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Abstract 

Bridging the modeling and rendering gap between the existing 
triangle and point primitives, we explore the use of line segments 
as a new primitive to represent and render 3D models. Our main 
contribution extends the anti-aliasing theory in texture mapping to 
anti-aliased line segment rendering, and presents an 
approximation algorithm to render high quality anti-aliased 
opaque and transparent line segments in 3D models. This anti-
aliasing technique is empirically validated by building a software 
pipeline to render models of any combination of the three types of 
modeling primitives: triangles, line segments and points. Our 
experiment shows that models comprising line segments are 
generally more efficient and effective for high quality rendering 
as compared to their corresponding pure point models. 

CR Categories: I.3.3 [Computer Graphics]: Picture/Image 
Generation – Anti-aliasing, Viewing Algorithms; I.3.5 [Computer 
Graphics]: Computational Geometry and Object Modeling – 
Curve, surface, solid, and object representations; I.3.6 [Computer 
Graphics]: Methodology and Techniques – Graphics data 
structures and data types 

Keywords: rendering systems, point-based graphics, surface 
reconstruction, object scanning, level of details  

1. INTRODUCTION 

 
Rendering, the final link in the chain that creates an image of 

a real or conceived object, is based on a model of the object to be 
depicted. Objects may be represented by different models for 
different purposes. For the purpose of rendering, a model needs no 
more details than necessary to generate an image of desired 
resolution and quality. Often, a compact representation that 
permits efficient processing is equally, if not more, important than 
details. It is therefore interesting to study different models that 
adapt to different requirements. 

Historically, surface triangulation was the predominant 
model permeating all or most of the stages of the graphics 
pipeline. Recently, other models have become prominent, such as 
point based methods [6, 13, 15, 19] and image based rendering, 
that emphasize the efficiency of rendering at the cost of neglecting 
surface geometry and topology. This paper aims to contribute in 
the search for line segment models that are tuned to the needs of 
real-time rendering. 

The aliasing problem in computer graphics is caused by the 
disparity between image representation in the continuous real 
world and a discrete computer world. Images are represented as 
continuous signals in the world space, and discrete signals in the 
screen space. The screen images are created by sampling and 
quantizing their corresponding world space images. If the 
sampling frequency is less than the Nyquist frequency, it is 
possible that high frequency portions of the continuous signals 
will masquerade as low frequencies, creating aliasing effects. 

Various anti-aliasing techniques propose the use of a low 
pass filter to stop high frequencies before sampling, so as to 
render high quality anti-aliased texture mapped triangle models. 
Recently the Elliptical Weighted Average (EWA) filter [7] has 
been extended for rendering anti-aliased high quality point models 
[14, 19]. This paper is a contribution to the use of anti-aliasing 
techniques for high quality rendering of surface primitives, in 
particular line segments. 

It is interesting to observe the fact that the more prominent 
rendering primitives, the point and the triangle, are simplexes in 0 
and in 2 dimensions, whereas the 1-simplex, i.e. the line segment, 
has been used as a primitive only in special contexts, such as [4, 
10]. This is surprising in view of the fact that lines are prominent 
features in many types of scenes and applications, particularly of 
man-built objects; see the Screwdriver and Rocker arm models in 
Figure 1. Even objects of irregular shape usually contain some 
features that are best modeled by lines, such as ridges or 
boundaries of various kinds; see the Ball joint and Upper body 
models in Figure 1. Figure 2 illustrates a knee model represented 
by triangles, points as well as hybrid points and line segments. 

It appears wasteful to ignore lines, a feature that appears 
naturally in many scenes and readily translates into a simple 
primitive, the line segment. A line segment should be treated as a 
primitive, rather than as a degenerate special case of a triangle or 
polygon, for the same reason that a point is treated as a primitive 
rather than as a tiny triangle or polygon. A line segment is a 
simpler object than a long, thin triangle or rectangle. Three 
advantages come with using line segment as a primitive in surface 
modeling and rendering. 

Figure 1: Hybrid point and line segment models rendered by our method. 
 



 

Figure 3: Opaque (top) and transparent (bottom) anti-aliased 
checkerboard line segment models. Each line segment is painted 
with only one color and line segments of different colors are 
separately laid in checker boxes. 

First, line segments, together with points and triangles, 
provide an effective representation of object surfaces of any 
shape. Triangles are suitable for uses in surface areas of flat 
regions, line segments for cylindrical and conical regions, and 
points for jagged regions. Second, the use of line segments 
facilitates compact representations of models that are smooth 
along one dimension. In comparison with triangle meshes, line 
segments save storage space by keeping less connectivity 
information among vertices. In comparison with point clouds, a 
few line segments can replace a large number of sequentially 
aligned points. Finally, line segments can be rendered much more 
efficiently than sequences of points. An experiment in Section 5 
shows a realistic example where line segments achieve a speedup 
of 63% as compared to pure point models. 

In this paper, we focus on studying the feasibility of using 
line segment as a rendering primitive, designing corresponding 
algorithms, reporting on an experiment, and describing research 
directions with potential to make line based rendering a standard 
technique in the growing arsenal of graphics tools. 

Our main contribution is the extension of the anti-aliasing 
theory in texture mapping [7] to render anti-aliased line segments 
in 3D models. Though the extension does not result in a closed 
form solution, we present an approximation to render high quality 
anti-aliased opaque and transparent line segments representing 3D 
models as shown in Figure 1 and Figure 9. The empirical 
validation of this approximation is based on an experiment 
consisting of two main components. 

First, we implement a method to extract primitives from 
point sets. For a surface given by a set of points in 3D space, we 
use an adaptive method based on local surface features to extract 
all three primitives, points, line segments and triangles. This 
primitive extraction algorithm is developed for the purpose of 
assessing quality and performance of our proposed anti-aliased 
line segment rendering technique. Designing more efficient 
primitive extraction algorithm is left to future work. 

Second, we implement a software graphics pipeline to render 
3D models represented with any combinations of points, line 
segments, and triangles. Our experiment shows that the rendered 
quality of hybrid models is comparable to their corresponding 
high quality anti-aliased point models. In addition, hybrid models 
are rendered in significantly less time. This establishes the hybrid 
model as a competitive rendering alternative to pure point models. 

Here is an overview of the paper. Section 2 summarizes 
related work. Section 3 presents the anti-aliasing theory for 
rendering line segments and an approximation used in our 
implementation. Section 4 describes a pipeline to render point, 
line segment and triangle primitives. Section 5 reports on our 
experiment to measure the rendering quality and efficiency of 
hybrid models as compared to pure point models. Section 6 
concludes the paper with our ongoing work.   

2. RELATED WORK 

 
Point Based Rendering. In 1984, Levoy and Whitted [9] 

pointed out that classic modeling primitives, i.e. triangles (or 
polygons), were less appealing for rendering objects with complex 
geometry. They suggested decoupling modeling geometry from 
the rendering process by introducing point as a universal 
primitive, where each point is associated with a small surface area 
and a normal. Using this idea, Rusinkiewicz and Levoy [15] 
proposed the QSplat system to render 3D point models. The 
QSplat system was designed during the course of the Digital 
Michelangelo Project to render models of a scale of hundreds of 
millions of triangles at interactive frame rates. In 1998, Grossman 
and Dally [6] developed the point sample rendering algorithm for 
high quality real-time rendering of complex objects. Sample 
points are rendered without any knowledge of surface topology.  

In 2000, Pfister et al. [13] introduced the surfel, i.e. surface 
element, paradigm and developed the surfel point rendering 
pipeline. In 2001, Zwicker et al. [19] extended Heckbert’s EWA 
filter [7], and derived a rigorous mathematical formulation of 
screen space EWA texture filtering for irregular point data. Based 
on the newly derived resampling filter, they developed another 
point rendering technique called surface splatting, which can 
produce high quality texture filtered images from point samples. 
In 2002, Ren et al. [14] proposed a hardware implementation of 
surface splatting by building a visibility map to speed up point 
visibility testing; however, it does not handle transparency. Our 
work on rendering line segments follows in the direction of [13, 
14, 19]. We extend the anti-aliasing theory in texture mapping [7] 
to anti-aliased line segments in 3D models; see Figure 3.  

Line Segment Rendering. The idea of using a line segment 
instead of a point as a rendering primitive appears to have 
originated for the purpose of rendering features of plants, which 
naturally exhibit long, thin line features, such as twigs [17]. 
Deussen et al. [4] rendered plant images using a mix of triangles, 
line segments and points, preferring triangles when high quality is 

Figure 2: A knee model in three different representations. 
 



 

required, line segments or points when details can be neglected. In 
contrast to their technique of using line segments as auxiliary 
primitives to speed up rendering of low level-of-detail sub-
images, the approach presented in this paper treats line segments 
as first class primitives to be used for high quality rendering. 
Thus, the development of a technique for anti-aliased line 
segments is a major contribution. 

Anti-aliased Lines. Many papers covered the problem of 
rendering anti-aliased lines on screen. A good reference on the 
desirable characteristics for an anti-aliased line is described by 
Nelson [12]. In contrast, we render anti-aliased 3D lines where 
each line has an associated surface area and a normal. 

Hybrid Rendering. Chen and Nguyen [3] introduced a 
hybrid point and polygon rendering system called POP, in which a 
point is represented by a bounding sphere as in the QSplat system 
[15]. Dey and Hudson used a screen pixel as a point in another 
hybrid system PMR [5]. In our hybrid rendering solution, a point 
is an anti-aliased splat suggested by Zwicker et al. [19]; points 
and line segments can be seamlessly hybridized together, 
producing high quality images. Both POP and PMR build 
hierarchical LOD structures for models. During rendering, the 
LOD control decides in what circumstances triangles should be 
substituted by points to maximize the frame rate. Both hybrid 
systems have their emphasis on performance. Nevertheless, in our 
discussion, primitives are chosen based on local features of object 
surfaces. For example, parallel line segments are used to 
approximate a cylinder instead of using a bunch of thin triangles. 
It is beyond the scope of this paper to discuss acceleration due to 
LOD techniques as done in the above references. 
 

3. ANTI-ALIASING LINE RENDERING 

 
In order to use the line segment (to be abbreviated as “line” 

in Sections 3 and 4) as a first-class rendering primitive, we 
develop a mathematically rigorous anti-aliasing theory and an 
approximation that admits efficient algorithms. These have been 
tested in the implementation described in Sections 4 and 5. 

 
3.1 Anti-Aliasing Line 

To reconstruct a surface from a set of lines, we define ( )kP t  
to be a point on a line k  with length kl where [0, ]kt l∈ . Let Q  
be a point on the object surface. We define a 2D local coordinate 
system S  within a small neighborhood around Q  (Figure 4). A 
set L  of lines in the neighborhood of Q  is parameterized to .S 
Each point ( )kP t  has a mapping to a point ( ) .ku t ∈S Let r  be 
the reconstruction filter and kw be the color coefficient of line k. 
Hence, the color of any point ,u ∈S as a continuous 
function ),(ufc  can be evaluated by accumulating contributions 
from lines using r:  

0
( ) ( ( )) .kl

c k k
k L

f u w r u u t dt
∈

=  −  ∑ ∫  

We define an invertible 2 2ℜ → ℜ  mapping ( )x m u=  from 
S  to screen space; )(xh  as the low-pass filter; and )(xi  as the 
sampling function. Following [7, 14], we have the corresponding 
equations for the 3 steps of proper anti-aliasing: 

1. Warping:  The color of the point x in the screen space is 
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2. Band-limit the frequency: 
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We expand the above relations in reverse order to obtain: 
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resampling filter for line k. Substituting the mapping ( )m uξ =  
into ( )k xρ  yields: 
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Replacing the general mapping 1( )m ξ−  with its local affine 
approximation 1

( , ) ( )k tm ξ−  yields: 
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Note that ),( tkJ  is the Jacobian for the affine mapping at 

( ).ku t We then use the Gaussian kernels ( ) ( )
rVr u g u= as the 

reconstruction filter and ( ) ( )
hVh x g x=  as the low-pass filter with 

variances rV  and hV  respectively to get:  
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∫ ∫

∫
Note that ),( tkV  is the variance of an elliptical Gaussian. 

Computing .)( tk,J Similar to [14], we construct a local 
surface coordinate system for every point )(tPk on line k by 
approximating the surface with its tangent plane given by the line 
normal .kn  This coordinate system is defined by two orthogonal 
basis vectors u  and ,v where v  is in the direction from the 
starting point to the ending point of the line, and .ku v n= ×  

We note that the object space coordinate of )(tPk is 
o t v+ where o  is the position of the starting point of the line in 
object space. Hence a point ),( vu ss=µ  in the local surface 
coordinate system of )(tPk corresponds to a point 

vsusvtop vu
o +++= )()(µ  in object space. If we assume the 

mapping from object space to camera space only involves uniform 

Figure 4: 2D parameterization of point Q’s neighborhood to the 
local coordinate system .S  The color of Q is evaluated by 
accumulating contributions from the set L of lines of various colors 
in .S 



 

scaling ,S rotation ,R and translation ,T the corresponding point 
of )(µop in the camera space is: 

( ) ( )

( )
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Let ( )x y zo o ,o ,o= be the center, ( )x y zu u ,u ,u=  and 
( , , )x y zv v v v=  be the basis vectors defining a local surface 

coordinate system in camera space. Then the Jacobian ),( tkJ  at 
point )(tuk is: 
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As in [14], η  is a scaling factor determined by the view 
frustum where hv  and fov denote the view port height and field of 
view of the view frustum respectively. 

No Closed Form Solution. To simplify ( ),k xρ we attempt to 
find a closed form solution since there exists a closed form 
approximation for the integration of Gaussian points along a line, 
as a Gaussian line, using the error function ( ).erf x However, we 
arrive at the expression: 

            ( , )
( , )

1
( , )0

2

( )( )  where  
( )

exp k t
k t

k
k k t

l d q tx d
q t

c dtρ = =∫  

in which q1(t) and q2(t) are polynomials of degree 6, and ),( tkc is a 
polynomial in t. In general, an exponential whose exponent is a 
rational function cannot be integrated in closed form. 
Nevertheless, we can still implement the line primitive by 
approximating )(xkρ as explained in the next subsection. 
 

3.2 Resampled Line Approximation 

Following the theory of anti-aliasing in object space, we 
would need to first, map the low-pass filter of every point along 
the line to object space using inverse perspective mapping; 
second, convolute each of these with the Gaussian reconstruction 
kernel to obtain a resampled point; and finally to sum all to form 
the resampled line. One way to render the resampled line is to use 
a set of discrete point samples along the line to do an 
approximation. However the immediate questions are how many 
points should be used, and how the points should be placed along 
the line. This is known as the footprint assembly problem [2, 11]. 
Instead, we propose a more precise and mathematically well 
formulated method which approximates the resampled line based 
on the two endpoints S1I and S2I of the line; refer to Figure 5 for 
the following discussion. 

To do that, we first note that the integration of the 
convolution of each Gaussian point on a line with a Gaussian 
kernel is equal to the convolution of the corresponding Gaussian 
line with the Gaussian kernel. Hence we first integrate the low-
pass filter for every point along the line to get the line low-pass 
filter. Then, we inverse perspective map this filter to object space 
to get the inverse line low-pass filter. The latter is then convoluted 
with the Gaussian reconstruction kernel to obtain the resampled 
line, which can then be perspective projected to image space as 
the resampling filter kρ  of line k.  

For practical purposes, we use Gaussian kernels with cutoff 
radii r in the above computation. In addition, we rely on the 
following properties of perspective mapping and Gaussian 
convolution: 

[Property 1]  A convex shape remains convex after the mapping. 
This also means that a straight line from object space is mapped 
to a straight line in screen space and vice versa, and a 
continuous line in object space is mapped to a continuous line 
in screen space and vice versa. 

[Property 2] The convolution of a function having finite influence 
with the Gaussian kernel having a cutoff radius results in a 
convoluted function having finite influence. The convoluted 
function is a scaled and blurred version of the original function.  

[Property 3]  Using a combination of local affine approximation 
and affine mapping assumption, together called local affine 
assumptions, a resampled point is approximated by an elliptical 
Gaussian, which is a unit Gaussian that has both a scaling and 
rotation operation performed on it. Its intensity is inversely 
proportionally to the scaling of the unit Gaussian [14]. 

For clarity, we discuss the above approximation of the 
resampled line in three parts: first, its shape (the outline of the 
resampled line), then its content (the outcome of the convolution 
before modulation by the intensity), and finally its intensity (used 
to modulate the content).  

Shape Determination. We adopt the abbreviated process 
which bypasses the calculation of (S1O, S2O) to approximate the 
shapes of the resampled endpoints of the line using ( , )k tV : the 
shape of the resampled line is a scaled version of the shape of the 
inverse line low-pass filter [Property 2]. This means that the 
shapes of the resampled endpoints, i.e. resampled points at 
endpoints of the line, are scaled versions of (S1O, S2O), which are 
ellipses under the local affine assumptions. With this, we can 
determine the shape of the resampled line by connecting the 
shapes of the resampled endpoints with tangent lines [Property 1]. 

See Figure 5. Let lt1 and lt2 be the tangent lines at the 
intersection points of the line with the Gaussian endpoints. These 
tangent lines partition the line low-pass filter into three parts: the 
two end parts that contain the Gaussian endpoints, and the 
remaining middle part. Let lt1 and lt2 map to lt1’ and lt2’ 
respectively due to the inverse perspective mapping, and lt1’ and 
lt2’ correspond to lt1” and lt2” respectively due to the scaling of the 
inverse end parts. Then by [Property 1], lt1’ and lt2’ are tangent 
lines at the intersection points of the inverse line with the inverse 
Gaussian endpoints. Therefore we approximate lt1” and lt2” to be 
tangent lines at the intersection points of the inverse line with the 
resampled endpoints. 

Content Determination. Refer to Figure 6. It shows for a 
line starting at A and extending beyond B’, its resampled line (line 
3) between A’ and B’ is a Gaussian line that is a scaled and 
blurred version of the inverse line low-pass filter between A and B 
[Property 2]. Note that we use  only one local affine 
approximation for the calculation of the content between A and B’ 
instead of different local affine approximation for every point on 
this part of the line. With this resampled line, the content of the 
resampled end part is a scaled version of the content of the inverse 
perspective mapping of the end part (with the local affine 
assumptions). The content of the resampled middle part between 
lt1” and lt2” is approximated by a scaled version of the content of 
the inverse perspective mapping of the middle part, which 
connects both resampled end parts to create a continuous content. 
We can texture the content of the resampled line using the 
influence texture of a Gaussian line with unit variance. 

Intensity Determination. By determining the Jacobians 
( ,0) ( , ) and 

kk k lJ J  at both endpoints of line k, we can calculate the 
intensities ( ,0) ( , ) and 

kk k lI I  at both resampled endpoints [Property 
3]. Every point on the line has a different intensity; we 
approximate the intensity of these points by linearly interpolating 
between ( ,0) ( , )and .

kk k lI I The content is modulated by the intensity. 



 

Figure 6: Convolution of the inverse line low-pass filter (line 4 from 
A to B’) with the Gaussian reconstruction kernel (line 5 with cutoff 
r) shown in 2D. The result is a line Gaussian between A’ and B’ 
(line 3) which is the convolution from A to B (line 1) plus the 
convolution from B onwards (line 2). 

This approximation approach is in line with the calculation of the 
content of the resampled line.  

We note that the accuracy of the above approximation is 
largely dependent on the correctness and accuracy of the 
computations of shapes at the endpoint ellipses. Poor accuracy 
results when the local affine assumptions for the two endpoints do 
not hold well. This happens when v  (the direction from the 
starting point to the ending point) of the line is nearly parallel to 
the eye viewing direction. In such a case, the error caused by the 

deviation of the affine transformation from the perspective 
projection increases dramatically, and the shape of the line cannot 
be approximated resulting in its content being textured with a lot 
of mapping errors. 

4. RENDERING  
 
Figure 7 shows our rendering pipeline for hybrid models 

represented by points, line segments and triangles. This pipeline 
supports high quality anti-aliased points and line segments 
rendering, while triangles are rendered without anti-aliasing. 
Compared to the standard rendering pipeline, our rendering 
pipeline differs in two aspects. First, two extra stages, 
parameterization and surface transformation, are added after the 
view transformation stage. The parameterization stage computes 
the Jacobians and ellipse equations. These values are then passed 
to the surface transformation stage to compute the vertices for 
mapping influence textures. Second, an extra visibility and 
blending stage is added after the scan conversion stage. We 
choose to use the modified Z3 algorithm [8] as we need to blend 
resampled lines together and to handle transparency. Since 
existing graphics hardware does not support this stage, we 
implemented the whole rendering pipeline in software. We note 
that the performance of the pipeline can be improved with parallel 

Figure 5: Approximation of the resampled line. 



 

Figure 7: The rendering pipeline for hybrid models. The rendering of 
triangles follows the dashed arrows while the rendering of line 
segments and points follows the bold arrows. 

processing support, as well as line stripping and fanning support 
similar to the case of triangle stripping and fanning.  

Line Rendering. In Section 3.1, we derive a way to compute 
the Jacobian ),( tkJ  at any point on a line. Using ,),( tkJ we 
compute ( , ) ,k tV which determines an elliptical Gaussian. By 
substituting t  with 0  and ,kl we are able to approximate the 
shape of the resampled endpoints of the line with ellipses. Using 
standard algebra [16], we derive 18 vertices (in line with Section 
3.2 on the shape determination) in two phases to texture the 
content of a line primitive (Figure 8): 
[Phase 1: Deriving vertices 1 to 8]. Vertices 1 to 4 are vertices on 

the tangent lines touching the border of the ellipses. Vertices 
5 to 8 are the intersection points of the ellipses with the line 
(extended to intersect each ellipse at two vertices). 

[Phase 2: Deriving vertices 9 to 18]. Vertices 9 and 10 are 
intersection points of line 5,8  with the lines 1,4  and 2,3  
respectively. The last 8 vertices are intersection points of the 
tangent lines at vertices 5 to 8 with the two lines passing 
through 1,2  and 3,4 . 

We have included a short discussion on how to compute the 
tangent points of the endpoint ellipses in the Appendix; see also 
[16]. We use both an end and a middle texture sliced from a pre-
computed influence texture obtained by integrating unit 
Gaussians, of cutoff radius r, from 0 to l for some l > 2r, to texture 
lines’ contents (as mentioned in Section 3.2 on the content 
determination). Let  

             
21
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( , ) ( ( ( )) ( )),yT x y e erf r y erf xπ

π
−= − +  and 
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Here, x is defined as the coordinate along the line, while y is 
in the direction perpendicular to the line. The term erf denotes the 
error function. The result of the integration of unit Gaussians from 
[0,  ]r is the end texture, given by T1 when x2 + y2  ≤ r2, and by T2 
when  x2 + y2 > r2, 0 < x < r and –r < y < r; the result of the 
integration of unit Gaussians from (r, l – r) is the middle texture, 
given by T2 when r < x < l – r and –r < y < r.  

Note that each end part of a line is partitioned with center at 
vertex 9 (or 10) into four sections for texturing content. This 
aligns the center of the end texture with vertex 9 (or 10) to 
achieve a better texturing for the endpoint ellipse. The less 
expensive alternative of texturing the whole end texture in one 
step is sufficient as we learn from our experiment, though 
undesirable skewing of a line may appear occasionally when the 
line is very close to the eye. 

The content of the line is then linearly modulated by the 
intensity, as mentioned in Section 3.2 on the intensity 
determination. Finally the resampled line is multiplied with the 
color coefficient wk and blended into the rendering buffers, 
including color buffers, z buffers and accumulation buffers.  

Handling of Short Lines. Short lines are lines whose 
resampled endpoints overlap each other. A line may not be short, 
but may become a short line in the image due to projection. 
Similar to the usual line case, we derive 15 points for texturing the 
content of a short line (Figure 8). Points 6, 12, and 17 are derived 
by intersecting the line connecting the intersection points of the 
ellipses with lines 5,8 , 1,2  and 3,4 respectively. Each short line 
is textured using only the end texture in our approximation. We 
note that a better approximation would require the computation of 
an influence texture that depends on the length of the short line. 
This means either storing more pre-computed influence textures 
(besides the end and the middle texture computed for the usual 
line) or computing the required influence textures in real-time. 
This is however unnecessary as our experiment shows that our 
simple approximation using only the end texture is generally 
sufficient to obtain good quality anti-aliased results. 

 
5. EXPERIMENTAL RESULTS 

 
We have conducted an experiment to assess our proposed 

anti-aliased line segment rendering method. In the experiment, an 
adaptive method based on local surface features is implemented to 
extract triangle and line segment primitives from pure point 
models. To form triangles, points expand through their 
neighboring points to first form circular discs that represent them 
within a small error. These discs are subsequently split into 
triangles. To form line segments, each point is tested with their 
neighboring points in turn to first form a short line segment and 
then be extended longer to represent more points that are within a 
small error away from the line segment. Remaining points of the 
model that are not represented by any triangle and line segment 
remain as points of the hybrid model. We term hybrid point, line 
segment and triangle models as PLT hybrid models, and hybrid 
point and line segment (without triangle) models as PL hybrid 
models. 

We implemented the rendering pipeline described in Section 
4 in C/C++, and performed the experiment on a P4 1.8 GHz with 
512 MB RAM PC. Note that the rendering results of pure point 
models reported here are also from our own implementation of the 
theory given in [14, 19] rather than the probably more optimized 
version of [18]. Figure 8: Texturing line contents with influence textures. 



 

In the experiment, we compare the quality and performance 
of rendering each model in Table 1 using (i) points only, (ii) a PL 
hybrid, and (iii) a PLT hybrid. Refer to our webpage 
http://www.comp.nus.edu.sg/~tants/line/ for video clips on the 
results. Figure 1 and Figure 9 show the rendering outcome of PL 
hybrid models in Table 1. 

 
Points PL Hybrid PLT Hybrid 

Models #  
points 

#  
points 

# 
 lines 

#  
points 

#  
lines 

#  
triangles 

Armadillo 172974 155264 2336 155264 2336 0 
Ball joint 137062 89915 5563 90112 5551 135 
Golf club 209779 39138 12903 53053 11519 7190 
Igea artifact 134345 75517 6450 75536 6444 41 
Isis 187644 89650 10229 86876 10207 180 
Male 303380 115329 17651 116304 17572 513 
Upper body 148138 88709 6414 88591 6144 57 
Rabbit 67038 46045 2533 46045 2533 0 
Rocker arm 40177 26188 1454 26830 1336 273 
Santa 75781 62601 1696 62601 1696 0 
Screwdriver 27152 17458 1002 17604 972 86 
Teeth 116604 62799 4104 56327 3952 5435 

Table 1: Hybrid models obtained through pure point models. 

PL Hybrid PLT Hybrid 
Quality Quality 

 
Models 

mse nccm 
Speed  
Up % mse nccm 

Speed  
Up % 

Armadillo 0.0017 0.9999 6.07 0.0017 0.9999 6.07 
Ball joint 0.0156 0.9985 25.31 0.0034 0.9999 25.13 
Golf club 0.0048 0.9998 63.32 0.0045 0.9997 59.48 
Igea artifact 0.0034 0.9998 27.88 0.0034 0.9997 27.61 
Isis 0.0132 0.9982 41.55 0.0132 0.9982 43.03 
Male 0.0051 1.0001 51.16 0.0051 1.0003 50.97 
Upper body 0.0076 0.9999 29.90 0.0076 0.9999 30.09 
Rabbit 0.0036 0.9999 23.62 0.0036 0.9999 23.62 
Rocker arm 0.0016 1.0001 24.03 0.0016 1.0002 24.25 
Santa 0.0021 0.9999 13.19 0.0021 0.9999 13.19 
Screwdriver 0.0225 0.9996 26.55 0.0230 0.9997 26.30 
Teeth 0.0013 0.9998 52.71 0.0012 0.9997 49.83 

 

Table 2: Rendering comparisons between pure point models 
and hybrid models. 
 

Table 2 is obtained by rendering color images (each channel 
has 256 values) of size 512x512 pixels for 50 different viewpoints 
chosen around each of the model without any priori knowledge. 
The table shows the mean square error (mse, measuring the 

difference) and the normalized cross-correlation measure (nccm, 
measuring the similarity with 1 indicating identical image) [1] 
between the corresponding images of pure point and the two other 
hybrid models. These numerical results again suggest that the 
rendered hybrid models and their corresponding pure point 
models indeed have nearly the same quality. 

Table 2 also shows significant speedups are achieved when 
rendering hybrid models as compared with their corresponding 
pure point models. For the twelve models used in this experiment, 
an average speedup of 32.11% is gained for PL hybrid models, 
and 31.63% for PLT hybrid models. Maximum speedups are 
obtained while rendering the Golf club model. The value is 
63.32% for the Golf club’s PL hybrid and 59.48% for the PLT 
hybrid. 

 
6. CONCLUDING REMARKS 
 

This paper demonstrates the feasibility of high quality 
rendering of 3D hybrid models of points, line segments and 
triangles. In particular, it illustrates a way to render anti-aliased 
line segments. Our experiment shows that the rendered hybrid 
models can achieve similar visual quality as their counterparts 
using points only. Compared to pure point models, hybrid models 
are significantly more efficient.  

Hybrid models with line segments share many of the 
advantages and limitations of pure point models. Among the 
advantages that are important for interactive visualization is the 
fact that level of details can be adjusted locally. The absence of 
explicit connectivity information is a limitation that makes 
deformation more difficult than it is in surface triangulations. 
Also, the use of local affine assumptions in the neighborhood of a 
point or line segment may produce artifacts in the presence of 
highly nonlinear mappings.  

Our current formulation of line segment as a rendering 
primitive have two limitations, due to the rigorous mathematical 
derivations we adopt. Firstly, each line segment can possess only 
one normal. Currently, this requirement rules out the possibility of 
using line segments to render arbitrary ruled surfaces. Secondly, 
each line segment can only be assigned a single color. This is 
because different color influences along the same line segment 
cannot be integrated. However, in practice, this restriction can be 
relaxed. Our experiment shows that rendering linearly texture 

Figure 9: Hybrid points and line segment models rendered by our method. The Upper body model is transparent, 
while the other models are opaque. 



 

mapped line segments can still produce images of reasonably 
good quality. The restriction on the use of only a single normal 
can also be removed when normal maps designated for line 
segments become feasible. 

Many research issues remain in order to place the neglected 
rendering primitive “line segment” on an equal footing with its 
well-known counterparts “triangle” and “point”. First, the 
problem of efficiently acquiring, storing and editing models using 
line segments goes far beyond our discussions in this paper. The 
algorithm we have implemented to extract surface primitives from 
point sets is a computationally expensive pre-processing phase. 
An important topic is to investigate better ways to extract line 
segments from the highly structured point clouds output by 3D 
scanners. Second, our implementation of the rendering pipeline, 
catering to all three types of surface primitives, is software based 
and hence not efficient for interactive applications. The rendering 
pipeline should be mapped to modern programmable GPUs to 
achieve better frame rates. One technical problem involves the 
efficient computation of tangents common to two ellipses. Third, 
using line segment as a rendering primitive provides yet another 
option to support level of details rendering, to be exploited by 
novel data structures and algorithms that efficiently reflect the 
intricate interaction among the different surface primitives 
involved. In conclusion, we believe that the initial experiment 
reported in this paper establishes line segments as a surface 
primitive of potentially equal importance as triangles and points. 
 
ACKNOWLEDGEMENTS 

The pure point models used in our experiment were obtained 
from http://www.cyberware.com. This research is supported by 
the National University of Singapore under grant R-252-000-216-
112.  

REFERENCES 

[1]  I. Avcibas, B. Sankur and K. Sayood. Statistical Evaluation of Image 
Quality Measures. Journal of Electronic Imaging, vol. 11:2, 2002, 
pp. 206-223. 

[2] B. Chen, F. Dachille, and A. E. Kaufman. Footprint Area Sampled 
Texturing. In IEEE Trans on Visualization and Computer Graphics, 
vol. 10;2, 2004, pp. 230-240. 

[3] B. Chen and M.X. Nguyen. POP: A Hybrid Point and Polygon 
Rendering System for Large Data. In Proc. of IEEE Visualization 
2001, pp. 45-52. 

[4] O. Deussen, C. Colditz, M. Stamminger and G. Drettakis. Interactive 
Visualization of Complex Plant Ecosystems. In Proc. of IEEE 
Visualization 2002, pp. 219-226.  

[5] T.K. Dey and J. Hudson. PMR: Point to Mesh Rendering, A Feature-
Based Approach. In Proc. of IEEE Visualization 2002, pp. 155-162. 

[6] J.P. Grossman and W.J. Dally. Point Sample Rendering. In Proc. of 
9th Eurographics Workshop on Rendering 1998, pp. 181-192. 

[7] P. Heckbert. Fundamentals of Texture Mapping and Image Warping. 
Master’s Thesis, University of California, Berkeley, 1989. 

[8] N. Jouppi and C. Chang. Z3: An Economical Hardware Technique for 
High-Quality Antialiasing and Transparency. In Proc. of 
Eurographics/SIGGRAPH Workshop on Graphics Hardware 1999, 
pp. 85-93. 

[9] M. Levoy and T. Whitted. The Use of Points as a Display Primitive. 
Technical Report TR 85-022, University of North Carolina at Chapel 
Hill, 1985. 

[10] K.L. Low and T.S. Tan. Model Simplification using Vertex 
Clustering. In Proc. of Symposium on Interactive 3D Graphics 1997, 
pp. 75-81. 

[11] J. McCormack, R. Perry, K. I. Farkas, and N. P. Jouppi. Feline: Fast 
Elliptical Lines for Anisotropic Texture Mapping. In Proc of 
SIGGRAPH 1999, pp. 243-250. 

[12] S.R. Nelson. Twelve Characteristics of Correct Antialiased Lines. 
Journal of Graphics Tools, vol.1:4, 1996, pp. 1-20. 

[13] H. Pfister, M. Zwicker, J. van Baar and M. Gross. Surfels: Surface 
Elements as Rendering Primitives. In Proc. of SIGGRAPH 2000, pp. 
335-342. 

[14] L. Ren, H. Pfister and M. Zwicker. Object Space EWA Surface 
Splatting: A Hardware Accelerated Approach to High Quality Point 
Rendering. In Proc. of Eurographics 2002, pp. 461-470. 

[15] S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution Point 
Rendering System for Large Meshes. In Proc. of SIGGRAPH 2000, 
pp. 343-352. 

[16] W. Stothers. Cabri Pages – Conics, www.maths.gla.ac.uk/~wws/ 
cabripages/algebra.html, 1998. 

[17] J. Weber and J. Penn. Creation and Rendering of Realistic Trees. In 
Proc. of SIGGRAPH 1995, pp. 119-128.  

[18] M. Zwicker, M. Pauly, O. Knoll and M. Gross. Pointshop 3D: An 
Interactive System for Point-based Surface Editing. In Proc. of 
SIGGRAPH 2002, pp. 322-329.  

[19] M. Zwicker, H. Pfister, J. van Baar and M. H. Gross. Surface 
Splatting. In Proc. of SIGGRAPH 2001, pp. 371-378. 

 

APPENDIX 
Following [14], the ellipse of a point can be determined by decomposing 

( , )k tV  into a scaling matrix 0
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0
0
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r
Λ
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 and a rotation matrix 
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Together with translation ( , )x yt t  (depends on 

the location of the point), the equation of an ellipse is: 
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An ellipse is a specific type of plane conic. A plane conic has an equation 
of the form: 

2 2 0 .a x b x y c y f x g y h  + + + + + =  

In terms of homogeneous coordinates, this becomes 

2 2 2 0 .a x b x y c y f x z g y z h z  + + + + + =  

Given two ellipses C and D, we find the dual C’ of C with respect to D. 
The intersection of C’ and D produces the common tangent points. The 
plane conic can be written as: 

            0
2 2

where  ( , , ) and 2 2 .
2 2
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Suppose that C: 0T
Cx M x =  and D: 0T

Dx M x =  are the two ellipses. Then 
the dual of C with respect to D is the conic with 
equation 1 0.T

D C Dx M M M x− =  

After computing the duals, we can combine the conic equations of the 
ellipse C and the dual D’ to form a quartic equation and also for D and C’. 
Solving the quartic equation will produce tangent points at both ellipses. 


