

†e-mail: {limchiwa, tants}@comp.nus.edu.sg
‡e-mail: nievergelt@inf.ethz.ch

The 2005 Computer Graphics International, 22-24 June,
Stony Brook, New York, USA.

Rendering Anti-Aliased Line Segments

Keen-Hon Wong, Xin Ouyang, Chi-Wan Lim†, Tiow-Seng Tan† Jürg Nievergelt‡
School of Computing, National University of Singapore Swiss Federal Institute of Technology, Zürich

Abstract

Bridging the modeling and rendering gap between the existing
triangle and point primitives, we explore the use of line segments
as a new primitive to represent and render 3D models. Our main
contribution extends the anti-aliasing theory in texture mapping to
anti-aliased line segment rendering, and presents an
approximation algorithm to render high quality anti-aliased
opaque and transparent line segments in 3D models. This anti-
aliasing technique is empirically validated by building a software
pipeline to render models of any combination of the three types of
modeling primitives: triangles, line segments and points. Our
experiment shows that models comprising line segments are
generally more efficient and effective for high quality rendering
as compared to their corresponding pure point models.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation – Anti-aliasing, Viewing Algorithms; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling –
Curve, surface, solid, and object representations; I.3.6 [Computer
Graphics]: Methodology and Techniques – Graphics data
structures and data types

Keywords: rendering systems, point-based graphics, surface
reconstruction, object scanning, level of details

1. INTRODUCTION

Rendering, the final link in the chain that creates an image of

a real or conceived object, is based on a model of the object to be
depicted. Objects may be represented by different models for
different purposes. For the purpose of rendering, a model needs no
more details than necessary to generate an image of desired
resolution and quality. Often, a compact representation that
permits efficient processing is equally, if not more, important than
details. It is therefore interesting to study different models that
adapt to different requirements.

Historically, surface triangulation was the predominant
model permeating all or most of the stages of the graphics
pipeline. Recently, other models have become prominent, such as
point based methods [6, 13, 15, 19] and image based rendering,
that emphasize the efficiency of rendering at the cost of neglecting
surface geometry and topology. This paper aims to contribute in
the search for line segment models that are tuned to the needs of
real-time rendering.

The aliasing problem in computer graphics is caused by the
disparity between image representation in the continuous real
world and a discrete computer world. Images are represented as
continuous signals in the world space, and discrete signals in the
screen space. The screen images are created by sampling and
quantizing their corresponding world space images. If the
sampling frequency is less than the Nyquist frequency, it is
possible that high frequency portions of the continuous signals
will masquerade as low frequencies, creating aliasing effects.

Various anti-aliasing techniques propose the use of a low
pass filter to stop high frequencies before sampling, so as to
render high quality anti-aliased texture mapped triangle models.
Recently the Elliptical Weighted Average (EWA) filter [7] has
been extended for rendering anti-aliased high quality point models
[14, 19]. This paper is a contribution to the use of anti-aliasing
techniques for high quality rendering of surface primitives, in
particular line segments.

It is interesting to observe the fact that the more prominent
rendering primitives, the point and the triangle, are simplexes in 0
and in 2 dimensions, whereas the 1-simplex, i.e. the line segment,
has been used as a primitive only in special contexts, such as [4,
10]. This is surprising in view of the fact that lines are prominent
features in many types of scenes and applications, particularly of
man-built objects; see the Screwdriver and Rocker arm models in
Figure 1. Even objects of irregular shape usually contain some
features that are best modeled by lines, such as ridges or
boundaries of various kinds; see the Ball joint and Upper body
models in Figure 1. Figure 2 illustrates a knee model represented
by triangles, points as well as hybrid points and line segments.

It appears wasteful to ignore lines, a feature that appears
naturally in many scenes and readily translates into a simple
primitive, the line segment. A line segment should be treated as a
primitive, rather than as a degenerate special case of a triangle or
polygon, for the same reason that a point is treated as a primitive
rather than as a tiny triangle or polygon. A line segment is a
simpler object than a long, thin triangle or rectangle. Three
advantages come with using line segment as a primitive in surface
modeling and rendering.

Figure 1: Hybrid point and line segment models rendered by our method.

Figure 3: Opaque (top) and transparent (bottom) anti-aliased
checkerboard line segment models. Each line segment is painted
with only one color and line segments of different colors are
separately laid in checker boxes.

First, line segments, together with points and triangles,
provide an effective representation of object surfaces of any
shape. Triangles are suitable for uses in surface areas of flat
regions, line segments for cylindrical and conical regions, and
points for jagged regions. Second, the use of line segments
facilitates compact representations of models that are smooth
along one dimension. In comparison with triangle meshes, line
segments save storage space by keeping less connectivity
information among vertices. In comparison with point clouds, a
few line segments can replace a large number of sequentially
aligned points. Finally, line segments can be rendered much more
efficiently than sequences of points. An experiment in Section 5
shows a realistic example where line segments achieve a speedup
of 63% as compared to pure point models.

In this paper, we focus on studying the feasibility of using
line segment as a rendering primitive, designing corresponding
algorithms, reporting on an experiment, and describing research
directions with potential to make line based rendering a standard
technique in the growing arsenal of graphics tools.

Our main contribution is the extension of the anti-aliasing
theory in texture mapping [7] to render anti-aliased line segments
in 3D models. Though the extension does not result in a closed
form solution, we present an approximation to render high quality
anti-aliased opaque and transparent line segments representing 3D
models as shown in Figure 1 and Figure 9. The empirical
validation of this approximation is based on an experiment
consisting of two main components.

First, we implement a method to extract primitives from
point sets. For a surface given by a set of points in 3D space, we
use an adaptive method based on local surface features to extract
all three primitives, points, line segments and triangles. This
primitive extraction algorithm is developed for the purpose of
assessing quality and performance of our proposed anti-aliased
line segment rendering technique. Designing more efficient
primitive extraction algorithm is left to future work.

Second, we implement a software graphics pipeline to render
3D models represented with any combinations of points, line
segments, and triangles. Our experiment shows that the rendered
quality of hybrid models is comparable to their corresponding
high quality anti-aliased point models. In addition, hybrid models
are rendered in significantly less time. This establishes the hybrid
model as a competitive rendering alternative to pure point models.

Here is an overview of the paper. Section 2 summarizes
related work. Section 3 presents the anti-aliasing theory for
rendering line segments and an approximation used in our
implementation. Section 4 describes a pipeline to render point,
line segment and triangle primitives. Section 5 reports on our
experiment to measure the rendering quality and efficiency of
hybrid models as compared to pure point models. Section 6
concludes the paper with our ongoing work.

2. RELATED WORK

Point Based Rendering. In 1984, Levoy and Whitted [9]

pointed out that classic modeling primitives, i.e. triangles (or
polygons), were less appealing for rendering objects with complex
geometry. They suggested decoupling modeling geometry from
the rendering process by introducing point as a universal
primitive, where each point is associated with a small surface area
and a normal. Using this idea, Rusinkiewicz and Levoy [15]
proposed the QSplat system to render 3D point models. The
QSplat system was designed during the course of the Digital
Michelangelo Project to render models of a scale of hundreds of
millions of triangles at interactive frame rates. In 1998, Grossman
and Dally [6] developed the point sample rendering algorithm for
high quality real-time rendering of complex objects. Sample
points are rendered without any knowledge of surface topology.

In 2000, Pfister et al. [13] introduced the surfel, i.e. surface
element, paradigm and developed the surfel point rendering
pipeline. In 2001, Zwicker et al. [19] extended Heckbert’s EWA
filter [7], and derived a rigorous mathematical formulation of
screen space EWA texture filtering for irregular point data. Based
on the newly derived resampling filter, they developed another
point rendering technique called surface splatting, which can
produce high quality texture filtered images from point samples.
In 2002, Ren et al. [14] proposed a hardware implementation of
surface splatting by building a visibility map to speed up point
visibility testing; however, it does not handle transparency. Our
work on rendering line segments follows in the direction of [13,
14, 19]. We extend the anti-aliasing theory in texture mapping [7]
to anti-aliased line segments in 3D models; see Figure 3.

Line Segment Rendering. The idea of using a line segment
instead of a point as a rendering primitive appears to have
originated for the purpose of rendering features of plants, which
naturally exhibit long, thin line features, such as twigs [17].
Deussen et al. [4] rendered plant images using a mix of triangles,
line segments and points, preferring triangles when high quality is

Figure 2: A knee model in three different representations.

required, line segments or points when details can be neglected. In
contrast to their technique of using line segments as auxiliary
primitives to speed up rendering of low level-of-detail sub-
images, the approach presented in this paper treats line segments
as first class primitives to be used for high quality rendering.
Thus, the development of a technique for anti-aliased line
segments is a major contribution.

Anti-aliased Lines. Many papers covered the problem of
rendering anti-aliased lines on screen. A good reference on the
desirable characteristics for an anti-aliased line is described by
Nelson [12]. In contrast, we render anti-aliased 3D lines where
each line has an associated surface area and a normal.

Hybrid Rendering. Chen and Nguyen [3] introduced a
hybrid point and polygon rendering system called POP, in which a
point is represented by a bounding sphere as in the QSplat system
[15]. Dey and Hudson used a screen pixel as a point in another
hybrid system PMR [5]. In our hybrid rendering solution, a point
is an anti-aliased splat suggested by Zwicker et al. [19]; points
and line segments can be seamlessly hybridized together,
producing high quality images. Both POP and PMR build
hierarchical LOD structures for models. During rendering, the
LOD control decides in what circumstances triangles should be
substituted by points to maximize the frame rate. Both hybrid
systems have their emphasis on performance. Nevertheless, in our
discussion, primitives are chosen based on local features of object
surfaces. For example, parallel line segments are used to
approximate a cylinder instead of using a bunch of thin triangles.
It is beyond the scope of this paper to discuss acceleration due to
LOD techniques as done in the above references.

3. ANTI-ALIASING LINE RENDERING

In order to use the line segment (to be abbreviated as “line”

in Sections 3 and 4) as a first-class rendering primitive, we
develop a mathematically rigorous anti-aliasing theory and an
approximation that admits efficient algorithms. These have been
tested in the implementation described in Sections 4 and 5.

3.1 Anti-Aliasing Line

To reconstruct a surface from a set of lines, we define ()kP t
to be a point on a line k with length kl where [0,]kt l∈ . Let Q
be a point on the object surface. We define a 2D local coordinate
system S within a small neighborhood around Q (Figure 4). A
set L of lines in the neighborhood of Q is parameterized to .S
Each point ()kP t has a mapping to a point () .ku t ∈S Let r be
the reconstruction filter and kw be the color coefficient of line k.
Hence, the color of any point ,u ∈S as a continuous
function),(ufc can be evaluated by accumulating contributions
from lines using r:

0
() (()) .kl

c k k
k L

f u w r u u t dt
∈

= − ∑ ∫

We define an invertible 2 2ℜ → ℜ mapping ()x m u= from
S to screen space;)(xh as the low-pass filter; and)(xi as the
sampling function. Following [7, 14], we have the corresponding
equations for the 3 steps of proper anti-aliasing:

1. Warping: The color of the point x in the screen space is
))(())(()(11 xmfxmfxg ccc

−− == .
2. Band-limit the frequency:

2

' () () () () ()c c cg x g x h x g h x dξ ξ ξ
ℜ

= ⊗ = ⋅ − ∫ .

3. Sampling: '() () ().cg x g x i x=

We expand the above relations in reverse order to obtain:

' () ()c k k
k L

g x w xρ
∈

=∑

2

1

0
where () (() ()) ()kl

k kx r m u t h x d dtρ ξ ξ ξ−

ℜ
= − ⋅ − ∫ ∫ is the

resampling filter for line k. Substituting the mapping ()m uξ =
into ()k xρ yields:

20
() (()) (()) .kl

k k
mx r u u t h x m u du dt
u

ρ
ℜ

∂= − ⋅ − ⋅
∂∫ ∫

Replacing the general mapping 1()m ξ− with its local affine
approximation 1

(,) ()k tm ξ− yields:

2 (,) (,)0
() (()) (())kl

k k k t k tx r u u t h x m u J du dtρ ℜ
= − ⋅ − ⋅ | | ∫ ∫

(,)
(,)where .k t
k t

m
J

u

∂
=

∂

Note that),(tkJ is the Jacobian for the affine mapping at

().ku t We then use the Gaussian kernels () ()
rVr u g u= as the

reconstruction filter and () ()
hVh x g x= as the low-pass filter with

variances rV and hV respectively to get:

2

2

2 1 1
(,) (,)

(,) (,)0

1
(,) (,) (,)0

1
(,)

() (()) (())

 (()) ((()))

 (()) (())

k

r h

k

r h

Tr
k t h k t

l

k V k V k t k t

l

V k V k t k t k t

V k k tJ V J

x g u u t g x m u J du dt

g u u t g m x u J J du dt

g u u t g m x u

ρ

− −

 ℜ

−
 ℜ

−

ℜ

= − ⋅ − ⋅ | |

 = − ⋅ − ⋅ | |

 = − ⋅ −

∫ ∫

∫ ∫

(,)

0

1 1 1
(,) (,) (,) (,)0

 (() ()) where .

k

Tk

k t

l

l

V k t k k t k t h k t r

du dt

g m x u t dt V J V J V− − −

= − = +

∫ ∫

∫
Note that),(tkV is the variance of an elliptical Gaussian.

Computing .)(tk,J Similar to [14], we construct a local
surface coordinate system for every point)(tPk on line k by
approximating the surface with its tangent plane given by the line
normal .kn This coordinate system is defined by two orthogonal
basis vectors u and ,v where v is in the direction from the
starting point to the ending point of the line, and .ku v n= ×

We note that the object space coordinate of)(tPk is
o t v+ where o is the position of the starting point of the line in
object space. Hence a point),(vu ss=µ in the local surface
coordinate system of)(tPk corresponds to a point

vsusvtop vu
o +++=)()(µ in object space. If we assume the

mapping from object space to camera space only involves uniform

Figure 4: 2D parameterization of point Q’s neighborhood to the
local coordinate system .S The color of Q is evaluated by
accumulating contributions from the set L of lines of various colors
in .S

scaling ,S rotation ,R and translation ,T the corresponding point
of)(µop in the camera space is:

() ()

()
 where (), , and .

c o

u v

u v

p R S p T
R S o T t R S v s R S u s R S v
o s u t s v

o R S o T u R S u v R S v

µ µ= +
= + + + +
= + + +

= + = =

Let ()x y zo o ,o ,o= be the center, ()x y zu u ,u ,u= and
(, ,)x y zv v v v= be the basis vectors defining a local surface

coordinate system in camera space. Then the Jacobian),(tkJ at
point)(tuk is:

(,) 2

2

()
()()

where
2 tan()

x z z x x z z x x z z x
k t

z y y z z y y z z y y zz z

h
fov

u o u o t u v u v v o v o
J

u o u o t u v u v v o v oo t v
v

η

η

− + − −⎡ ⎤
= ⎢ ⎥− + − −+ ⎣ ⎦

= .

As in [14], η is a scaling factor determined by the view
frustum where hv and fov denote the view port height and field of
view of the view frustum respectively.

No Closed Form Solution. To simplify (),k xρ we attempt to
find a closed form solution since there exists a closed form
approximation for the integration of Gaussian points along a line,
as a Gaussian line, using the error function ().erf x However, we
arrive at the expression:

 (,)
(,)

1
(,)0

2

()() where
()

exp k t
k t

k
k k t

l d q tx d
q t

c dtρ = =∫

in which q1(t) and q2(t) are polynomials of degree 6, and),(tkc is a
polynomial in t. In general, an exponential whose exponent is a
rational function cannot be integrated in closed form.
Nevertheless, we can still implement the line primitive by
approximating)(xkρ as explained in the next subsection.

3.2 Resampled Line Approximation

Following the theory of anti-aliasing in object space, we
would need to first, map the low-pass filter of every point along
the line to object space using inverse perspective mapping;
second, convolute each of these with the Gaussian reconstruction
kernel to obtain a resampled point; and finally to sum all to form
the resampled line. One way to render the resampled line is to use
a set of discrete point samples along the line to do an
approximation. However the immediate questions are how many
points should be used, and how the points should be placed along
the line. This is known as the footprint assembly problem [2, 11].
Instead, we propose a more precise and mathematically well
formulated method which approximates the resampled line based
on the two endpoints S1I and S2I of the line; refer to Figure 5 for
the following discussion.

To do that, we first note that the integration of the
convolution of each Gaussian point on a line with a Gaussian
kernel is equal to the convolution of the corresponding Gaussian
line with the Gaussian kernel. Hence we first integrate the low-
pass filter for every point along the line to get the line low-pass
filter. Then, we inverse perspective map this filter to object space
to get the inverse line low-pass filter. The latter is then convoluted
with the Gaussian reconstruction kernel to obtain the resampled
line, which can then be perspective projected to image space as
the resampling filter kρ of line k.

For practical purposes, we use Gaussian kernels with cutoff
radii r in the above computation. In addition, we rely on the
following properties of perspective mapping and Gaussian
convolution:

[Property 1] A convex shape remains convex after the mapping.
This also means that a straight line from object space is mapped
to a straight line in screen space and vice versa, and a
continuous line in object space is mapped to a continuous line
in screen space and vice versa.

[Property 2] The convolution of a function having finite influence
with the Gaussian kernel having a cutoff radius results in a
convoluted function having finite influence. The convoluted
function is a scaled and blurred version of the original function.

[Property 3] Using a combination of local affine approximation
and affine mapping assumption, together called local affine
assumptions, a resampled point is approximated by an elliptical
Gaussian, which is a unit Gaussian that has both a scaling and
rotation operation performed on it. Its intensity is inversely
proportionally to the scaling of the unit Gaussian [14].

For clarity, we discuss the above approximation of the
resampled line in three parts: first, its shape (the outline of the
resampled line), then its content (the outcome of the convolution
before modulation by the intensity), and finally its intensity (used
to modulate the content).

Shape Determination. We adopt the abbreviated process
which bypasses the calculation of (S1O, S2O) to approximate the
shapes of the resampled endpoints of the line using (,)k tV : the
shape of the resampled line is a scaled version of the shape of the
inverse line low-pass filter [Property 2]. This means that the
shapes of the resampled endpoints, i.e. resampled points at
endpoints of the line, are scaled versions of (S1O, S2O), which are
ellipses under the local affine assumptions. With this, we can
determine the shape of the resampled line by connecting the
shapes of the resampled endpoints with tangent lines [Property 1].

See Figure 5. Let lt1 and lt2 be the tangent lines at the
intersection points of the line with the Gaussian endpoints. These
tangent lines partition the line low-pass filter into three parts: the
two end parts that contain the Gaussian endpoints, and the
remaining middle part. Let lt1 and lt2 map to lt1’ and lt2’
respectively due to the inverse perspective mapping, and lt1’ and
lt2’ correspond to lt1” and lt2” respectively due to the scaling of the
inverse end parts. Then by [Property 1], lt1’ and lt2’ are tangent
lines at the intersection points of the inverse line with the inverse
Gaussian endpoints. Therefore we approximate lt1” and lt2” to be
tangent lines at the intersection points of the inverse line with the
resampled endpoints.

Content Determination. Refer to Figure 6. It shows for a
line starting at A and extending beyond B’, its resampled line (line
3) between A’ and B’ is a Gaussian line that is a scaled and
blurred version of the inverse line low-pass filter between A and B
[Property 2]. Note that we use only one local affine
approximation for the calculation of the content between A and B’
instead of different local affine approximation for every point on
this part of the line. With this resampled line, the content of the
resampled end part is a scaled version of the content of the inverse
perspective mapping of the end part (with the local affine
assumptions). The content of the resampled middle part between
lt1” and lt2” is approximated by a scaled version of the content of
the inverse perspective mapping of the middle part, which
connects both resampled end parts to create a continuous content.
We can texture the content of the resampled line using the
influence texture of a Gaussian line with unit variance.

Intensity Determination. By determining the Jacobians
(,0) (,) and

kk k lJ J at both endpoints of line k, we can calculate the
intensities (,0) (,) and

kk k lI I at both resampled endpoints [Property
3]. Every point on the line has a different intensity; we
approximate the intensity of these points by linearly interpolating
between (,0) (,)and .

kk k lI I The content is modulated by the intensity.

Figure 6: Convolution of the inverse line low-pass filter (line 4 from
A to B’) with the Gaussian reconstruction kernel (line 5 with cutoff
r) shown in 2D. The result is a line Gaussian between A’ and B’
(line 3) which is the convolution from A to B (line 1) plus the
convolution from B onwards (line 2).

This approximation approach is in line with the calculation of the
content of the resampled line.

We note that the accuracy of the above approximation is
largely dependent on the correctness and accuracy of the
computations of shapes at the endpoint ellipses. Poor accuracy
results when the local affine assumptions for the two endpoints do
not hold well. This happens when v (the direction from the
starting point to the ending point) of the line is nearly parallel to
the eye viewing direction. In such a case, the error caused by the

deviation of the affine transformation from the perspective
projection increases dramatically, and the shape of the line cannot
be approximated resulting in its content being textured with a lot
of mapping errors.

4. RENDERING

Figure 7 shows our rendering pipeline for hybrid models

represented by points, line segments and triangles. This pipeline
supports high quality anti-aliased points and line segments
rendering, while triangles are rendered without anti-aliasing.
Compared to the standard rendering pipeline, our rendering
pipeline differs in two aspects. First, two extra stages,
parameterization and surface transformation, are added after the
view transformation stage. The parameterization stage computes
the Jacobians and ellipse equations. These values are then passed
to the surface transformation stage to compute the vertices for
mapping influence textures. Second, an extra visibility and
blending stage is added after the scan conversion stage. We
choose to use the modified Z3 algorithm [8] as we need to blend
resampled lines together and to handle transparency. Since
existing graphics hardware does not support this stage, we
implemented the whole rendering pipeline in software. We note
that the performance of the pipeline can be improved with parallel

Figure 5: Approximation of the resampled line.

Figure 7: The rendering pipeline for hybrid models. The rendering of
triangles follows the dashed arrows while the rendering of line
segments and points follows the bold arrows.

processing support, as well as line stripping and fanning support
similar to the case of triangle stripping and fanning.

Line Rendering. In Section 3.1, we derive a way to compute
the Jacobian),(tkJ at any point on a line. Using ,),(tkJ we
compute (,) ,k tV which determines an elliptical Gaussian. By
substituting t with 0 and ,kl we are able to approximate the
shape of the resampled endpoints of the line with ellipses. Using
standard algebra [16], we derive 18 vertices (in line with Section
3.2 on the shape determination) in two phases to texture the
content of a line primitive (Figure 8):
[Phase 1: Deriving vertices 1 to 8]. Vertices 1 to 4 are vertices on

the tangent lines touching the border of the ellipses. Vertices
5 to 8 are the intersection points of the ellipses with the line
(extended to intersect each ellipse at two vertices).

[Phase 2: Deriving vertices 9 to 18]. Vertices 9 and 10 are
intersection points of line 5,8 with the lines 1,4 and 2,3
respectively. The last 8 vertices are intersection points of the
tangent lines at vertices 5 to 8 with the two lines passing
through 1,2 and 3,4 .

We have included a short discussion on how to compute the
tangent points of the endpoint ellipses in the Appendix; see also
[16]. We use both an end and a middle texture sliced from a pre-
computed influence texture obtained by integrating unit
Gaussians, of cutoff radius r, from 0 to l for some l > 2r, to texture
lines’ contents (as mentioned in Section 3.2 on the content
determination). Let

21

2 2 21 1 1
1 2 2 2 2
(,) ((()) ()),yT x y e erf r y erf xπ

π
−= − + and

21

2 2 21 1
2 2 2(,) ((()))yT x y e erf r yπ

π
−= − .

Here, x is defined as the coordinate along the line, while y is
in the direction perpendicular to the line. The term erf denotes the
error function. The result of the integration of unit Gaussians from
[0,]r is the end texture, given by T1 when x2 + y2 ≤ r2, and by T2
when x2 + y2 > r2, 0 < x < r and –r < y < r; the result of the
integration of unit Gaussians from (r, l – r) is the middle texture,
given by T2 when r < x < l – r and –r < y < r.

Note that each end part of a line is partitioned with center at
vertex 9 (or 10) into four sections for texturing content. This
aligns the center of the end texture with vertex 9 (or 10) to
achieve a better texturing for the endpoint ellipse. The less
expensive alternative of texturing the whole end texture in one
step is sufficient as we learn from our experiment, though
undesirable skewing of a line may appear occasionally when the
line is very close to the eye.

The content of the line is then linearly modulated by the
intensity, as mentioned in Section 3.2 on the intensity
determination. Finally the resampled line is multiplied with the
color coefficient wk and blended into the rendering buffers,
including color buffers, z buffers and accumulation buffers.

Handling of Short Lines. Short lines are lines whose
resampled endpoints overlap each other. A line may not be short,
but may become a short line in the image due to projection.
Similar to the usual line case, we derive 15 points for texturing the
content of a short line (Figure 8). Points 6, 12, and 17 are derived
by intersecting the line connecting the intersection points of the
ellipses with lines 5,8 , 1,2 and 3,4 respectively. Each short line
is textured using only the end texture in our approximation. We
note that a better approximation would require the computation of
an influence texture that depends on the length of the short line.
This means either storing more pre-computed influence textures
(besides the end and the middle texture computed for the usual
line) or computing the required influence textures in real-time.
This is however unnecessary as our experiment shows that our
simple approximation using only the end texture is generally
sufficient to obtain good quality anti-aliased results.

5. EXPERIMENTAL RESULTS

We have conducted an experiment to assess our proposed

anti-aliased line segment rendering method. In the experiment, an
adaptive method based on local surface features is implemented to
extract triangle and line segment primitives from pure point
models. To form triangles, points expand through their
neighboring points to first form circular discs that represent them
within a small error. These discs are subsequently split into
triangles. To form line segments, each point is tested with their
neighboring points in turn to first form a short line segment and
then be extended longer to represent more points that are within a
small error away from the line segment. Remaining points of the
model that are not represented by any triangle and line segment
remain as points of the hybrid model. We term hybrid point, line
segment and triangle models as PLT hybrid models, and hybrid
point and line segment (without triangle) models as PL hybrid
models.

We implemented the rendering pipeline described in Section
4 in C/C++, and performed the experiment on a P4 1.8 GHz with
512 MB RAM PC. Note that the rendering results of pure point
models reported here are also from our own implementation of the
theory given in [14, 19] rather than the probably more optimized
version of [18]. Figure 8: Texturing line contents with influence textures.

In the experiment, we compare the quality and performance
of rendering each model in Table 1 using (i) points only, (ii) a PL
hybrid, and (iii) a PLT hybrid. Refer to our webpage
http://www.comp.nus.edu.sg/~tants/line/ for video clips on the
results. Figure 1 and Figure 9 show the rendering outcome of PL
hybrid models in Table 1.

Points PL Hybrid PLT Hybrid

Models #
points

points

 lines

points

lines

triangles

Armadillo 172974 155264 2336 155264 2336 0
Ball joint 137062 89915 5563 90112 5551 135
Golf club 209779 39138 12903 53053 11519 7190
Igea artifact 134345 75517 6450 75536 6444 41
Isis 187644 89650 10229 86876 10207 180
Male 303380 115329 17651 116304 17572 513
Upper body 148138 88709 6414 88591 6144 57
Rabbit 67038 46045 2533 46045 2533 0
Rocker arm 40177 26188 1454 26830 1336 273
Santa 75781 62601 1696 62601 1696 0
Screwdriver 27152 17458 1002 17604 972 86
Teeth 116604 62799 4104 56327 3952 5435

Table 1: Hybrid models obtained through pure point models.

PL Hybrid PLT Hybrid
Quality Quality

Models

mse nccm
Speed
Up % mse nccm

Speed
Up %

Armadillo 0.0017 0.9999 6.07 0.0017 0.9999 6.07
Ball joint 0.0156 0.9985 25.31 0.0034 0.9999 25.13
Golf club 0.0048 0.9998 63.32 0.0045 0.9997 59.48
Igea artifact 0.0034 0.9998 27.88 0.0034 0.9997 27.61
Isis 0.0132 0.9982 41.55 0.0132 0.9982 43.03
Male 0.0051 1.0001 51.16 0.0051 1.0003 50.97
Upper body 0.0076 0.9999 29.90 0.0076 0.9999 30.09
Rabbit 0.0036 0.9999 23.62 0.0036 0.9999 23.62
Rocker arm 0.0016 1.0001 24.03 0.0016 1.0002 24.25
Santa 0.0021 0.9999 13.19 0.0021 0.9999 13.19
Screwdriver 0.0225 0.9996 26.55 0.0230 0.9997 26.30
Teeth 0.0013 0.9998 52.71 0.0012 0.9997 49.83

Table 2: Rendering comparisons between pure point models
and hybrid models.

Table 2 is obtained by rendering color images (each channel
has 256 values) of size 512x512 pixels for 50 different viewpoints
chosen around each of the model without any priori knowledge.
The table shows the mean square error (mse, measuring the

difference) and the normalized cross-correlation measure (nccm,
measuring the similarity with 1 indicating identical image) [1]
between the corresponding images of pure point and the two other
hybrid models. These numerical results again suggest that the
rendered hybrid models and their corresponding pure point
models indeed have nearly the same quality.

Table 2 also shows significant speedups are achieved when
rendering hybrid models as compared with their corresponding
pure point models. For the twelve models used in this experiment,
an average speedup of 32.11% is gained for PL hybrid models,
and 31.63% for PLT hybrid models. Maximum speedups are
obtained while rendering the Golf club model. The value is
63.32% for the Golf club’s PL hybrid and 59.48% for the PLT
hybrid.

6. CONCLUDING REMARKS

This paper demonstrates the feasibility of high quality
rendering of 3D hybrid models of points, line segments and
triangles. In particular, it illustrates a way to render anti-aliased
line segments. Our experiment shows that the rendered hybrid
models can achieve similar visual quality as their counterparts
using points only. Compared to pure point models, hybrid models
are significantly more efficient.

Hybrid models with line segments share many of the
advantages and limitations of pure point models. Among the
advantages that are important for interactive visualization is the
fact that level of details can be adjusted locally. The absence of
explicit connectivity information is a limitation that makes
deformation more difficult than it is in surface triangulations.
Also, the use of local affine assumptions in the neighborhood of a
point or line segment may produce artifacts in the presence of
highly nonlinear mappings.

Our current formulation of line segment as a rendering
primitive have two limitations, due to the rigorous mathematical
derivations we adopt. Firstly, each line segment can possess only
one normal. Currently, this requirement rules out the possibility of
using line segments to render arbitrary ruled surfaces. Secondly,
each line segment can only be assigned a single color. This is
because different color influences along the same line segment
cannot be integrated. However, in practice, this restriction can be
relaxed. Our experiment shows that rendering linearly texture

Figure 9: Hybrid points and line segment models rendered by our method. The Upper body model is transparent,
while the other models are opaque.

mapped line segments can still produce images of reasonably
good quality. The restriction on the use of only a single normal
can also be removed when normal maps designated for line
segments become feasible.

Many research issues remain in order to place the neglected
rendering primitive “line segment” on an equal footing with its
well-known counterparts “triangle” and “point”. First, the
problem of efficiently acquiring, storing and editing models using
line segments goes far beyond our discussions in this paper. The
algorithm we have implemented to extract surface primitives from
point sets is a computationally expensive pre-processing phase.
An important topic is to investigate better ways to extract line
segments from the highly structured point clouds output by 3D
scanners. Second, our implementation of the rendering pipeline,
catering to all three types of surface primitives, is software based
and hence not efficient for interactive applications. The rendering
pipeline should be mapped to modern programmable GPUs to
achieve better frame rates. One technical problem involves the
efficient computation of tangents common to two ellipses. Third,
using line segment as a rendering primitive provides yet another
option to support level of details rendering, to be exploited by
novel data structures and algorithms that efficiently reflect the
intricate interaction among the different surface primitives
involved. In conclusion, we believe that the initial experiment
reported in this paper establishes line segments as a surface
primitive of potentially equal importance as triangles and points.

ACKNOWLEDGEMENTS

The pure point models used in our experiment were obtained
from http://www.cyberware.com. This research is supported by
the National University of Singapore under grant R-252-000-216-
112.

REFERENCES

[1] I. Avcibas, B. Sankur and K. Sayood. Statistical Evaluation of Image
Quality Measures. Journal of Electronic Imaging, vol. 11:2, 2002,
pp. 206-223.

[2] B. Chen, F. Dachille, and A. E. Kaufman. Footprint Area Sampled
Texturing. In IEEE Trans on Visualization and Computer Graphics,
vol. 10;2, 2004, pp. 230-240.

[3] B. Chen and M.X. Nguyen. POP: A Hybrid Point and Polygon
Rendering System for Large Data. In Proc. of IEEE Visualization
2001, pp. 45-52.

[4] O. Deussen, C. Colditz, M. Stamminger and G. Drettakis. Interactive
Visualization of Complex Plant Ecosystems. In Proc. of IEEE
Visualization 2002, pp. 219-226.

[5] T.K. Dey and J. Hudson. PMR: Point to Mesh Rendering, A Feature-
Based Approach. In Proc. of IEEE Visualization 2002, pp. 155-162.

[6] J.P. Grossman and W.J. Dally. Point Sample Rendering. In Proc. of
9th Eurographics Workshop on Rendering 1998, pp. 181-192.

[7] P. Heckbert. Fundamentals of Texture Mapping and Image Warping.
Master’s Thesis, University of California, Berkeley, 1989.

[8] N. Jouppi and C. Chang. Z3: An Economical Hardware Technique for
High-Quality Antialiasing and Transparency. In Proc. of
Eurographics/SIGGRAPH Workshop on Graphics Hardware 1999,
pp. 85-93.

[9] M. Levoy and T. Whitted. The Use of Points as a Display Primitive.
Technical Report TR 85-022, University of North Carolina at Chapel
Hill, 1985.

[10] K.L. Low and T.S. Tan. Model Simplification using Vertex
Clustering. In Proc. of Symposium on Interactive 3D Graphics 1997,
pp. 75-81.

[11] J. McCormack, R. Perry, K. I. Farkas, and N. P. Jouppi. Feline: Fast
Elliptical Lines for Anisotropic Texture Mapping. In Proc of
SIGGRAPH 1999, pp. 243-250.

[12] S.R. Nelson. Twelve Characteristics of Correct Antialiased Lines.
Journal of Graphics Tools, vol.1:4, 1996, pp. 1-20.

[13] H. Pfister, M. Zwicker, J. van Baar and M. Gross. Surfels: Surface
Elements as Rendering Primitives. In Proc. of SIGGRAPH 2000, pp.
335-342.

[14] L. Ren, H. Pfister and M. Zwicker. Object Space EWA Surface
Splatting: A Hardware Accelerated Approach to High Quality Point
Rendering. In Proc. of Eurographics 2002, pp. 461-470.

[15] S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution Point
Rendering System for Large Meshes. In Proc. of SIGGRAPH 2000,
pp. 343-352.

[16] W. Stothers. Cabri Pages – Conics, www.maths.gla.ac.uk/~wws/
cabripages/algebra.html, 1998.

[17] J. Weber and J. Penn. Creation and Rendering of Realistic Trees. In
Proc. of SIGGRAPH 1995, pp. 119-128.

[18] M. Zwicker, M. Pauly, O. Knoll and M. Gross. Pointshop 3D: An
Interactive System for Point-based Surface Editing. In Proc. of
SIGGRAPH 2002, pp. 322-329.

[19] M. Zwicker, H. Pfister, J. van Baar and M. H. Gross. Surface
Splatting. In Proc. of SIGGRAPH 2001, pp. 371-378.

APPENDIX
Following [14], the ellipse of a point can be determined by decomposing

(,)k tV into a scaling matrix 0

1

0
0
r

r
Λ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and a rotation matrix

cos sin
()

sin cos
Rot

θ θ
θ

θ θ
.

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Together with translation (,)x yt t (depends on

the location of the point), the equation of an ellipse is:

2 2
0 1

2 2(()cos ()sin) (()sin ()cos)
1.x y x yx t y t x t y t

r r
θ θ θ θ− + − − + −

+ =

An ellipse is a specific type of plane conic. A plane conic has an equation
of the form:

2 2 0 .a x b x y c y f x g y h + + + + + =

In terms of homogeneous coordinates, this becomes

2 2 2 0 .a x b x y c y f x z g y z h z + + + + + =

Given two ellipses C and D, we find the dual C’ of C with respect to D.
The intersection of C’ and D produces the common tangent points. The
plane conic can be written as:

 0
2 2

where (, ,) and 2 2 .
2 2

Tx M x
a b f

x x y z M b c g
f g h

=

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

Suppose that C: 0T
Cx M x = and D: 0T

Dx M x = are the two ellipses. Then
the dual of C with respect to D is the conic with
equation 1 0.T

D C Dx M M M x− =

After computing the duals, we can combine the conic equations of the
ellipse C and the dual D’ to form a quartic equation and also for D and C’.
Solving the quartic equation will produce tangent points at both ellipses.

