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Figure 1: gQM working on the PSLG obtained from a raster image.

Abstract

We propose the first working GPU algorithm for the 2D Delau-
nay refinement problem. Our algorithm adds Steiner points to an
input planar straight line graph (PSLG) to generate a constrained
Delaunay mesh with triangles having no angle smaller than an in-
put θ. It is shown to run from a few times to an order of magnitude
faster than the well-known Triangle software, which is the fastest
CPU Delaunay mesh generator. Our implementation handles de-
generacy and is numerically robust. It is proven to terminate with
finite output size for an input PSLG with no angle smaller than 60◦

and θ ≤ 20.7◦. In addition, we notice meshes generated by our
algorithm are of similar sizes to that by Triangle, which has incor-
porated good consideration in keeping output small in size.

Keywords: GPGPU, Computational Geometry, Mesh Refinement,
Finite Element Analysis

Concepts: •Theory of computation → Computational geome-
try; •Computing methodologies→ Graphics processors;

1 Introduction

Many engineering and scientific applications, both interactive and
non-interactive, such as finite element, interpolation, GIS, path
planning, etc. work on meshes whose triangles meeting some qual-
ity measures. These measures are such as bound on triangle area,
angle and edge length. Our problem of Delaunay refinement is as
follows: for a given planar straight line graph (PSLG) G and an an-

∗Website: http://www.comp.nus.edu.sg/∼tants/gqm.html
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2017 ACM.
I3D ’17, February 25 - 27, 2017, San Francisco, CA, USA
ISBN: 978-1-4503-4886-7/17/03. . . $15.00
DOI: http://dx.doi.org/10.1145/3023368.3023373

gle θ, compute a mesh that is also a constrained Delaunay triangula-
tion (CDT) to cover the domain of G with triangles having no angle
smaller than θ. We want such a Delaunay refinement algorithm to
run fast and output a mesh having small number of triangles as this
mesh is an input to other applications.

Specifically, the input G contains a point set P and a non-
intersecting segment set S with endpoints from P . The output from
a Delaunay refinement algorithm is a CDT T consisting of trian-
gles incorporating all points in P with all segments of S appearing
as unions of smaller segments. Points in the mesh but not in P
are called Steiner points, added by the algorithm to create more tri-
angles to refine the mesh so that all triangles in the mesh have no
angle smaller than θ. These Steiner points appear within the convex
hull of P , and some subdivide segments of S into smaller ones. We
often refer to smaller segments also simply as segments just like
segments of S. An input angle refers to an angle formed by two
segments of S at their shared endpoint.

The Triangle software developed by Shewchuk [1996] is the fastest
CPU Delaunay mesh generator in 2D. However, the increase in the
input size of G can lead Triangle to run in hours, which is undesir-
able to many, especially interactive, applications. There is thus a
need to explore what might be possible with the inexpensive, paral-
lel computing power of GPU. At a glance, one may attempt refining
a mesh by simply inserting Steiner points concurrently with many
GPU threads to gain good speedup. This, however, is problematic
as independent, concurrent insertions can lead to redundant ones
and also to cast serious doubt on whether the approach can ever
terminate in finite time.

This paper proposes a GPU Delaunay refinement algorithm, gQM
(Section 4), and proves its termination for G with no input angle
smaller than 60◦ and θ ≤ 20.7◦ (Section 5). Our implementation
of gQM is shown to run from a few times to an order of magnitude
faster than Triangle with output mesh of a similar size to that by
Triangle (Section 6). We start the discussion with Section 2 on a
review of important previous work, and then Section 3 on our con-
siderations to design a good GPU algorithm. Section 7 concludes
the paper.
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2 Literature Review

For a triangle, let ρ be the ratio of its circumradius to its short-
est edge. Then, all angles of this triangle are bounded below by
arcsin 1

2ρ
. So, the Delaunay refinement problem can also be stated

as finding a CDT with the ratio ρ of each of its triangles bounded
away from an input constant B. In other words, we can use B and
θ interchangeably in our discussion. A triangle is said to be bad if
its ρ > B; otherwise good. Take for example, if we use B =

√
2,

any triangle with an angle below 20.7◦ is bad.

The central question for the Delaunay refinement algorithm is to
decide where should Steiner points be to improve the mesh qual-
ity while also guarantee its termination. A reasonable approach is
to always insert a Steiner point as far away from other points as
possible but still within the convex hull of P . This is to avoid the
creation of short edges and thus triangles with large ρ. The two
best-known algorithms are Ruppert’s algorithm [1995] and Chew’s
algorithm [1993] in Sections 2.1 and 2.2, respectively. Section 2.3
discusses the mesh generator software, Triangle [Shewchuk 1996],
and Section 2.4 outlines work in general parallel computation.

2.1 Ruppert’s Algorithm

Ruppert’s algorithm [1995] has theoretical guarantee for its termi-
nation for a PLSG with no input angle is acute and when B ≥

√
2.

A point p is visible to a segment ab if there is a point q ∈ ab form-
ing pq that does not intersect any segments of S. The diametral disk
of a segment is the smallest circular disk that encloses the segment.
A segment ab is said to be encroached by a point p if p lies in the
diametral disk of ab, and p is visible to ab. In such a case, we also
say p is an encroaching point that encroaches upon the segment ab,
and ab is an encroached segment.

Ruppert’s algorithm refines mesh by repeating the following two
steps (with the necessary edge flipping to reach a Delaunay trian-
gulation) till there is no more bad triangle:

1. Split encroached segments. An encroached segment is split
by inserting its midpoint. As a midpoint inserted may also en-
croach upon some other segments, we need to split these other
segments subsequently till no more segments are encroached.

2. Split bad triangles. A bad triangle is to be split by inserting its
circumcenter. However, if the circumcenter encroaches upon
any segment, we reject the insertion and mark all segments it
encroaches upon as encroached segments and split them ac-
cording to the previous step.

2.2 Chew’s Algorithm

Chew’s second algorithm [1993], which we shall refer it simply as
Chew’s algorithm, also guarantees termination like Ruppert’s al-
gorithm but for a PSLG with no input angle smaller than 60◦ and
B ≥ 1. It produces CDT and not necessarily be a Delaunay tri-
angulation as that by Ruppert’s algorithm, and thus has in general
smaller output mesh than that by Ruppert’s.

We distinguish two types of Steiner points: midpoint on a segment
(which is a part or whole of a segment of S) and free point not on
any segment of S. In Chew’s algorithm, midpoints once added are
permanent to the mesh, but free points which are inserted to destroy
bad triangles may be removed subsequently to make room for the
insertion of other (permanent) midpoints. This is unlike Ruppert’s
algorithm which does not remove any Steiner point once inserted.

Chew’s algorithm refines the mesh by running the following two
steps iteratively till there is no more bad triangle:

1. Split bad triangles. For one bad triangle with circumcenter
c, we walk from triangle to triangle in the mesh to locate the
triangle containing c. In the process, if we encounter an edge
of a triangle which is a segment, we stop the locating and go
to Step 2 below to handle this segment. If not, we just insert c
into the triangle containing c.

2. Split segments and remove redundant points. For each seg-
ment we encountered in Step 1, we remove free points who
lie in the diametral disk of this segment. (These free points
are considered as redundant ones for now.) Then we split this
segment by inserting its midpoint.

2.3 Delaunay Mesh Generator: Triangle

Triangle by Shewchuk [1996] is the best-known CPU software for
the Delaunay refinement problem. It actually unifies Ruppert’s and
Chew’s algorithm into one framework of two iterative steps be-
low that one can choose to run it either under Ruppert’s or Chew’s
mode. Note that the unification is not fully as there is still an extra
effort under Chew’s mode when splitting encroached segments.

1. Split encroached segments. An encroached segment is split
by inserting its midpoint. Under Chew’s mode, all free points
in the diametral disk of an encroached segment need to be
removed before inserting the midpoint.

2. Split bad triangles. Consider the circumcenter of some bad
triangle for insertion. If the circumcenter does not encroach
upon any segment, insert it into the triangle enclosing the cir-
cumcenter; otherwise, we mark all segments it encroaches
upon as encroached segments and split them in Step 1.

The above unification is possible by modifying the concept of en-
croachment in Ruppert’s for use in Chew’s mode. The diametral
lens of a segment ab is the intersection of two disks whose cen-
ters lie on the bisector of ab, with one center on each side of ab.
The intersection part is just big enough to enclose two isosceles
triangles whose bases are ab and base angles equal to θ. Under
Ruppert’s mode, Triangle uses diametral disk as before, whereas
under Chew’s mode, diametral lens. That is, under Chew’s mode, a
segment ab is said to be encroached by a point p if p lies inside the
diametral lens of the segment and p is visible to ab.

2.4 Parallel Algorithms

In parallel computation, there are many Delaunay refinement algo-
rithms. One common strategy is as follows: at each iteration, find
a set of independent Steiner points efficiently and then insert each
into the domain by either Ruppert’s or Chew’s algorithm. Spielman
et al. [2007] and Hudson et al. [2007] focus on time complexity
analysis, while Lohner and Cebral [1999], Lan and Taylor [2001]
and Chernikov and Chrisochoides [2005] are not comprehensive in
their comparison to other.

A recent work by Nasre et al. [2013] claims that its GPU Delau-
nay refinement algorithm has high speedup. On the other hand, it
does not handle general PSLG with segments. Chrisochoides et al.
[2009] propose an algorithm to handle segments but it is designed
for a cluster of computers.

3 Design Considerations of GPU Algorithm

We want to achieve a good speedup to produce mesh of a small
output size comparable to that by a good sequential one (Section
3.1). In addition, we need to manage the usage of memory (Section
3.2) to avoid data conflict. The following discussion also alludes to



the fact that our proposed algorithm (in Section 4) is not a porting
of a sequential one to GPU.

3.1 Speedup and Output Size

Two basic design principles to follow for a good speedup with GPU:
regularized work and localized data. The latter is generally taken
care of in the implementation to use registers and shared memory
as much as possible instead of relying solely on global memory in
GPU. As for the former, a straightforward naı̈ve way is to assign
one GPU thread to handle one insertion of a Steiner point. This is
however problematic as Steiner points are dependent on each other.
Thus, two Steiner points that are concurrently inserted may result in
them forming a short edge and then later on creating more shorter
edges still that the algorithm can no longer guarantee its termina-
tion. We discuss in Section 4.3 on how to compute points that are
independent and can be inserted in parallel, and Section 4.4 on how
to remove points that were inserted inappropriately.

Another regularized work to consider is to have a thread to handle
an encroachment. In Ruppert’s algorithm, we need to find all the
segments that are encroached by a point. In Chew’s algorithm, we
have to search all points encroaching upon a segment. Both types of
encroachment would be inefficient when done naı̈vely. This is be-
cause one segment may encroached by none or many points and
likewise one point may encroach upon none or many segments.
There are unbalance workload for GPU threads that can be ques-
tionable in gaining good speedup. We discuss in Section 4.2 on how
to resolve this by inserting Steiner points first, then in Section 4.4
on how to find all encroached segments indirectly via constrained
Delaunay property using highly parallel flipping operations.

Output from our algorithm is to be consumed by other applications,
we thus want it small in size. Points must thus be added discreetly
and with some priority among all threads, and not simply and arbi-
trarily by each thread to find a possible fix to remove a bad triangle.
The latter can end with the undesirable consequence of creating lots
of redundancy and short edges that causes the algorithm to run end-
lessly. In our algorithm, we choose to favor resolving a bad triangle
with an edge of shortest length when deciding on a priority among
bad triangles.

3.2 Memory

It is possible that multiple GPU threads access the same memory
address and thus causes data conflict. In our algorithm, we use the
commonly known technique of marking competition to resolve it.
For every memory address that is going to be written, we assign
it one marking slot in memory. Before the actual writing to those
desired memory addresses, a thread marks its associated marking
slots with a unique number using an atomic operation. After all
threads finish marking and are synchronized, they check their cor-
responding marking slots to see if the numbers in the slots equal to
their unique numbers. A thread wins its marking competition and
thus can proceed to writing if all slots marked by the thread have
value equal to its unique number.

In addition, as the size of a mesh increases dramatically during pro-
cessing, we need to optimize the use of GPU memory. It is ineffi-
cient to assign temporal memory space for all elements (triangles,
edges and points) in the mesh as not all are active during the differ-
ent stages of the computation. To optimize, we collect all winners
after marking competition using stream compaction, and then ar-
range contiguous memory for them to reduce the required memory
space as well as the number of threads to launch for computation.

4 Our Proposed Algorithm: gQM

This section proposes our Delaunay refinement algorithm for GPU,
called gQM. Its overall structure (Section 4.1) may look like that
of Triangle, but they differ in three important aspects besides ours
being parallel in nature. First, though gQM also has two modes,
Ruppert’s and Chew’s, its two modes have the identical structure
that we can interchange the use of one from the other by simply
switching the definition of encroachment between diametral disk
and diametral lens. Second, gQM adapts neatly the FlipFlop
routine [Gao et al. 2013] to discover encroachment and to remove
efficiently free points (Section 4.4). Third, gQM carefully recog-
nizes and filters away points if inserted would result in their sub-
sequent removal anyway. This can avoid many roll back that can
sum to a significant loss in computing effort (Section 4.3). This last
issue does not exist for the sequential approach.

Section 4.1 outlines the structure of gQM. Sections 4.2 and 4.3 dis-
cuss the two main steps of gQM, and Section 4.4 on the FlipFlop
routine used by them to maintain a CDT and to remove redundant
points. In the detailed presentation of the parts of our algorithm, we
do not state explicitly initialization for the various data structures as
these can easily be deduced.

4.1 Main Structure of gQM

Our GPU refinement algorithm, gQM is shown as Algorithm 1. It
first computes the CDT T of the input PSLG G (Line 1) with the
GPU algorithm of Qi et al. [2013]. Then, it goes into an iterative
process of two steps to refine T : (1) split encroached segments and
remove redundant points, and (2) split bad triangles and remove
redundant points. The algorithm uses the same data structure for
mesh as that in Triangle where it can step from one triangle to its
adjacent one, and update information of a neighboring triangle in
constant time.

The first round of split encroached segments is from Line 2 to 8.
This round starts with the CDT of G. In the for-loop from Line 2
to 6, segments are possibly encroached by points in P only, since
there are no Steiner points yet. Processing the encroachment marker
list Ms, we use a stream compaction routine, CollectList, to
collect active ones into a new list Ls (Line 7). Line 8 is the actual
splitting of encroached segments with midpoints. Note that as there
are no free points yet before this step, SplitEncSegs at Line 8
does only splitting with midpoints without having to remove any
free points.

Subsequent iterative process of the mentioned two main steps is
the repeat-loop from Line 9 to 21. It starts with the for-loop
(Line 10 to 14) to mark bad triangles into the marker list Mt, and
then collect those active ones (bad triangles) into Lt using again
CollectList (Line 15). If there are bad triangles (i.e. Lt is
non-empty), we do splitting of triangles (Line 17) with free points,
then collecting again encroached segments (Line 18) passed on by
SplitTriangles routine (Line 17) to further split these seg-
ments with midpoints in SplitEncSegs (Line 19).

4.2 SplitEncSegs: Split Encroached Segments

The SplitEncSegs routine is shown in Algorithm 2. It is to
refine T till T has no encroached segments (i.e. Ls = ∅). We
explain it as two parts of RemoveEncPoints (Line 2 to 9) and
InsertMidPoints (Line 10 to 23) within the while-loop of
Line 1 to 26. This while-loop is needed as new Steiner points added
to T in InsertMidPoints can result in new encroachment and
we thus need to identify (Line 24) and collect (Line 25) them to
repeat the process.



Algorithm 1 gQM: the Delaunay Refinement Algorithm
Input: PSLG G with point set P and segment set S, and angle θ

Let Ms be the encroachment marker list for segments
Ls be the encroached segments list
Mt be the marker list for bad triangles
Lt be the bad triangles list

1: Construct the CDT T of G
2: for each segment s ∈ S in parallel do
3: if s is encroached by apexes of its incident triangles then
4: Mark s as active in Ms

5: end if
6: end for
7: CollectList(Ms, Ls)
8: SplitEncSegs(T ,Ms, Ls)
9: repeat

10: for each triangle t ∈ T in parallel do
11: if t is a bad triangle then
12: Mark t as active in Mt

13: end if
14: end for
15: CollectList(Mt, Lt)
16: if Lt 6= ∅ then
17: SplitTriangles(T ,Ms, Lt)
18: CollectList(Ms, Ls)
19: SplitEncSegs(T ,Ms, Ls)
20: end if
21: until Lt is ∅
22: return T

Line 2 to 9: RemoveEncPoints

For every encroached segment, we need to remove all its encroach-
ing points before inserting its midpoint. To do this, we adopt an iter-
ative approach in the while-loop (Line 3 to 9) to checking apexes of
triangles incident to segments for encroachment (Line 4 to 6), and
then use FlipFlop (Line 7) to maintain T as a CDT to further dis-
cover points that encroach upon segments. When SplitEncSegs
is invoked for the very first time from Algorithm 1, there are no free
points yet and Line 5 does not remove any encroaching apexes.

Two notes are in order. First, our approach is superior to the naı̈ve
approach of explicitly finding out those encroaching points with one
GPU thread handling one segment in a single go. As mentioned
earlier in Section 3, the latter results in unbalance workload for
its threads as the numbers of encroaching points vary significantly
among segments. In addition, the expensive visibility computation
possibly to be used in the latter has been avoided in our approach
by the highly parallel operation of edge flipping in FlipFlop.

Second, recall Ruppert’s algorithm in CPU does not need a pro-
cess of removal as it simply rejects any insertion of Steiner point
that can encroach upon segments. gQM running under Ruppert’s
mode does not know a point is an encroaching point without visi-
bility computation, and thus cannot reject points upfront. It relies
on first inserting such a point and then using FlipFlop to later
discover it is indeed inserted inappropriately and thus scheduled to
be removed.

Line 10 to 23: InsertMidPoints

InsertMidPoints aims to insert midpoints into encroached
segments iteratively. It is possible that two encroached segments
are in the same triangle but not both can be split in the same round
due to data conflict. We use the marking competition mentioned in
Section 3.2 to resolve it. The algorithm does the marking with the
for-loop (Line 12 to 14) using an atomicMin (atomic minimum op-
eration). Each triangle records the smallest (index of) s that needs

Algorithm 2 SplitEncSegs(T ,Ms, Ls)

Input: T is a CDT
Ms is the encroachment marker list for segments
Ls is the encroached segments list

Let Ld be the deletion segments list
Mr be the integer marker list for all triangles
Mp be the insertion marker list for segments
Lp be the insertion segments list

1: while Ls 6= ∅ do
2: Copy Ls to Ld
3: while Ld 6= ∅ do
4: for each segment s ∈ Ld in parallel do
5: Remove encroaching points that are apexes

(and free points) of triangles incident to s
6: end for
7: FlipFlop(T ,Ms)
8: CollectList(Ms, Ld)
9: end while

10: Copy Ls to Lp
11: while Lp 6= ∅ do
12: for each segment s ∈ Lp in parallel do
13: Mark Mr[ti] and Mr[tj] with s using atomicMin

where ti, tj are triangles incident to s
14: end for
15: for each segment s ∈ Lp in parallel do
16: if s wins the marking in Mr then

(i.e. Mr[ti] and Mr[tj ] are both equal to s)
17: Insert the midpoint of s
18: Mark s as inactive in Mp

19: end if
20: end for
21: UpdateNeighbors(T , Lp)
22: CollectList(Mp, Lp)
23: end while
24: FlipFlop(T ,Ms)
25: CollectList(Ms, Ls)
26: end while

it for splitting. Then the actual splitting (Line 17) is carried out
with the for-loop (Line 15 to 20) for each segment that has success-
fully be recorded by all its (either one or two) incident triangle(s).
Once an encroached segment has successfully be split (Line 17),
it is marked as done (Line 18) and need not be considered for the
subsequent round.

Splitting results in two or four new triangles. Each of these new
triangles has to record its neighboring triangles in the mesh. But,
these neighboring triangles may also be newly created in the same
round and not available readily for use by other new triangles. To
resolve this, we use a two-stage routine, UpdateNeighbors, to
update neighborhood information (Line 21). First, the two or four
triangles resulted by a segment split know the existence of each
other, and they can simply update their neighbors in here among
themselves. Second, each new triangle ti resulted from splitting an
old triangle tj has one neighbor outside to be updated. Note that
ti and tj have one same edge e, and tj knows its neighbor tk at e.
Then, tk is either the other needed neighbor of ti if it is not split, or
through the new triangles resulted from tk, we identify the needed
one as the neighbor for ti.

Line 22 again collects encroached segments needed to be split but
not done within this round into Lp for consideration in the next
round of the while-loop (Line 11 to 23). At the end, this loop com-
pletes splitting of all encroached segments found so far.



4.3 SplitTriangles: Split Bad Triangles

The SplitTriangles routine is presented in Algorithm 3. We
explain it as three parts: LocateTriContainCirc (Line 1 to
11) to locate triangles containing circumcenters of bad triangles,
ComputeCavity (Line 12 to 20) to compute cavities of points
with possibility to be inserted, and InsertFreePoint (Line 21
to 29) to add free points to split bad triangles (and other good ones).

Line 1 to 11: LocateTriContainCirc

Let one GPU thread handle one bad triangle twith circumcenter c to
locate the triangle tc that contains c. Specifically, a thread computes
c first (Line 2), and then walks from t in the direction of c, by
stepping from one triangle to its adjacent one, until it finds tc (Line
3). (Note that the position of a circumcenter can be on a segment, in
a triangle or outside the mesh. For the former two cases, we process
as per normal. As for the last case, we record it as a midpoint on the
convex hull edge of the last triangle the thread encounters.) With tc,
the thread does the marking competition with atomicMin to write
information about t into Mr[tc] (Line 4). We use the shortest edge
length of t for the atomicMin. For each winner t in the marking
competition, its thread records t and the corresponding c and tc into
Mp (Line 7 to 9) for collection by the stream compaction routine,
CollectList (Line 11). These tc with c are then be considered

Algorithm 3 SplitTriangles(T ,Ms, Lt)

Input: T is a CDT
Ms is the encroachment marker list for segments
Lt is the bad triangles list

Let Mr be the integer marker list for all triangles
Mp be the point location winner marker list
Lp be the point location winner list
Mc be the cavity winner marker list
Lc be the cavity marking winner list

1: for each bad triangle t ∈ Lt in parallel do
2: Compute the circumcenter c of t
3: Walk starting from t to record the triangle tc containing c
4: Mark Mr[tc] with the information of t using atomicMin
5: end for
6: for each bad triangle t ∈ Lt in parallel do
7: if t wins the marking in Mr then
8: Mark t as active, and store (t, c, tc) in Mp

9: end if
10: end for
11: CollectList(Mp,Lp)
12: for each (t, c, tc) ∈ Lp in parallel do
13: Mark Mr[t

′] for each triangles t′ in the cavity of c with the
shortest edge of t using atomicMin

14: end for
15: for each (t, c, tc) ∈ Lp in parallel do
16: if t wins the marking in Mr then
17: Mark tc as active, and store (c, tc) in Mc

18: end if
19: end for
20: CollectList(Mc,Lc)
21: for each (c, tc) ∈ Lc in parallel do
22: if c is on a segment s then
23: Mark s as encroached in Ms

24: else
25: Insert the circumcenter c into T
26: end if
27: end for
28: UpdateNeighbors(T , Lp)
29: FlipFlop(T ,Ms)

for the insertion of a free point at c subsequently.

Line 12 to 20: ComputeCavity

It is not always the case that each tc with c as found by
LocateTriContainCirc (Line 11) can be split by inserting
c into T . This is because two such c when inserted concurrently
may form a very short edge in T (so as to maintain T a CDT) that
we no longer can guarantee the termination of the algorithm. So,
any one of these two c is actually a redundant one that should not
be inserted. We want to first identify as many points that do not
affect each other, i.e. independent from each other if inserted con-
currently, to then perform the insertion.

Two points pi and pj are said to be Delaunay independent if they
do not form an edge after their concurrent insertions into T while
maintaining T a CDT. Now the problem becomes how to compute
as large a set of points that each pair of points is Delaunay inde-
pendent. To solve this, we adapt the concept of cavity on Delaunay
triangulation from [George and Borouchakin 1998] to CDT. The
cavity of a point p, not a vertex of T , is the region covered by the
union of triangles in T whose circumcircles enclose p and whose
vertices are all visible from p. When two points are Delaunay inde-
pendent, their cavities do not overlap.

The converse is, however, not true since there can be a case where
the cavities of pi and pj do not overlap and yet they are not De-
launay independent. In fact, we need to augment to the non-
overlapping condition with the condition that an edge shared by
the boundaries of two cavities is either a segment or it is a Delau-
nay edge, then pi and pj are indeed Delaunay independent. For
our algorithm, we actually use the converse without the augmenta-
tion for its simplicity and for there is a good chance that the two
points are Delaunay independent still. This caveat is taken care of
by FlipFlop subsequently to remove those points inserted inap-
propriately.

Specifically, the ComputeCavity routine finds a good set of (not
necessarily) Delaunay independent point set in two stages using
marking competition. The first stage (Line 12 to 14) uses one GPU
thread to take each circumcenter c of t to mark out, by stepping
from the first triangle tc (containing c) to its neighboring triangles
recursively, whose circumcircles enclose c, with the shortest edge
length of t using atomicMin. The second stage (Line 15 to 19) uses
one GPU thread for each circumcenter c to go through again trian-
gles that belong to the cavity of c to see whether all are marked with
the shortest edge length of t. If so, c wins the marking competition
and can be a point to be inserted into T subsequently.

In the implementation, we can choose to stop the recursion at some
depth in identifying cavity, and take further risk of not discover-
ing some points that are not Delaunay independent from each other.
Should a point subsequently inserted be a redundant one, it will still
be recognized and removed from the mesh by FlipFlop. In fact,
we learn from our experimental results that ComputeCavity is
relatively inexpensive (even though it uses atomicMin as there are
few accesses to same marking locations concurrently) as compared
to FlipFlop that needs a number of flips and updating of neigh-
borhood information to remove points. So, we can afford from our
experience to set the recursion to discover cavity with a deep depth
of, say 50.

Line 21 to 29: InsertFreePoint

For each point c found by ComputeCavity (Line 20), we use a
GPU thread to handle it in two different ways. If c lies on a segment,
we mark the segment as encroached instead of inserting c (Line 23).
Otherwise, c lies on an edge that is not a part of any segment of S,
or in some triangle. For the former, we split the edge with c creating
new triangles incident to the new smaller edges in T ; for the latter,



we split this triangle into three smaller ones with c (Line 25). After
inserting the points, we need to update neighborhood information
among triangles using UpdateNeighbors (Line 28), which has
been explained in Section 4.2, and to perform FlipFlop (Line
29) to maintain T as a CDT with no redundant points.

4.4 FlipFlop: Flip to Delaunay; flop to remove point

FlipFlop(T ,Ms) maintains the constrained Delaunay property
of T and removes redundant points added into T . It is run as a
GPU routine where flipping operations are applied in parallel to the
relevant parts of T till we obtain a CDT that incorporates only the
midpoints and necessary free points. Some points are identified as
redundant because they encroach upon segments, and the others
during flipping when we are about to form an edge with two free
points inserted in the same iteration. In the latter case, instead of
doing flip, the free point with a larger shortest edge is marked as
redundant and will be removed by subsequent flips (or rather, flop).
The next two paragraphs provide further details.

Moving towards a constrained Delaunay triangulation, we perform
in-circle test on two incident triangles. When they fail the test, we
use Delaunay flip, which is a 2-2 flip that converts two non-locally
constrained Delaunay triangles abc and dcb sharing bc (not a seg-
ment) to the alternative ones, abd and dca, that are locally con-
strained Delaunay. Note that each triangle can participate in at most
one flipping of its one edge. So, we once again use the now familiar
marking competition to mark for each edge its two incident trian-
gles to decide whether the edge can be flipped. (Likewise, when
updating neighborhood information of triangles, we need to do it in
two stages.)

To remove a free point v, the theory of flip-flop in [Gao et al. 2013]
guarantees this can be done through a series of 2-2 flips to reduce
the degree of v to 3 and then followed by a 3-1 flip to remove v; see
Figure 2. Each of this flip is also termed a flop or non-Delaunay flip
as it is moving away from being a (constrained) Delaunay triangu-
lation.

Two notes are in order. First, for a free point that is removed
because it encroached upon a segment, this segment is recorded
into Ms for subsequent processing. Second, removing a point
actually involves a number of rounds of flipping. Although all
are simple operations, their sum can still be significant that we
should avoid removing points if ever possible. This is also the
reason that we use the less expensive ComputeCavity to fil-
ter away as many as possible non-Delaunay independent points
from being inserted rather than simply inserting all points found
in LocateTriContainCirc to then removing redundant ones
by FlipFlop.

Figure 2: To remove a free point v, we flip ve and vc to reduce the
degree of v to 3. Then, v is removed by a 3-1 flip.

5 Proof of Termination

A more involved proof as compared to the sequential case is needed
to resolve the implication of points inserted in the same iteration by
gQM. We define iteration in the Algorithm 1 as follows. Iteration
0 contains all operations from Line 2 to 8. Then, iteration 1 and

so on corresponds to each subsequent refinement loop from Line
10 to 20. At the end of iteration 0, there are only input points and
midpoints, and then from iteration 1 onwards, there are also free
points inserted to split triangles. We use B ≥

√
2 and require input

PSLG G has no input angles smaller than 60◦.

We need some definitions from [Shewchuk 2001]. A mesh point
is either an input point or a point successfully inserted into T in
an iteration. A rejected point is a redundant point that has been
removed because it encroached upon some segments. The insertion
radius of a point v inserted in iteration i is denoted as ri(v). It is
equal to the length of the shortest edge connected to v immediately
after v is inserted into the mesh. There are three cases of ri(v)
depending on the type of point v is:

(i) If v is an input point, then r0(v) is the Euclidean distance
between v and the nearest input point visible from v.

(ii) If v is a free point and is inserted because of a bad triangle t,
then ri(v) is the radius of the circumcircle of t. This is be-
cause free points inserted in the same iteration cannot be con-
nected to each other as enforced by FlipFlop, and all points
connected to v immediately after insertion must be points ex-
isted before this iteration. As the mesh is a CDT, the radius of
the circumcircle of t has the shortest length.

(iii) If v is a midpoint of an encroached segment mn, then there
are two situations. If mn is encroached by some mesh points,
then ri(v) is the distance between v and the nearest encroach-
ing point. If there is no encroaching point (so its insertion
is due to some rejected point), then ri(v) is the radius of the
diametral circle of mn.

For each point v, we define a point (who is “responsible” for the
insertion of v) as its parent p as follows:

(i) If v is an input point, p is null.

(ii) If v is a free point at the circumcenter of a bad triangle t, then
p is one of the endpoints of the shortest edge of t. If both
endpoints of this edge are input points, choose one arbitrarily.
If not, pick the one most recently inserted before v. Note that
the two endpoints must not both be free points inserted in the
same iteration as enforced by FlipFlop.

(iii) If v is a midpoint on an encroached segment mn, then p is
the nearest encroaching point that is either a mesh point or a
rejected point.

For a PSLG G with point set P and segment set S, the local feature
size lfs(v) at a point v (not necessarily in P ) is the radius of the
smallest disk centered at v that intersects (i) two points in P , or (ii)
one point u in P and one segment of S not incident to u, or (iii) two
non-incident segments of S. We count v as one point intersected if
it is a point in P or a point on a segment of S. Let lfsmin be the
smallest among all lfs(v) for v in P or on any segment of S.

Fact 1. For a point v inserted in iteration i, we have ri(v) ≥ lfsmin.

Proof. We use mathematical induction in the iteration number. Let
p be the parent of v.

Base case. At iteration i = 0, the mesh only contains input points
and midpoints. If v is an input point, there is another input point at
distance r0(v) from v. So r0(v) ≥ lfs(v) ≥ lfsmin. On the other
hand, if v is a midpoint on an encroached segment mn, there are
two cases:

(i) If p is an input point, or a midpoint on a segment not inci-
dent to mn, then by definition, the circle centered at v with



|vp| as radius must intersect p or the segment containing p, so
r0(v) ≥ lfs(v) ≥ lfsmin.

(ii) If v and p are both midpoints and lie on incident segments
separated by an angle 60◦ ≤ α < 90◦. To find the lower
bound of r0(v), we imagine that r0(p) and α are fixed, then
r0(v) = |vp| is minimized by making mn as short as pos-
sible. Because p is inside the diametral circle, the minimum
of r0(v) is achieved when |mn| = 2r0(v); see Figure 3(a).
From basic trigonometry, |mn| = 2r0(v) ≥ r0(p)/ cosα,
then r0(v) ≥ r0(p)/(2 cosα) ≥ r0(p) as cosα < 1/2.

Now, for p, we can find its parent u to form a chain of mid-
points, v → p → u. By repeating this argument (for p, and
then the parent of p and so on), we arrive eventually at a chain
with v′ → p′ → u′ such that u′ is a midpoint fulfilling case
(i) above. So, we have r0(p′) ≥ lfsmin by case (i), and we
thus also have r0(v′) ≥ r0(p

′) ≥ lfsmin using the resulting
inequality in the previous paragraph. Then, tracing the argu-
ment along the chains back to our v → p → u here, we have
r0(p) ≥ r0(u) ≥ lfsmin, and thus r0(v) ≥ r0(p) ≥ lfsmin.

Inductive step. We assume that the statement holds for 0 ≤ i ≤ k,
and we want to prove it also holds for i = k + 1.

If v is a free point (i.e. circumcenter) inserted due to a bad triangle
t, then its parent p is the point inserted in iteration j for j ≤ k.
Hence, the length of the shortest edge of t is at least rj(p). We
have rk+1(v) ≥ B · rj(p) since t is bad, and rj(p) ≥ lfsmin by
the induction hypothesis. Thus, we have rk+1(v) ≥ lfsmin because
B > 1.

If v is a midpoint on an encroached segment mn, there are two
cases:

(i) If p is a rejected point, which must be rejected in iteration
k + 1, then p lies inside the diametral circle of mn. Because
the mesh is a CDT, the circumcircle of some bad triangle cre-
ated in earlier iteration with center at p cannot contain the end-
points of mn. Hence, rk+1(v) ≥ rk+1(p)/

√
2; see Figure

3(b). The parent of p, denoted by u, must be a point inserted
in iteration j for j ≤ k, so we have rk+1(p) ≥ B · rj(u), and
we have rj(u) ≥ lfsmin by the induction hypothesis. Thus,
rk+1(v) ≥ rk+1(p)/

√
2 ≥ B · rj(u)/

√
2 ≥ rj(u) ≥ lfsmin

for B ≥
√
2.

(ii) If p is a midpoint (must be inserted in iteration k + 1), then
we consider two situations. If p lies on a segment that is
non-incident to mn, then the circle centered at v with |vp|
as radius must intersect p (and the segment incident to p). So
rk+1(v) ≥ lfs(v) ≥ lfsmin.

p

v
m n

r0(v)

r0(p)

α

(a)

p

vm n

rk+1(p)

rk+1(v)

(b)

Figure 3: (a) In iteration 0, if p and v are both midpoints on two
incident segments and p is on the diametral circle of mn, r0(v)
reaches its lower bound as shown. (b) In iteration k + 1, if v is the
midpoint and p is a rejected point, then rk+1(v) ≥ rk+1(p)/

√
2.

If p lies on a segment incident to mn, then just like how we
prove for the Base case (ii), we have rk+1(v) ≥ rk+1(p).
Also, for p, we have its parent u and so on, to form eventually
a chain v′ → p′ → u′ that u′ is either a midpoint lying on a
non-incident segment or a rejected point. Then, the argument
in the above paragraphs in (i) and (ii) applies. Hence, tracing
the argument along the chains back to our v → p → u, we
have rk+1(v) ≥ rk+1(p) ≥ rk+1(u) ≥ lfsmin.

So the statement holds for all iterations. �

Fact 2. The GPU Delaunay refinement algorithm gQM terminates
with no bad triangles in the output mesh.

Proof. By Fact 1, our algorithm never introduces an edge shorter
than lfsmin in any iteration. If we remove some redundant points in
an iteration, we still insert at least one midpoint. So every iteration
inserts at least one point. Because the underlying space of the mesh
is finite for the insertion of points, the algorithm must terminate.
When it terminates, there is thus no bad triangle in the mesh. �

6 Experimental Results

We implement gQM by using the CUDA programming model of
NVIDIA [Nickolls et al. 2008]. All experiments are conducted on a
PC with an Intel i7-6700 3.4GHz CPU, 16GB of DDR3 RAM and
a GTX980 Ti graphics card with 6GB of video memory. All com-
putations in GPU are done with double precision. We compare the
results of gQM with the best CPU Delaunay mesh generator, Trian-
gle. For compiling Triangle and gQM, we turn on all optimization
flags. In measuring computing time, we exclude the time of com-
puting the CDT of the input PSLG. We use simulation of simplic-
ity [Edelsbrunner and Mücke 1990] to deal with degenerate cases,
and exact predicate of Shewchuk [1997] to handle robustness.

We apply gQM on a few real world datasets such as Figure 1 and
some contour maps freely available at http://www.ga.gov.au/. But
to better understand the behavior of gQM compared to Triangle, we
need a good spread of different types of data to stress test them. We
thus generate synthetic PSLGs with points of the following distribu-
tions: uniform, Gaussian, disk (where points lie randomly in a disk)
and circle (where points lie randomly in the ring formed by two cir-
cles with slightly different radii). Segments are generated randomly
after the points are in place. We ensure no two segments intersect
or form an input angle less than 5◦. See Figure 4 for sample out-
puts of the four distributions. We note that although our proof of
termination in the previous section requires input angles no less
than 60◦, gQM adapts the approach of Triangle to still terminate by
specially handling triangles in the vicinity of a small input angle.
Consequently, the mesh can contain some bad triangles inherited
from small input angles.

The number of input points in our PSLGs ranges between 50K and
100K, while the ratio γ of the number of segments to the number
of input points ranges from 0.1 to 0.5. The larger input sizes here
have stretched the available memory limit of our GPU as the output
meshes can have over tens of millions mesh points and triangles.
We run Triangle and gQM under both the Ruppert’s and Chew’s
mode. Besides experimenting with Triangle and gQM with input
B >

√
2 that guarantees termination, we also experiment withB <√

2. In particular, we present here results with θ = 15◦ (whereB >√
2), θ = 20◦ (where B ≈

√
2), and θ = 25◦ (where B <

√
2).

In the following, we summarize from many experimental results to
present those important observations. Section 6.1 discusses running
time, and Section 6.2 mesh quality.



(b) Gaussian(a) Uniform

(d) Circle(c) Disk

Figure 4: Sample outputs of gQM of the four distributions. Input
PSLGs are shown with red segments and blue points.

6.1 Running time comparison

From an input PSLG, we first need to compute its CDT and then
perform the refinement. We are interested in mainly the running
time for the refinement step done by both Triangle and gQM. Note
that for gQM, the running time includes the time for computation
as well as the time needed to transfer data between CPU and GPU.
Table 1 shows the running time of Triangle and gQM with 100K
input points of the uniform distribution for different values of θ,
and for both Ruppert’s and Chew’s mode. We observe that Triangle
needs at time close to an hour to complete computation, whereas
gQM generally can complete within a few minutes.

Triangle gQM
γ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

θ
15◦

Ruppert 0.4 1.9 4.3 7.8 11.5 0.2 0.3 0.4 0.6 0.8
Chew 0.4 2.0 4.6 8.4 12.8 0.3 0.8 0.8 0.9 1.2
20◦

Ruppert 0.7 3.5 7.5 14.1 20.6 0.2 0.4 0.5 0.7 0.8
Chew 0.7 3.6 8.5 16.1 24.9 0.4 0.8 1.0 1.4 1.8
25◦

Ruppert 1.3 6.7 14.4 27.3 39.8 0.2 0.5 0.6 1.0 1.1
Chew 1.2 6.2 14.7 28.6 44.1 0.5 1.1 1.5 2.0 2.5

Table 1: Running time (in minute) by Triangle and gQM with 100K
input points of the uniform distribution.

The trends of the speedup of gQM over Triangle for all the distri-
butions with 100K input points and different minimum allowable
angles θ are shown in Figure 5. The speedup seems increasing with
larger γ for all the distributions. It is also increasing with larger
minimum allowable angles θ. This is within expectation as larger
γ means more segments available for processing concurrently, and
this is advantage to gQM running in GPU. We note, under Rup-
pert’s mode, gQM reaches more than 10 times speedup for all the
distributions with the maximum of 40 on the circle, whereas under
Chew’s, more than 5 times for all with the maximum of 20 on the
circle.

For gQM, its Ruppert’s mode performs better than Chew’s in run-
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(b) θ = 20◦
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(c) θ = 25◦

Figure 5: The speedup of gQM over Triangle for 100K input points
under Ruppert’s (left), and Chew’s mode (right) with different min-
imum allowable angles θ.

ning time and in its speedup to Triangle. One reason we reckon
is that gQM can remove free points inserted in only the same it-
eration under Ruppert’s mode, but in all previous iterations under
Chew’s mode. Removal is rather undesirable as computing time
was already wasted in the insertion and now again in rolling back.

6.2 Mesh quality comparison

Table 2 shows the numbers of points in the output meshes created
by Triangle and gQM for input points of the uniform distribution.
To better appreciate this, we have Figure 6 to show the amount of
extra output points (in percentage) in gQM as compared to Triangle.
For θ ≤ 20◦, their output sizes differ by only a small percentage,
and thus insignificant. This means gQM has a good speedup and a
reasonable output size. The reasonable output may be attributed to
our way of handling priority in favor of triangles with shorter edges
for splitting. On the other hand, when θ = 25◦, gQM needs sig-
nificantly more mesh points than Triangle, though gQM still offers
good speedup. We reckon here gQM becomes aggressive in creat-



ing short edges in parallel that causes the creation of many more
mesh points. On the other hand, we see one encouraging fact in
Figure 6: when γ increases, the amount of extra mesh points (in
percentage) in gQM actually decreases for all the distributions.

Triangle gQM
γ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

θ
15◦

Ruppert 1.53 3.62 5.42 7.16 8.76 1.50 3.52 5.27 6.96 8.52
Chew 0.78 1.62 2.34 3.02 3.65 0.78 1.61 2.31 2.98 3.59
20◦

Ruppert 1.77 4.12 6.14 8.09 9.87 1.74 3.98 5.91 7.76 9.47
Chew 1.13 2.43 3.52 4.57 5.53 1.13 2.37 3.41 4.40 5.31
25◦

Ruppert 2.34 5.38 7.95 10.42 12.67 2.52 5.67 8.30 10.83 13.15
Chew 1.73 3.79 5.51 7.16 8.67 1.86 3.99 5.74 7.42 8.94

Table 2: Output points (in million) created by Triangle and gQM
with 100K input points of the uniform distribution.

0.1 0.2 0.3 0.4 0.5
-6

-4

-2

0

2

4

6

8

10

Circle Disk Gaussian

Uniform(25°) Uniform(20°) Uniform(15°)

Segments to points ratio

P
e

rc
e

n
ta

g
e

0.1 0.2 0.3 0.4 0.5
-6

-4

-2

0

2

4

6

8

10

Segments to points ratio

P
e

rc
e

n
ta

g
e

Figure 6: The amount of extra points (in percentage) in the output
mesh of gQM compared to Triangle with 100K input points. Nega-
tive percentage means less instead of extra points. Ruppert’s mode
is on the left, while Chew’s on the right.

7 Concluding Remarks

This paper proposes gQM, the first working Delaunay refinement
algorithm on GPU with PSLG as input. It fully unifies Ruppert’s
and Chew’s algorithm. It employs an efficient cavity computation
to filter away points that are bound to be removed if inserted, and
it incorporates the parallel FlipFlop neatly to assist in removing
point. gQM runs from a few times to an order of magnitude faster
than Triangle. Moreover, gQM is guaranteed to terminate for PSLG
with no input angle smaller than 60◦.

We list here two possible improvements to our current implemen-
tation of gQM. Firstly, for B ≥

√
2 which gQM can guarantee

termination, its output size of mesh is comparable to that by Trian-
gle. On the other hand, when B <

√
2 with say θ = 25◦ (which

gQM still can terminate often in practice though not guaranteed), its
output size is less desirable than that by Triangle. We hope to nar-
row this gap. Secondly, gQM working on real world dataset outputs
quality mesh comparable to that by Triangle. But, it has relatively
smaller speedup compared to working with our synthetic data. We
are investigating the possible reasons and ways to further improve
the performance of gQM.
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