions. This forms a
coordinate system in which the plane equation of T has a, b, c ≥ 0.
In the viewing direction along the positive x-axis, ds = x̄+ δx and
d is the depth of T at (ȳ, z̄). As s is outside C(S′) and thus is in
front of the plane of T , a(x̄+δx)+b(ȳ+δy)+c(z̄+δz)+K ≤ 0,
and we thus have:

ds − d = (x̄ + δx) −
(
−

bȳ + cz̄ + K

a

)
=

a(x̄ + δx) + b(ȳ + δy) + c(z̄ + δz) + K

a
−

bδy

a
−

cδz

a

≤
b

2a
+

c

2a
≤ 1

It is possible that the depth values of s used in checking in the six
viewing directions belong to different triangles. Suppose that the
depth value of triangle T is used in one of the directions, then from
the above argument, there is one direction in which the depth d of
the plane containing T fulfills the inequality (ds−d) ≤ 1. Suppose
T ′ is the other triangle that covers s in that direction, then due to
the convexity of C(S′), the depth d′ of T ′ must be no smaller than
d, and thus (ds − d′) ≤ 1, as required. �

5.2 Convex Hull Approximation

Due to the nature of digital space and that of our approach,
there are three issues that can affect the performance of our al-
gorithm: slicing problem, under-approximation problem and over-
approximation problem; see Figure 6.

Slicing problem. This problem is the result of using a bounded box
B to find the Voronoi cells that are unbounded. As some of the
bounded cells can extend beyond B, they are captured although they
do not correspond to extreme vertices. Figure 6(a) shows a 2D
example where among the five cells being captured, only those of
the round white points are unbounded. To reduce the number of
wrongly captured Voronoi cells, we scale the point set to a slightly
smaller volume inside B when performing Step 1.

Under-approximation problem. When we have multiple points
projected to the same pixel, we can only record one point, and thus
there are potentially many more points outside C(S′). See Fig-
ure 6(b) for a 2D illustration where the round black points are kept,
the solid line denotes part of C(S′) and the dashed line denotes part
of C(S). The round white points are missing points, many of which

5

National University of Singapore, School of Computing, Technical Report # TRA1/12, Jan 2012

Boundary

(a) Slicing

(b) Under-approximation

(c) Over-approximation

Figure 6: Three problems associated with the computation in digi-
tal space.

are outside C(S′). By using a very efficient depth test in Step 4
of our implementation and accurate location of a nearby triangle
for every point outside C(S′), we are able to construct a very good
star for that point. This reduces the amount of splaying needed in
Step 5.

Over-approximation problem. This problem is caused by the
shifting of points in Step 1. In certain cases, for example when
points are distributed near the surface of a cube axis-aligned with
B, many points that are not extreme vertices are shifted outside and
are legitimately captured in Step 1. See Figure 6(c) for a 2D illus-
tration, where after Step 1 all the round black points, after shifted to
the square black grid points, are captured. In our implementation,
for each side of B we only shift 2 coordinates of the points while
keeping the third one untouched. This produces a much better ap-
proximation of the restricted VD and thus reduces the effect of this
problem.

6 Experimental Results

Our algorithm is implemented using the CUDA programming
model by Nvidia, and can easily be ported to OpenCL. All the ex-
periments are conducted on a PC with an Intel i7 2600K 3.4GHz
CPU, 16GB of DDR3 RAM and an Nvidia GTX 580 Fermi graph-
ics card with 3GB of video memory, unless otherwise stated. Vi-
sual Studio 2008 and CUDA 4.0 Toolkit are used to compile all
the programs, with all optimizations enabled. We compare the per-
formance of our implementation, called gHull, with the two fastest
sequential implementations of the Quickhull algorithm: Qhull and
CGAL. Qhull handles roundoff errors from floating point arithmetic
by generating a convex hull with “thick” facets: any exact convex
hull must lie between the inner and outer plane of the output facets.
On the other hand, CGAL uses exact arithmetic, which is similar
to our implementation. In our experiment, we found that CGAL
always runs slower than Qhull due to its use of exact arithmetic.

All the results below of gHull are based on the same set of parame-
ters: grid size 10242, while point set is scaled to 80% of the volume
of B. The rendering buffer in Step 4 is of size 5122. Using bigger
grid size gives better approximation at the cost of slower VD com-
putation, so it gives little running time improvement. A larger buffer
for the depth test is also not needed, since it incurs extra rendering
cost.

Representative Data. We generate points randomly with coordi-
nates between [0.0, 1.0]. Points are distributed uniformly in four
distributions: a cube, a ball of radius 0.5, a box with thickness of
0.01, and a sphere with thickness of 0.01. The cube distribution has
very few points on the convex hull, while many points inside can
easily be removed by the Quickhull algorithm. The ball distribution
is similar, but with a bit more points on the convex hull. The box
distribution also has very few extreme vertices, but points are dis-
tributed close to the convex hull, so it is harder to eliminate them.
The sphere is the extreme case where many points are on the con-

Figure 7: Speedup of gHull over Qhull and CGAL.

vex hull, while the rest of them are also close to it. These synthetic
test cases are highly representative for the convex hull problem.

The speedup of gHull are presented in Figure 7. In general, gHull
is 2x to 10x faster than Qhull, and is 2x to 40x faster than CGAL
for the first three distributions. Notably, for the sphere distribution
where not only are there many extreme vertices, there are also many
points close to the convex hull, gHull is up to 90x faster than CGAL
and up to 30x faster than Qhull, even with all the computation be-
ing exact. This is mainly because our digital restricted VD gives a
very good approximation, which our star splaying implementation
can quickly transform to a convex hull, and Step 4 of our algorithm
is also very fast in eliminating non-extreme vertices. As an exam-
ple, for 107 points in the sphere distribution, Step 2 returns around
54, 000 points, of which Step 3 keeps 32, 000. Step 4 then adds
57, 000 points, and the final convex hull after Step 5 has 55, 000
points. These are very small numbers compared to the number of
input points. Similar performance can be observed for other point
distributions, as Figure 8 shows similar running time of gHull for
the same number of points.

Sensitivity Analysis. The use of the digital approximation is af-
fected by how close the points are to each other and to the convex
hull. We investigate this in Figure 9(a). Here we show the running
time and speedup of gHull on the sphere distribution with thickness
varying from 0.5 (a ball) to 0.0001. The running time increases as
the sphere gets thinner, especially at thickness 0.0001 which is only
0.1 pixel width given that we use a 10242 grid size. The speedup
over the CPU implementations initially increases as the Quickhull
algorithm becomes less effective in eliminating non-extreme ver-
tices, then decreases but is still 10x faster.

Process Analysis. Figure 9(b) shows the running time of each step
of our algorithm for 107 points. As expected, the behavior differs
on different distributions. While the running time of Step 1 and
Step 4 remains the same since it is not affected by how the points
are distributed, the running time of other steps varies significantly.

Figure 8: Running time of gHull on different test cases.

6

National University of Singapore, School of Computing, Technical Report # TRA1/12, Jan 2012

(a) (b) (c)

Figure 9: Running time of gHull on (a) spheres of different thickness, (b) different steps and (c) GPUs with different number of cores.

Step 3 takes more time on the box distribution due to the over-
approximation problem, while Step 5 takes more time on the sphere
distribution due to the under-approximation problem. Step 2 only
takes a small portion of running time for all distributions.

Scalability. Since our algorithm is designed for regularized com-
putation on localized data, it is expected that it scales well with the
number of cores on the GPU. This is confirmed in Figure 9(c). Here
we run gHull on 107 points on different graphics cards: a GTS 450
with 192 cores, a GTX 460 with 336 cores and a GTX 580 with
512 cores. Clearly our implementation scales well with the number
of cores, achieving close to 3x speedup when the number of cores
increases by 3x, in all the different distributions. When we nor-
malize the running time on different cards by multiplying it with
the number of cores and their clock-speed (1.7 GHz, 1.4 GHz and
1.6 GHz respectively), we get roughly the same results, with newer
generation GPUs being slightly faster than the older ones.

Popular 3D Models. See Figure 1 and Table 1. We use models
of over a million points from the Stanford 3D scanning repository.
Points of these models are densely distributed on the surface, while
their convex hulls have very few points (only around 1,000). Nev-
ertheless, gHull still manages to out-perform Qhull 2x to 6x and
CGAL by 5x to 15x.

Model # Points Running time (ms)
(millions) Qhull CGAL gHull

Asian dragon 3.6 540 1181 150
Thai statue 5.0 692 1538 168

Lucy 13.9 1884 4488 266

Table 1: Running time on different 3D models.

Limitation. While allowing us to perform most processing in paral-
lel with regularized work and localized data, one limitation of using
the digital space to approximate the computation in the continuous
space is its uniformity. It is possible to design a test case where
points are badly distributed (e.g. points arranged on a thin line con-
voluted in the space), resulting in a bad digital approximation, and
thus lower overall performance. Such a case, however, is not com-
mon in practice.

7 Delaunay Triangulation in R3

Given a set S of input points in R3, its Delaunay triangulation (DT)
T (S) is a triangulation of S such that the circumsphere of each
tetrahedron contains no other point of S. Figure 10(a) is an example
of the 3D DT. The DT in R3 can be computed by lifting the points
to R4 on a parabolic map [Edelsbrunner and Seidel 1985], and then
computing the lower envelope of their convex hull.

Using an approach similar to our convex hull algorithm, the 3D DT
can be constructed using the GPU in three steps: compute a 3D

digital VD and dualize it to get a digital approximation of the DT;
augment the approximation with the rest of the points that we miss
in the digital space; and finally use star splaying to transform the
approximation into the final solution.

The dualization of the 3D digital VD is not as straightforward as in
the 3D convex hull, since a 3D grid vertex can be incident to up to
8 Voronoi regions. Instead we use the perturbed grid interpretation
of Bendich et al. [2010] to perform the dualization. With such a
perturbation (Figure 10(b) and 10(c)), only four regions can meet
at a perturbed grid vertex. The perturbation is only a guide for the
dualization process, needing no extra computation.

Unlike the 3D convex hull problem, here every missing point in the
digital approximation needs to be added back. For every point s′

that appears in the digital VD, we create a missing set Ms′ consist-
ing of the missing points that are mapped to the same grid point as
s′. Then, the working set of a missing point in Ms′ is set to be the
working set of s′ plus all other points in Ms′ .

A major complication of the 4D convex hull computation is the
exceedingly complex computation involved in the exact 4D orien-
tation predicate with SoS. To regularize the work of CUDA threads
in kernels that involve such computation, each of these kernels are
separated into two, one to perform a fast check, and only those
checks that cannot be decided need to go through the second kernel
where the exact SoS predicates are performed. This means that the
insertions into a star can no longer be done by one thread in a sin-
gle kernel. Instead the insertions are performed in several rounds,
in each of which only one point can be inserted into a star.

Our implementation of the 3D DT computation on the GPU is very
robust, and can handle test data of millions of points. When the
points are uniformly randomly distributed, our program outper-
forms CGAL, the fastest 3D DT implementation according to our
experiments, by 2x to 3x. We are working on improving our imple-
mentation to achieve further speedup.

(a) (b) (c)

Figure 10: (a) A cut away 3D DT. (b) A grid of 8 perturbed cells.
(c) A perturbed cell marked with its 24 grid vertices.

7

National University of Singapore, School of Computing, Technical Report # TRA1/12, Jan 2012

8 Concluding Remarks

This report introduces an algorithm to compute the convex hull in
3D using the GPU. By first computing an approximation of the so-
lution, our algorithm converts the given problem into one that is
easier to process concurrently using a massive number of threads
performing regularized work on localized data. With a careful de-
sign, our implementation is efficient yet remains exact, robust and
scalable to the number of GPU cores. Our experiment on differ-
ent test cases shows that our implementation on CUDA is an order
of magnitude faster than the best sequential CPU implementations.
This demonstrates yet another non-trivial computational geometry
problem that can be solved efficiently using the GPU.

References

AMATO, N. M., AND PREPARATA, F. P. 1993. An NC parallel 3D
convex hull algorithm. In SoCG ’93: Proc. 9th Symp. Computa-
tional Geometry, ACM, New York, NY, USA, 289–297.

AMUNDSON, N. R., CABOUSSAT, A., HE, J., AND SEINFELD,
J. H. 2005. An optimization problem related to the modeling of
atmospheric organic aerosols. Comptes Rendus Mathematique
340, 10, 765 – 768.

BARBER, C. B., DOBKIN, D. P., AND HUHDANPAA, H. 1996.
The Quickhull algorithm for convex hulls. ACM Trans. Mathe-
matical Software 22, 4, 469–483.

BENDICH, P., EDELSBRUNNER, H., AND KERBER, M. 2010.
Computing robustness and persistence for images. IEEE Trans.
on Visualization and Computer Graphics 16 (November), 1251–
1260.

CAO, T.-T., EDELSBRUNNER, H., AND TAN, T.-S. 2010. Proof
of correctness of the digital Delaunay triangulation algorithm.
http://www.comp.nus.edu.sg/˜tants/delaunay2DDownload_files/notes-30-april-2011.pdf.

CAO, T.-T., TANG, K., MOHAMED, A., AND TAN, T.-S. 2010.
Parallel banding algorithm to compute exact distance transform
with the GPU. In I3D ’10: Proc. ACM Symp. Interactive 3D
Graphics and Games, ACM, New York, NY, USA, 83–90.

CHAN, T. M. 1996. Optimal output-sensitive convex hull algo-
rithms in two and three dimensions. Discrete and Computational
Geometry 16, 361–368.

CLARKSON, K. L., AND SHOR, P. W. 1988. Algorithms for di-
ametral pairs and convex hulls that are optimal, randomized, and
incremental. In SoCG ’88: Proc. 4th Symp. Computational Ge-
ometry, ACM, New York, NY, USA, 12–17.

DEHNE, F., DENG, X., DYMOND, P., FABRI, A., AND
KHOKHAR, A. A. 1995. A randomized parallel 3D convex
hull algorithm for coarse grained multicomputers. In SPAA ’95:
Proc. 7th ACM Symp. Parallel Algorithms and Architectures,
ACM, New York, NY, USA, 27–33.

EDELSBRUNNER, H., AND MÜCKE, E. P. 1990. Simulation of
simplicity: a technique to cope with degenerate cases in geomet-
ric algorithms. ACM Trans. Graphics 9 (January), 66–104.

EDELSBRUNNER, H., AND SEIDEL, R. 1985. Voronoi diagrams
and arrangements. In SoCG ’85: Proc. 1st Symp. Computational
Geometry, ACM, New York, NY, USA, 251–262.

EDELSBRUNNER, H. 1987. Algorithms in combinatorial geometry.
Springer-Verlag, New York, NY, USA.

FISCHER, I., AND GOTSMAN, C. 2006. Fast approximation
of high-order Voronoi diagrams and distance transforms on the
GPU. J. Graphics Tools 11, 4, 39–60.

FUENTES, O., GULATI, R. K., AND ELECTRONICA, O. Y. 2001.
Prediction of stellar atmospheric parameters from spectra, spec-
tral indices and spectral lines using machine learning. In Exper-
imental Astronomy 12:1, 21–31.

GUPTA, N., AND SEN, S. 2003. Faster output-sensitive parallel
algorithms for 3D convex hulls and vector maxima. J. Parallel
and Distributed Computing 63, 4, 488 – 500.

HAHN, H., AND HAN, Y. 2006. Recognition of 3D object using
attributed relation graph of silhouette’s extended convex hull. In
Advances in Visual Computing, vol. 4292 of Lecture Notes in
Computer Science. 126–135.

HOFF, III, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND
CULVER, T. 1999. Fast computation of generalized voronoi
diagrams using graphics hardware. In Proc. ACM SIGGRAPH
’99, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 277–286.

JOE, B. 1989. Three-dimensional triangulations from local trans-
formations. SIAM J. Scientific and Statistical Computing 10
(July), 718–741.

JURKIEWICZ, T., AND DANILEWSKI, P. 2011. Efficient
quicksort and 2D convex hull for CUDA, and MSIMD
as a realistic model of massively parallel computations.
http://www.mpi-inf.mpg.de/˜tojot/papers/chull.pdf.

LIU, R., ZHANG, H., AND BUSBY, J. 2008. Convex hull covering
of polygonal scenes for accurate collision detection in games.
In GI ’08: Proc. Graphics Interface, Canadian Information Pro-
cessing Society, Toronto, Ont., Canada, Canada, 203–210.

MAO, H., AND YANG, Y.-H. 2006. Particle-based immiscible
fluid-fluid collision. In GI ’06: Proc. Graphics Interface, Cana-
dian Information Processing Society, Toronto, Ont., Canada,
Canada, 49–55.

MILLER, R., AND STOUT, Q. 1988. Efficient parallel convex hull
algorithms. IEEE Trans. Computer 37, 12, 1605–1618.

OKADA, K., INABA, M., AND INOUE, H. 2003. Walking navi-
gation system of humanoid robot using stereo vision based floor
recognition and path planning with multi-layered body image. In
IROS ’03 Int’l Conf. Intelligent Robots and Systems, IEEE, 2155
– 2160 vol.3.

PREPARATA, F. P., AND HONG, S. J. 1977. Convex hulls of finite
sets of points in two and three dimensions. Communication of
ACM 20, 2, 87–93.

RONG, G., TAN, T.-S., CAO, T.-T., AND STEPHANUS.
2008. Computing two-dimensional Delaunay triangulation us-
ing graphics hardware. In I3D ’08: Proc. Symp. Interactive 3D
Graphics and Games, ACM, New York, NY, USA, 89–97.

SHEWCHUK, J. R. 1997. Adaptive Precision Floating-Point Arith-
metic and Fast Robust Geometric Predicates. Discrete & Com-
putational Geometry 18, 3 (Oct.), 305–363.

SHEWCHUK, J. R. 2005. Star splaying: An algorithm for repair-
ing Delaunay triangulations and convex hulls. In SoCG ’05:
Proc. 21th Symp. Computational Geometry, ACM, New York,
NY, USA, 237–246.

STRANDBERG, M. 2004. Robot path planning: An object-oriented
approach. PhD Thesis, KTH Royal Institute of Technology.

8

National University of Singapore, School of Computing, Technical Report # TRA1/12, Jan 2012

WANG, Y., LING-YUN, W., ZHANG, J.-H., ZHAN, Z.-W.,
XIANG-SUN, Z., AND LUONAN, C. 2009. Evaluating protein
similarity from coarse structures. IEEE/ACM Trans. Computa-
tional Biology and Bioinformatics 6, 4, 583–593.

9

