
A 3D Convex Hull Algorithm for Graphics Hardware ∗

Mingcen Gao Thanh-Tung Cao Tiow-Seng Tan
National University of Singapore

Zhiyong Huang
Institute for Infocomm Research Singapore

(a) Input point set (b) Voronoi construction (c) Star identification (d) Hull completion

Figure 1: Some phases of the gHull algorithm.

Abstract

This report presents a novel approach, termed gHull, to compute the
convex hull for a given point set in ℜ3 using the graphics processing
units (GPUs). While the 2D problem can easily and efficiently be
solved in the GPU, there is no known obvious, classical parallel
solution that works well in the GPU for the 3D problem. Our novel
parallel approach exploits the relationship between the 3D Voronoi
diagram and the 3D convex hull so as to maximize the parallelism
available in the GPU to compute the answer from the former rather
than directly. Our implementation of the approach using the CUDA
programming model on nVidia GPUs shows that it is robust and
efficient. Our experiment shows that gHull runs up to 10x faster
than the fastest CPU convex hull software, QuickHull, on inputs
with millions of points.

The work first appeared as a poster presentation in the Symposium
on Interactive 3D Graphics and Games (I3D 2011), Marriott Fish-
erman’s Wharf, San Francisco, CA, 18–20 February, 2011.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modelling—Geometric algorithms I.3.1 [Com-
puter Graphics]: Hardware Architecture—Graphics processors

Keywords: GPGPU, computational geometry, Voronoi diagram,
Star splaying

1 Introduction

For a set S of points in 3D, the convex hull C(S) of S is the small-
est convex set that encloses all points of S. Our problem here is to
compute for a given set S its convex hull represented as a triangu-
lar mesh, with vertices that are points of S, bounding the convex
hull. Each point of S on the boundary of C(S) is called an extreme
vertex. Convex hull is a useful geometric structure in various areas
of research and applications. In scientific visualization and video
game, convex hull can be a good form of bounding volume to be
used in checking for intersection or collision between objects [Liu
et al. 2008; Mao and Yang 2006]. In robotics, convex hull is used
to approximate robots and obstacles for the purpose of path plan-
ning [Okada et al. 2003; Strandberg 2004]. In astronomy, convex

∗{mingcen | caothanh | tants}@comp.nus.edu.sg; zyhuang@i2r.a-star.edu.sg

hull is a basic structure used to analyze the characteristic of the at-
mosphere [Fuentes et al. 2001; Amundson et al. 2005]. In general,
convex hull is also a useful tool in biology and genetics [Wang
et al. 2009] and visual pattern matching [Hahn and Han 2006].

In the past few decades, many CPU-based 3D convex hull al-
gorithms have been developed and implemented. Among them,
QuickHull [Barber et al. 1996] is notably the most efficient and
popular one that is used in practice. Its algorithm is based on the
incremental insertion approach. In 3D, starting from a single tetra-
hedron, or a volume in general, of 4 extreme vertices, it recursively
adds an input point outside the volume to grow its size, till no more
input points can be added. During the process, input points found
to be within the volume are discarded from the computation. At
each step, the farthest point from the faces of the volume, which
is an extreme vertex, is chosen to be added. This also potentially
maximizes the number of points that can be discarded. The result-
ing volume is the required convex hull. Though simple, similar to
most other incremental insertion algorithms, QuickHull in 3D is not
suitable for implementing on the GPU as it is difficult to maximize
the parallelism when “growing” the volume due to having many de-
pendencies among the different parts of the growing process. As a
side note, the QuickHull in 2D can easily be implemented on the
GPU as the mentioned dependencies is minimal in this case.

Over the years, there are also many parallel convex hull algo-
rithms designed; for examples [Miller and Stout 1988; Amato and
Preparata 1993]. Those are mainly theoretical work with no prac-
tical implementation, and they do not seem to map well to the cur-
rently popular GPU architecture that supports tens of thousands
of computational threads. This report proposes a novel approach,
termed gHull algorithm, using the GPU to compute C(S) for a
given S. Our parallel approach exploits the relationship between
3D Voronoi diagram and 3D convex hull so as to maximize the par-
allelism that can be utilized from the GPU. In particular, instead
of computing C(S) directly, we efficiently compute in the GPU the
six slices of the 3D Voronoi diagram of S when points of S are
enclosed within a box; see Figure 1(b). Next, we dualise, again in
parallel, these six 3D Voronoi diagram slices to obtain an approx-
imation of C(S); see Figure 1(c). Eventually, we can efficiently
transform the approximation to C(S) in parallel by adapting the
Star Splaying algorithm [Shewchuk 2005]; see Figure 1(d).

The main contribution of this report is our gHull algorithm to com-

admin
Text Box
National University of Singapore, School of Computing, Technical Report # TRA3/11, March 2011.

National University of Singapore, School of Computing, Technical Report # TRA3/11, March 2011

pute the 3D convex hull using the GPU. Our algorithm is robust
because it uses only the 3D orientation check predicate. Our ex-
periment shows that our implementation of gHull using the CUDA
programming model [NVIDIA 2010] on nVidia GPUs runs up to
10x faster than the popular QuickHull software. The rest of the
report is organized as follows. Section 2 introduces some related
work to our gHull algorithm, which is later described in Section 3.
Section 4 provides some insights into our approach of using the dig-
ital space computation to approximate that in the continuous space.
Some important implementation details are discussed in Section 5.
The effectiveness of our approach is demonstrated in Section 6, and
finally Section 7 concludes the report.

2 Related Work

We feature a few prominent convex hull algorithms in Section 2.1,
and discuss briefly the Star Splaying algorithm that we adapt in our
proposed algorithm in Section 2.2.

2.1 Convex Hull Algorithms

A series of well known algorithms has been designed to compute
the convex hull C(S) for a set S of n points in 3D. The incremental
insertion algorithm [Clarkson and Shor 1988] constructs the con-
vex hull by inserting points one by one with the point location tech-
nique. As mentioned, QuickHull [Barber et al. 1996] is a variant of
the incremental insertion approach, where the outermost point is in-
serted in each round. The algorithm of Preparata and Hong [1977]
constructs the convex hull recursively using the divide-and-conquer
technique. Both the incremental insertion and the divide-and-
conquer approach have the time complexity of O(n logn). In 2D
and 3D, the optimal output-sensitive convex hull algorithm has the
time complexity of Θ(n log h) [Chan 1996] where h is the number
of extreme vertices. Empirically, QuickHull has the same output-
sensitive time complexity. Because of the good time complexity
and low overhead in practice, QuickHull has been a popular ap-
proach adopted by many applications over the years.

Besides the above mentioned sequential algorithms, there exist also
many parallel convex hull algorithms. For example, Miller and
Stout [1988] and Amato and Preparata [1993] describe O(logn)
parallel algorithm for n points using O(n) processors. These algo-
rithms are only of theoretical interest and not yet of practical value
as there are no known efficient implementations of them. One of
the reasons is that these algorithms are complex, making them hard
to scale on a fine-grain data-parallel massively-multithreaded ar-
chitecture likes the GPU. For the current commercial systems of a
small number of processors (multi-core), algorithms designed by
Dehne et al. [1995] and Gupta and Sen [2003] may be applicable,
but these algorithms have no known implementation that demon-
strate their uses.

2.2 Star Splaying Algorithm

As mentioned in the introduction, our algorithm uses an approach of
approximating the convex hull and then repairing it to obtain the re-
quired convex hull. Star Splaying [Shewchuk 2005] is an algorithm
to repair a good approximation of a convex hull in time close to
linear to the number of vertices in practice. For star splaying in 3D,
each input point s maintains a set of neighbours which are incident
to some same edges as s to be its star. Two points neighboring to
each other are consistent if their stars agree in forming two triangles
incident to them. The goal is that given the precondition mentioned
below, if all the stars are convex and all pair of neighbouring points
are consistent, then the set of stars represent the convex hull of the
point set. The Star Splaying algorithm first repairs all the stars to

Figure 2: An illustration in 2D where points having unbounded
Voronoi cells are extreme vertices. They are connected in dotted
lines to form the convex hull.

make them convex, then a splaying process is repeatedly applied
to mend those stars that are not consistent. During the process, an
input point is killed if its star is no longer contained within a half-
space, i.e. it is known not to be an extreme vertex. To ensure the
correctness of the algorithm, a required precondition is that each
point s, except for the lexicographically smallest point (in terms of
the coordinates), must contain within its star at least one point that
lexicographically precedes s.

A nice feature of the Star Splaying algorithm is that making the
stars convex as well as enforcing their consistencies is done inde-
pendently in each star. This is well suited to doing parallel compu-
tation. As such, we adopt the Star Splaying algorithm in our gHull
algorithm to efficiently transform our approximation of the convex
hull of S into C(S).

3 The gHull Algorithm

The main idea of our algorithm is to utilize the relationship of the
Voronoi diagram and the convex hull of the same point set S. In
particular, only the Voronoi cells of the extreme vertices of S are
unbounded (i.e. extended to infinity); see Figure 2. Thus, one can
first identify these Voronoi cells to derive the extreme vertices of
S. Traditionally, this observation is not computationally useful as
the Voronoi diagram V(S) is a harder to manage structure than the
convex hull, and is as expensive to compute. On the other hand,
there are recent development of very efficient GPU algorithms that
compute digital Voronoi diagrams [Cao et al. 2010], VD(S), and
these become the good starting point to derive first an approxima-
tion, then the solution C(S).

In our proposed algorithm, we enclose the input point set S in a
large enough cube Q which contains integer grid points, each cor-
responds to one unit cell of Q. We use the six faces (i = 1, 2, ..., 6)
of the cube Q to capture the unbounded Voronoi cells of S. The-
oretically, if the cube is large enough, dualising the six slices of
the 3D Voronoi diagram V(S) on the faces of the cube Q gives us
C(S). However, since the Voronoi diagram we compute is in the
digital space, and due to the size limitation of Q, we can only ob-
tain an approximation of the convex hull, as illustrated in Figure 1.
The gHull algorithm consists of 5 phases:

Phase 1. Voronoi Construction. Construct the intersection of
VD(S) with each face i of Q, denoted as Vi(S). We use
S′ ⊆ S to denote the set of points with non-empty Voronoi
cells in some sides.

Phase 2. Star Identification. Compute a star for each s ∈ S′

from the neighbourhood information obtained from each
Vi(S).

Phase 3. Hull Approximation. Splay stars of points in S′ to ar-
rive at C(S′).

2

National University of Singapore, School of Computing, Technical Report # TRA3/11, March 2011

Phase 4. Point Addition. To C(S′), add a point s ∈ S − S′ if s is
outside C(S′). An initial star of s is also constructed. We use
S′′ to denote the set of such points.

Phase 5. Hull Completion. Apply star splaying once more to
compute C(S′ ∪ S′′), which is also C(S).

The details of each phase is as follows; see the accompanying video
for an animation of the proposed algorithm.

Phase 1. Voronoi Construction

The aim here is to quickly identify potential extreme vertices
through the relationship of the Voronoi diagram and the convex
hull. This phase computes six slices of the 3D digital Voronoi di-
agram of S intersecting with the boundary of the cube Q. Each
slice is a weighted Voronoi diagram of the projection of S on the
corresponding face. By dualising these slices, we can obtain a good
approximation of C(S). From the Voronoi diagram slices, we can
quickly filter out points in S that are less likely to be extreme ver-
tices (they do not have their Voronoi cells appearing on any slice).

To compute a slice of VD(S), we adopt the Parallel Banding Algo-
rithm (PBA) of Cao et al. [2010]. Points in S are first shifted to the
nearest grid points in Q, and then projected onto the corresponding
side of the cube. We keep only the nearest point in case when mul-
tiple points are projected onto the same pixel. After that, PBA can
efficiently compute the corresponding slice of VD(S).

A few notes are in order. First, before the above computation,
we use parallel reduction to identify the lexicographically small-
est point sℓ ∈ S. This point always overrides, for the purpose of
the projections onto the cube faces, other points of S when they
fall onto the same grid point. This ensures that sℓ appears in our
subsequent phases to guarantee the correctness of our algorithm.
Second, due to the digital nature of our computation, some extreme
vertices do not manage to have their Voronoi cells on any Vi(S).
This is because such a point is projected to a grid point that is oc-
cupied by another point in S, or it is no longer an extreme vertex
after being shifted. All such extreme vertices will be recovered in
Phase 4. Third, those points with Voronoi cells on some side of Q
do not necessarily mean they are extreme vertices, due to the size
limitation of Q as well as the shifting from continuous to digital
space.

Phase 2. Star Identification

The aim here is to quickly derive a rough “structure” of the approx-
imate convex hull from the above digital Voronoi diagram slices
Vi(S). Ideally, dualising the restricted Voronoi diagram of S on a
closed cube results in a 3D polyhedron, not necessarily convex, ap-
proximating the convex hull of S. However, in the digital Voronoi
diagram slices, a Voronoi cell can be, for example, disconnected,
resulting in the dualised polyhedron having holes or duplicated tri-
angles. Instead of constructing a polyhedron, we only construct the
stars of the points (with non-empty Voronoi cells) using the adja-
cencies of the Voronoi cells.

For each Vi(S), we scan for corners (which are shared by 4 pixels)
incident by 3 or more Voronoi cells. Such a corner is termed a
digital Voronoi vertex; see Figure 3. For a digital Voronoi vertex
incident by 3 Voronoi cells of the vertices v1, v2, v3 in clockwise
order (Figure 3(a)), we insert edge v1v2 into the star of v2; v2v3
into the star of v3; and v3v1 into the star of v1. For a digital Voronoi
vertex incident by 4 Voronoi cells of the vertices v1, v2, v3, v4 in
clockwise order (Figure 3(b)), edges v1v2, v4v2 are inserted into
the star of v2; v2v3, v1v3 into the star of v3; v3v4, v2v4 into the star
of v4; and v4v1, v3v1 into the star of v1. On the whole, this phase is

(a) (b)

Figure 3: A corner incident by (a) 3 Voronoi cells or (b) 4 Voronoi
cells is used to derive edges to be inserted into the stars.

also efficiently carried out in parallel where each thread is assigned
to check a corner.

A few notes are in order. First, when inserting an edge to a star, we
use the beneath-beyond method to maintain the convexity of that
star. Second, for the star of each point s, if it contains no point
that lexicographically precedes s, we augment it with sℓ. This is
to ensure the correctness of our algorithm. Third, in Figure 3(a),
we do not need to insert the edge v2v1 into the star of v1, as such
an edge is, most of the time, also seen and inserted from another
digital Voronoi vertex. In certain cases, some edges might not be
inserted, but that does not affect the correctness of the algorithm.

Phase 3. Hull Approximation

The aim is to obtain the first approximation of C(S). This approxi-
mation is the convex hull C(S′) of S′.

To achieve this, we adapt the Star Splaying algorithm of
Shewchuk [2005] to work in the GPU. The adaptation is to do mul-
tiple consistency checking and enforcement of edges in parallel. We
divide the Star Splaying algorithm into two stages: checking stage
and inserting stage, alternately performed until all the stars are con-
sistent (i.e. no more edges to check). In the checking stage, we
gather (using stream compaction) all edges that need to be checked
and assign each to a thread for consistency checking (i.e. the con-
sistency of the stars of points incident to the edge). If an edge fails
the consistency check, we create up to four edges (depending on
the situations as discussed in [Shewchuk 2005]) to be inserted in
the next stage. In the inserting stage, we gather (with sorting) each
set of edges to be inserted into the same star and assign it to a thread
to perform the insertions. If a new edge is inserted into a star, it is
marked for checking in the next checking stage. If an edge ab in the
star of a is removed either because it lies inside the new star of a
after splaying, or because a is killed (i.e. a was confirmed not to be
an extreme vertex), then the edge ba in the star of b, if exists, will
be marked for checking.

We note that the amount of work here depends on how close the
initial stars are to those in C(S′). For our case, as shown in our
experiment, this phase is relatively fast as the first two phases have
arrived at a very good approximation to C(S′). Also, due to the
checking of edges can be independently performed, and the inser-
tion of edges can be concurrently done in different stars, the whole
process works very well on the GPU.

Phase 4. Point Addition

The aim of this phase is to recover extreme vertices of S lost in
Phase 1. Basically, we want to find all the points in S that are
outside C(S′). We utilize the graphics rendering pipeline to achieve
good performance without losing the accuracy and the robustness
of the algorithm.

The idea is to perform the checking in the digital space first to han-
dle most of the trivial cases, before using a more accurate yet costly

3

National University of Singapore, School of Computing, Technical Report # TRA3/11, March 2011

checking in the continuous space. In the first round of checking,
we render the triangle faces of C(S′) with the view direction or-
thogonal to each side of Q in turn. For each rendering, we use the
color and depth buffer to record the index and the depth value, re-
spectively, of the triangle covering each pixel. Then, we project
each point s ∈ S − S′ in the corresponding viewing direction and
compare the depth value ds of s with the depth value d in the depth
buffer at the corresponding position. If ds − d ≤ τ where τ is a
constant threshold (which is equal to 1 pixel width), then s is poten-
tially outside C(S′), and subjects to the second round of checking.

After the first round, most of the points that are clearly inside C(S′)
would have been removed. For each given point s that is potentially
outside, we also record a triangle that covers its projection in one of
the viewing direction. This triangle is close to s. Pick an arbitrary
point r in the boundary of C(S′). The point s would either be below
one of the triangle in the star of r, or the ray r⃗s would intersect
C(S′) at a triangle T . Using a technique similar to point location,
starting from the recorded triangle of s, we can quickly find T , and
accurately determine whether s is inside or outside C(S′). If s is
outside, we include s in S′′ and use T to form the initial star of
s. This second round of checking can be done in parallel for each
point that is potentially outside, using one thread each.

A few notes are in order. First, during the first round of checking,
ds−d > τ in one of the viewing direction does not necessary means
s is inside C(S′). In fact, ds−d can be arbitrarily large yet s is still
outside. However, in Section 4, we prove that if ds − d > τ in all
six viewing directions, then s is guaranteed to be inside C(S′), and
τ = 1 pixel width is indeed the optimal choice. Second, we again
need to augment each newly constructed star s with sℓ if s does not
contain a point that lexicographically precedes s.

Phase 5. Hull Completion

The aim here is to take C(S′) together with the stars of points in S′′

to apply once again the above parallel version of the Star Splaying
algorithm to obtain C(S′ ∪ S′′), which is C(S).

The Correctness of gHull

It is clear from the 5 phases of the algorithm that gHull computes
the convex hull C(S) of the given point set S. Phases 1 to 3 give a
good approximation of the convex hull, while Phase 4 makes sure
that we do not lose any extreme vertices in S (the correctness of
the choice of τ is discussed in the next section). Since we fulfill
the required precondition of the Star Splaying algorithm, Phase 5
successfully constructs the desired convex hull.

4 Digital versus Continuous Space

Our algorithm makes use of the fast computation in the digital space
to approximate most of the computation, before actually transforms
the result to the original continuous space. In this section, we ana-
lyze this approach in terms of both accuracy and efficiency.

4.1 Digital Depth Test

In Phase 4 of the algorithm, we use the six faces of Q as six view-
ing planes. We compare the depth ds of each point s with the min-
imum depth value of C(S′) at the corresponding projection of s to
quickly exclude points that are inside C(S′). However, since the
depth buffer we obtain when rendering C(S′) is of finite resolution,
the depth value d of the projection of s is actually the depth value
of the center of the pixel containing this projection. Depending on
the triangle covering that projection, ds−d can be arbitrarily large.
The following claim shows that using a constant τ = 1 pixel width
in the checking in all the different viewing directions is accurate

Figure 4: The digital depth test of a point s against a triangle T
on the boundary of C(S′) when s is outside C(S′). Recall S′ ⊆ S
denotes the set of points with non-empty Voronoi cells in Phase 1.

and optimal in deciding whether s is inside C(S′), i.e. we do not
miss any point that is actually outside.

Claim 1. Let s ∈ S − S′ be a point outside C(S′). In (at least) one
of the six renderings of C(S′) orthogonal to a side of the cube Q,
we have ds − d ≤ τ where d is the depth value of the center of the
pixel containing the projection of s, ds is the depth of s, and τ = 1
pixel width.

Proof. The point s is inside a unit cell Q ∈ Q whose center is the
grid point (x̄, ȳ, z̄). The coordinate of s is (x̄+ δx, ȳ+ δy, z̄+ δz)
where δx, δy, δz ∈ [−0.5, 0.5]. Let T be the triangle covering the
pixels containing the projections of s in different viewing direc-
tions, and the plane equation of T be ax+ by + cz +K = 0.

Since T appears in the depth buffer, and C(S′) is convex, T must
be visible from three different viewing directions. This forms a
coordinate system in which the plane equation of T has a, b, c ≥ 0.
There exists one viewing direction that a ≥ b ≥ c, and without
loss of generality we assume that this direction is along the positive
x-axis; see Figure 4 for an illustration where the outside region is
below the triangle T and the inside region is above.

In this viewing direction, ds = x̄ + δx and d is the depth of T at
(ȳ, z̄). As s is outside C(S′) and thus is in front of the plane of T ,
a(x̄+ δx) + b(ȳ + δy) + c(z̄ + δz) +K ≤ 0, and we thus have:

ds − d = (x̄ + δx) −
(
−

bȳ + cz̄ + K

a

)
≤

a(x̄ + δx) + b(ȳ + δy) + c(z̄ + δz) + K

a
−

bδy

a
−

cδz

a

≤ −
bδy

a
−

cδz

a

≤
b

2a
+

c

2a

≤ 1

There is a technical issue not covered in the above discussion. That
is when the depth values d used in the checking in the six view-
ing directions belong to different triangles. Suppose that the depth
value of triangle T is used in one of the directions, then from the
above argument, there is one direction in which the depth d of the
plane containing T fulfills the inequality ds−d ≤ 1. Suppose T ′ is
the other triangle that actually covers the projection of s in that di-
rection, then due to the convexity of C(S′), the depth d′ of T ′ must
be no smaller than d, and thus ds − d′ ≤ ds − d ≤ 1, as required.
�
We have two notes here. First, the above threshold of τ = 1.0 is the
best possible as Figure 4 illustrates an extreme case where the depth
difference is 1 pixel width in all three viewing directions. Second,
the above proof and result can be generalized to any dimension D
where the threshold τ is then equal to D−1

2
.

4

National University of Singapore, School of Computing, Technical Report # TRA3/11, March 2011

(a) Slicing problem

(b) Under-approximating problem

(c) Over-approximating problem

Figure 5: Three problems associated to the computation in the dig-
ital space.

4.2 Digital Convex Hull Approximation

Our algorithm first computes an approximation of the digital con-
vex hull of S, where points in S are shifted to the grid points of
Q. Then we transform this into a convex hull of a subset S′ of
S by adapting the Star Splaying algorithm, which is used as an
approximation of the convex hull of S. Due to the nature of the
digital space and of our approach, there are three problems that can
possibly hinder the performance of gHull. They are: slicing prob-
lem, under-approximating problem and over-approximating prob-
lem; see Figure 5.

Slicing problem: This problem is the result of using a finite cube to
find the Voronoi cells that are unbounded. As some of the bounded
Voronoi cells can extend beyond the cube Q, they are captured in
our six Voronoi diagram slices, although they are not corresponding
to extreme vertices; see Figure 5(a). This results in more work
for Phase 2 and Phase 3. To reduce this problem, we can use a
bigger cube Q, while scaling the point set to only a small volume
in the center of Q, effectively pushing the slicing planes away from
the point set. This reduces the number of bounded Voronoi cells
wrongly captured in Phase 1.

Under-approximating problem: This problem occurs when we
have multiple points shifted to the same grid point. Since we can
only record one point per grid point, we potentially miss many
points outside C(S′), causing more work for Phase 5. See Fig-
ure 5(b) for a 2D illustration where the square black points are grid
points, the round black points are kept after the shifting, and the
solid line denotes the computed convex hull after Phase 3. The
round white points are points not mapped in Phase 1, many of which
are outside C(S′). By efficiently locating a nearby visible face for
each point outside C(S′) during Phase 4, we construct a very good
star for that point, thus reducing the splaying needed in Phase 5. As
such, this problem does not severely affect the performance of our
algorithm.

Over-approximating problem: This problem is also caused by us
shifting the points in Phase 1. In certain cases, for example when
points are distributed near the surface of a cube axis-aligned with
Q, many points that are not extreme vertices are shifted outside
and are legitimately captured in Phase 1. See Figure 5(c) for a 2D
illustration, where after Phase 1 all the round black points, after
shifted to the square black grid points, are captured. Many of them

need to be removed during Phase 3. This causes a lot of wasteful
work for Phase 2 and Phase 3. This is a disadvantage of gHull, and
is only slightly resolved by increasing the size of Q.

5 Some Implementation Details

We implement the gHull algorithm using the CUDA programming
model and OpenGL on nVidia GPUs. By the nature of the GPU, it
is better to allocate memory in big chunks rather than dynamically
allocate many small blocks, for efficient manipulation. For our im-
plementation, we use two major lists to store the stars and the edges
(of the stars), as shown in Figure 6. Each star has a continuous
chunk of memory whose size is enough to store all of its current
edges plus a certain amount of free space. Each star records its po-
sition (the coordinates of its point), its status of alive or dead (when
the corresponding point of the star is killed), the number of edges,
the actual size of the chunk of memory allocated for it, and the
starting location of its storage in the global edge list. Each edge of
a star records the index of the star’s corresponding neighbour, and
a flag to be marked true when checking for consistency is needed.
The challenge here is that the edge list has a dynamic size as stars
are shrinking as well as expanding during the star splaying process.
Any time a star uses up its chunk of allocated storage, we have to
expand the edge list. When such occasion happens, we also take
this opportunity to shrink or expand the storage of all the stars to
maintain a “healthy” ratio of available storage for each star. This
helps to reduce the number of times we need to reallocate the edge
list. Also, since we start star splaying on a good approximation of
the convex hull, the stars usually do not grow drastically.

Figure 6: The data structures to keep stars and edges for parallel
star splaying. × means that the corresponding point was filtered
out during Phase 1 or Phase 4.

Phase 1. Voronoi Construction

We need to perform a series of projections of the point set before
applying the Parallel Banding Algorithm to compute the Voronoi
diagram slices. Since a huge amount of random memory access
is inefficient in the GPU, we use a simple bucket sort technique
to speed up the process. For each side of the cube, represented
as a texture, we divide it into grid cells of small size. Using the
GPU radix sort, we can quickly re-arrange the point set such that
points projected onto the same cell are grouped together. The size
of a grid cell is small enough such that we can fit it in the on-chip
shared memory. We let one block of threads to project all the points
of the same grid cell onto a shared memory array first, using the
AtomicMin operation to keep the point with the smallest distance to
the plane when multiple points are projected on the same grid point.
After that, we coherently write out the result to the global memory.

Phase 2. Star Identification

For each point s, we use the beneath-beyond algorithm, inserting its
neighbors one by one to construct its convex star [Shewchuk 2005].
Through scanning the textures, we first create records of the inser-
tions to be done to different stars. Then, we sort the records and
count the number of insertions per star, for the purpose of allocat-
ing memory for the edge list. Finally, we assign one thread to work
on one star, processing all of its insertions independently without
any need to coordinate with other threads.

5

National University of Singapore, School of Computing, Technical Report # TRA3/11, March 2011

Phase 3. Hull Approximation and Phase 5. Hull Completion

We adapt the Star Splaying algorithm to work in parallel by break-
ing it into the checking and the inserting stage. In the checking
stage, we do a parallel compaction on the flags of the edges to ob-
tain the list of edges to be checked for consistency. Each checking
can potentially lead to up to four insertions of edges into different
stars. All these insertions are sorted and compacted, as what we
have done in Phase 2, for the actual insertions into the stars to be
carried out in parallel in the next stage. After this checking stage,
we also need to perform an expansion of the edge list if needed. In
the inserting stage, when performing the actual insertions, an edge
ab in the star of a might be deleted, and the corresponding edge ba
in the star of b, if any, need to be marked for consistency check-
ing. Since the edges of the stars are being modified in parallel, such
marking needs to be recorded to be performed later, when all the
insertions have finished.

In certain cases when some of the stars do not have a good ap-
proximation, many splaying rounds may be required. Thus, once
it reaches the situation where only a small number of stars still re-
quire many rounds of splaying, the computation is moved to the
CPU. Although transferring data between the devices takes time,
it is worthwhile since CPU is more efficient here and only a small
amount of data is transferred.

For the robustness of the computation in which we only need orien-
tation checks, we use Shewchuk’s fast robust predicates [Shewchuk
1997]. To handle degeneracy in the input point set, the simulation
of simplicity technique of Edelsbrunner and Mücke [1990] is em-
ployed.

Phase 4. Point Addition

The first round of checking in this phase is carried out in OpenGL,
which works seamlessly with other phases being done in CUDA.
As we keep stars rather than triangles, we first generate a list of
triangles in C(S′) from the stars. To avoid generating duplicate tri-
angles, each triangle abc is created only by the star of a where a
has the smallest index among the three. We first count the num-
ber of triangles generated by each star, and use parallel prefix to
determine the indices for each set of triangles in the triangle list,
before actually generating the triangles for rendering. When a tri-
angle is rendered, we record in the color buffer the index of one of
the three vertices so that we can use it as the starting point for our
point location in the second round of checking.

6 Experimental Results

Note: The experimental results mentioned below are as they first
appeared in the I3D 2011 poster (February 2011). Our algorithm
has since been improved to have much better performance. The new
manuscript is currently under preparation.

The experiment is done on a PC with an Intel i7 930 2.8Ghz, 6GB
DDR3 memory and a single NVIDIA GTX 460 Fermi graphics card
with 2GB of video memory. Our implementation is compiled using
CUDA 3.1 toolkit, while QuickHull is compiled using Microsoft
Visual Studio 2008 with all optimizations enabled. All the point
coordinates are in the range of [0, 1).

Different point sets

To compare the efficiency of our approach with QuickHull, we
generate randomly uniformly distributed points in: a cube, a ball,
a thin sphere with thickness 0.01, and a thin box with thickness
0.01. For the ball and the thin sphere test cases, we use a texture
of size 512x512 when computing the Voronoi diagram slices. For
the cube and the thin box test cases, we use a larger texture of size

1024x1024 and 2048x2048 respectively, but scale the point set to
only the 512x512 center region, to reduce the effect of the slicing
problem. Note that using larger texture does not necessarily im-
prove the performance of the algorithm, due to the extra cost in
computing the digital Voronoi diagram slices.

Figure 7 (left) shows the running time of gHull when the number of
points ranges from 106 to 107. Our gHull algorithm scales almost
linearly for all four different test cases. It performs best in the ball
test case, while slightly slower in the cube test case due to the effect
of the over-approximating problem. On the other hand, also being
affected by the over-approximating problem, gHull is significantly
slower while processing the thin box test case. This is because in the
digital space, most of the points appear as extreme vertices on the
boundary of the box. On the other hand, in the continuous space,
the actual number of extreme vertices are very small, only a few
hundreds among millions of input points.

Figure 7 (right) compares the speed up of our algorithm over Quick-
Hull for different test cases, with gHull up to 10x faster. Having a
better method to quickly remove non-extreme vertices, gHull eas-
ily outperforms QuickHull, even on a difficult thin sphere test case.
Being executed in parallel, gHull scales much better than QuickHull
when the number of points increases, resulting in a large increase in
speed up. Due to a fixed overhead of computing the digital Voronoi
diagram slices (which is input-independent and only depends on the
texture size), gHull is only a little faster than QuickHull when the
number of points is small.

Varying the number of non-extreme vertices

In order to investigate the effect of the number of extreme vertices
and non-extreme vertices on the performance of the algorithm, we
use a controlled ball test case, in which we first generate h points
randomly on a sphere, and then generate n − h points randomly
inside a ball of slightly smaller radius. This gives us a point set
with n points, out of which h points are extreme vertices.

Figure 8 shows the running time of gHull (on the left) and the speed
up over QuickHull (on the right) when we fix h and vary n in the
range of 106 to 107. Excluding the fixed overhead of computing the
Voronoi diagram slices, the running time of gHull scales linearly
at a very slow rate when n increases. Note that the running time
with h = 103 and h = 104 are very close, while when h = 105

gHull is substantially slower. This is the consequence of the under-
approximating problem when the texture cannot capture all the ex-
treme vertices due to its limited size. Regardless of that, gHull is
still 2x to 6x faster than QuickHull, with a large increase in the
speed up when n increases.

Varying the number of extreme vertices

On the other hand, Figure 9 shows the running time of gHull (on the
left) and the speed up over QuickHull (on the right) when we fix n
and vary h multiplicatively from 20 × 104 to 26 × 104. In the first
few steps, gHull scales almost linearly to log h. However, gHull is
much slower when h is over 105, due to the under-approximating
problem. As such, the speed up over QuickHull decreases, although
it is still in the range of 3x to 5x.

The running time of different phases

We can look at the running time break down of different phases to
further confirm the consequence of the three problems mentioned
earlier. Figure 10 shows the running time of gHull on different test
cases, with 107 points in the input. The use of larger textures in the
cube and the thin box test cases results in a slightly larger running
time for Phase 1. Phase 2 takes a very small amount of time, except
for the thin box test case where there is an excessive number of
vertices mistakenly recorded as extreme vertices. This is also the

6

National University of Singapore, School of Computing, Technical Report # TRA3/11, March 2011

same reason for the huge amount of time wasted in Phase 3 for this
test case. On the other hand, Phase 4 takes about the same amount
of time for all the cases, since the number of triangles rendered
is small while the total area rendered is roughly the same. Lastly,
Phase 5 takes more time on the thin sphere and the thin box test
cases due to having much more points very near the actual convex
hull.

Figure 10: The running time of different phases of gHull on differ-
ent test cases.

7 Concluding Remarks

We present gHull, a novel algorithm to compute the convex hull of
a given point set in ℜ3 using the graphics processing units. Our al-
gorithm exploits the relationship between the Voronoi diagram and
the convex hull and utilizes the fast computation in the digital space
to approximate that in the continuous space to maximize the paral-
lelism available in the GPUs. With a careful design, gHull can be
efficient yet remains accurate and robust. Our experiment on dif-
ferent test cases shows that gHull implemented on the CUDA pro-
gramming model is an order of magnitude faster than QuickHull,
the fastest convex hull software running in the CPU. With the faster
growth in speed of the GPUs compared to that of the CPUs, and the
larger amount of data to be processed, gHull offers an advantage
over other CPU convex hull algorithms.

We have also discussed three main problems of our approach, and
our solutions (partially) to these problems, to improve the perfor-
mance of gHull. To further enhance the algorithm, instead of using
star splaying to transform the approximate polyhedron to the de-
sired convex hull, one can possibly explore the Star Flipping algo-
rithm proposed by Shewchuk in the same paper [Shewchuk 2005].
However, obtaining a topologically correct polyhedron from the six
slices of the digital Voronoi diagram is still a challenge.

References

AMATO, N. M., AND PREPARATA, F. P. 1993. An NC parallel 3D
convex hull algorithm. In SCG ’93: Proc. 9th Symp. Computa-
tional geometry, ACM, New York, NY, USA, 289–297.

AMUNDSON, N. R., CABOUSSAT, A., HE, J., AND SEINFELD,
J. H. 2005. An optimization problem related to the modeling of
atmospheric organic aerosols. Comptes Rendus Mathematique
340, 10, 765 – 768.

BARBER, C. B., DOBKIN, D. P., AND HUHDANPAA, H. 1996.
The Quickhull algorithm for convex hulls. ACM Trans. Mathe-
matical Software 22, 4, 469–483.

CAO, T.-T., TANG, K., MOHAMED, A., AND TAN, T.-S. 2010.
Parallel banding algorithm to compute exact distance transform
with the GPU. In SI3D: Proc. Symp. Interactive 3D Graphics
and Games, 83–90.

CHAN, T. M. 1996. Optimal output-sensitive convex hull algo-
rithms in two and three dimensions. Discrete and Computational
Geometry 16, 361–368.

CLARKSON, K. L., AND SHOR, P. W. 1988. Algorithms for di-
ametral pairs and convex hulls that are optimal, randomized, and
incremental. In SCG ’88: Proc. 4th Symp. Computational geom-
etry, ACM, New York, NY, USA, 12–17.

DEHNE, F., DENG, X., DYMOND, P., FABRI, A., AND
KHOKHAR, A. A. 1995. A randomized parallel 3D convex
hull algorithm for coarse grained multicomputers. In SPAA ’95:
Proc. 7th ACM Symp. Parallel algorithms and architectures,
ACM, New York, NY, USA, 27–33.

EDELSBRUNNER, H., AND MÜCKE, E. P. 1990. Simulation of
simplicity: A technique to cope with degenerate cases in geo-
metric algorithms. ACM Trans. Graphics 9, 66–104.

FUENTES, O., GULATI, R. K., AND ELECTRONICA, O. Y. 2001.
Prediction of stellar atmospheric parameters from spectra, spec-
tral indices and spectral lines using machine learning. In Exper-
imental Astronomy 12:1, 21–31.

GUPTA, N., AND SEN, S. 2003. Faster output-sensitive parallel
algorithms for 3D convex hulls and vector maxima. Journal of
Parallel and Distributed Computing 63, 4, 488 – 500.

HAHN, H., AND HAN, Y. 2006. Recognition of 3D object using
attributed relation graph of silhouette’s extended convex hull. In
Advances in Visual Computing, vol. 4292 of Lecture Notes in
Computer Science. 126–135.

LIU, R., ZHANG, H., AND BUSBY, J. 2008. Convex hull covering
of polygonal scenes for accurate collision detection in games.
In GI ’08: Proc. Graphics Interface, Canadian Information Pro-
cessing Society, Toronto, Ont., Canada, Canada, 203–210.

MAO, H., AND YANG, Y.-H. 2006. Particle-based immiscible
fluid-fluid collision. In GI ’06: Proc. Graphics Interface, Cana-
dian Information Processing Society, Toronto, Ont., Canada,
Canada, 49–55.

MILLER, R., AND STOUT, Q. 1988. Efficient parallel convex hull
algorithms. IEEE Trans. Computer 37, 12, 1605–1618.

NVIDIA. 2010. CUDA programming guide.

OKADA, K., INABA, M., AND INOUE, H. 2003. Walking navi-
gation system of humanoid robot using stereo vision based floor
recognition and path planning with multi-layered body image. In
IROS ’03 Int’l Conf. Intelligent Robots and Systems, IEEE, 2155
– 2160 vol.3.

PREPARATA, F. P., AND HONG, S. J. 1977. Convex hulls of finite
sets of points in two and three dimensions. Communication of
ACM 20, 2, 87–93.

SHEWCHUK, J. R. 1997. Adaptive Precision Floating-Point Arith-
metic and Fast Robust Geometric Predicates. Discrete & Com-
putational Geometry 18, 3 (Oct.), 305–363.

SHEWCHUK, J. R. 2005. Splaying: an algorithm for repairing
delaunay triangulations and convex hulls. In SCG ’05: Proc.
21st ACM Symp. Computational Geometry, Press, 237–246.

STRANDBERG, M. 2004. Robot path planning: An object-oriented
approach. PhD Thesis, KTH Royal Institute of Technology.

7

National University of Singapore, School of Computing, Technical Report # TRA3/11, March 2011

Figure 7: Running time of gHull (left) and its speed up over QuickHull (right) on different test cases.

Figure 8: Running time of gHull (left) and its speed up over QuickHull (right) while fixing the number of extreme vertices, h, and varying the
total number of points, n.

Figure 9: Running time of gHull (left) and its speed up over QuickHull (right) while fixing the total number of points, n, and varying the
number of extreme vertices, h.

WANG, Y., LING-YUN, W., ZHANG, J.-H., ZHAN, Z.-W.,
XIANG-SUN, Z., AND LUONAN, C. 2009. Evaluating protein
similarity from coarse structures. IEEE/ACM Trans. Computa-
tional Biology and Bioinformatics 6, 4, 583–593.

8

