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Abstract 
This paper presents an interactive morphing framework to empower users to conveniently and effectively 
control the whole morphing process.  Although research on mesh morphing has reached a state where 
most computational problems have been solved in general, the novelty of our framework lies in the 
integration of global-level and local-level user control through the use of components, and the 
incorporation of deduction and assistance in user interaction. Given two polygonal meshes, users can 
choose to specify their requirements either at the global level over components or at the local level within 
components, whichever is more intuitive. Based on user specifications, the framework proposes several 
techniques to deduce implied correspondences and add assumed correspondences at both levels. The 
framework also supports multi-level interpolation control — users can operate on a component as a 
whole or on its individual vertices to specify trajectories. On the whole, in the multi-level component-
based framework, users can choose to specify any number of requirements at each level and the system 
can complete all other tasks to produce final morphs. Therefore, user control is greatly enhanced and 
even an amateur can use it to design morphing with ease. 

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Methodology and Techniques]: 
Interaction techniques, I.3.7 [Three-Dimensional Graphics and Realism]: Animation, I.3.8 Application

1. Introduction 
Morphing (or metamorphosis) of polygonal meshes 
involves the creation of a smooth transition from a 
source mesh to a target mesh. For two meshes, there are 
numerous ways to transform one to the other. 
Algorithms for morphing are mainly evaluated by 
criteria related to the ease of user control and the visual 
quality of morphing sequence. Morphing is such an 
aesthetic problem that fully automatic methods cannot 
meet all the needs that arise in all applications. 
Therefore, user interaction is important and unavoidable. 

A mesh morphing process basically consists of two 
steps: establishing the correspondence where each 
vertex of a source mesh is mapped to a vertex of a target 
mesh, and calculating the interpolation where 
trajectories are defined for all corresponding vertices. 
Research on mesh morphing has reached a state where 
most computational problems in these two steps have 
been solved in general [2, 14].  

However, a similar claim cannot be made for user 
control. Efficiency of user interaction has not received 
much attention by previous morphing works; they 
usually concentrate on the computational issues and 
overlook the interactive process of specifying and 
modifying user requirements. There was no good 
scheme to make user interaction intuitive, flexible and 
efficient. For example, to specify high-level 

correspondences, such as pairing a leg of a duck with a 
leg of a dinosaur, users generally had to express such a 
requirement indirectly in terms of many low-level vertex 
correspondences. This is usually neither obvious nor 
natural, especially when two original meshes are very 
different in shapes.  

The presented framework seeks to enhance user 
control throughout the whole morphing process. It is 
termed a component-based framework as it utilizes 
components of objects to achieve such a goal. The 
technical uniqueness of our framework lies in multi-
level user control through the use of components, and 
deduction and assistance to make user control easy; 
Figure 1 (in the color plate) shows an example of user 
control. Specifically, major contributions of this 
framework are as follows:  

• Multi-level correspondence control  
Global-level and local-level user specifications interact 
with each other, and enable our users to specify their 
requirements in either level whichever is more intuitive. 
Users can directly specify global-level correspondences 
by pairing components to represent their high-level 
requirements, without resorting to the more tedious low-
level vertex pairing. Yet, when fine control is required, 
users can specify local-level correspondences over local 
features within a pair of corresponding components.  
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• Interactive and flexible user control 
Due to the incorporation of multi-level user control, the 
framework can automatically deduce correspondences 
from one level to the other. Moreover, to make user 
interaction more flexible, several techniques are 
presented to provide assistance and deduction in user 
control. At the global level, we utilize a novel constraint 
tree to provide candidate counterparts for user-selected 
components, maintain user specifications after 
modifications to components and correspondences, and 
finally deduce correspondences over all components. At 
the local level, the framework derives those local-level 
correspondences not stated but implied by user 
specifications and adds assumed correspondences where 
appropriate to improve the morphing. In this framework 
all user specifications are respected and no system 
restriction are imposed on users. 

• Multi-level interpolation control 
Users can edit trajectories by operating on components 
as a whole. Trajectories over individual vertices can be 
deduced accordingly.  This allows users to manipulate 
the interpolation quickly and easily at the global level. 
When local-level control is desired, trajectories of 
individual vertices can also be specified.  
 

2. Previous Work 
3D mesh morphing has been extensively studied in 
recent decades. Necessarily, we limit our review to focus 
on methods related to interactive morphing control.  

Recent techniques allow users to specify vertex pairs 
and use them to calculate the complete vertex 
correspondence between two original meshes. To handle 
topological changes in morphing, DeCarlo and Gallier 
[6] allow users to partition two original meshes into 
triangular and quadrilateral patches. Gregory et al. [9] 
decompose mesh surfaces in a morph according to user-
specified feature nets over them. In the work of Lee et 
al. [12], a user can specify vertex pairs on two original 
meshes and then the correspondence problem is solved 
through their simplified models. Kanai et al. [11] allow 
users to specify feature vertices and connect them 
subsequently. The system then constructs control 
meshes based on user input. Alexa [1] allows users to 
specify scattered features and then align them using a 
global mapping and warping method. Praun et al. [17] 
present an algorithm that establishes consistent 
parameterization for a set of meshes sharing a base 
domain. To morph one mesh into the other, the users are 
required to specify corresponding vertices in both 
meshes for each vertex in the base domain.  

In the above works, users usually have to invest 
considerable effort to get final morphs, especially for 
meshes of complex shapes. In those morphing methods 
using patches [6, 9, 11], a user must specify a feature net 
by assigning feature vertex pairs and then identifying 

connectivity among those vertices. In [17], the users are 
required to specify corresponding vertices for every 
vertex in the common base domain. [1, 12] do not have 
such a requirement. However, they do not utilize the 
shapes of meshes in calculating correspondences; their 
users may need to spend significant effort to locally 
adjust vertex correspondences. Contrary to these, our 
framework allows its users to specify any number of 
requirements, and computes a morph through deduction. 
This greatly reduces workload and complexity in user 
interaction and makes designing morphs easy. 

In addition, morphing design in these previous 
works is only a one-directional process. However, our 
framework supports a trial-and-error process, which is 
more flexible and convenient. A user can start to design 
a morph by specifying a small number of requirements, 
and then interactively improve those unsatisfactory parts 
of the morphing result through more specifications.  

Lazarus and Verroust [13] provide high-level control 
in the morphing of star-shaped meshes by allowing users 
to control axes of objects. This method automatically 
establishes vertex correspondences at the stage of mesh 
re-sampling. Thus, users cannot control correspondences 
over vertices flexibly. Our work differs in that we 
provide multi-level user control without imposing any 
system-caused restrictions on users, and we can handle 
morphing complex meshes by using components. 

On morphing objects of other kinds of 
representations, the following are some works related to 
our approach. Shapira and Rappoport [18] morph 2D 
polygons by partitioning them into star-shaped pieces. 
Our work is similar to theirs in partitioning complex 
objects into simpler forms for morphing. Unlike their 
work, our method does not have the requirement that 
objects must be compatibly decomposed and thus a user 
can design a morph more conveniently. Galin et al. [7, 
8] address the soft object morphing using Minkowski 
sums for the interpolation of skeletal elements. Though 
our work is similar to theirs in using components, there 
are fundamental differences in the technicalities because 
of different object representations.  

3. Components and Framework Overview 
A mesh exists as a collection of polygons and contains 
no explicitly defined high-level information. To 
manipulate a mesh at a high level, one way is to 
decompose it into a collection of primitives, each of 
which comprises a group of polygons. Such a primitive 
is termed a component. Two connected components 
share some edges, which we call a boundary. A 
component can have a number of boundaries, each of 
which represents a connection with a neighboring 
component. For a mesh, we represent its components 
and the connections between them as a connectivity 
graph.  In this graph, each component is represented as a 
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node, and a connection between two components as an 
edge connecting the two nodes of the components. 
Figure 2 illustrates the above definitions. We shall use 
this example throughout Section 4. 

                            
 

Figure 2: The source object Os , the target object Ot , and their 
respective connectivity graphs S and T. In this figure and 
subsequent figures, the connections of connectivity graphs are 
shown explicitly as white nodes for ease of illustration. 
 

In this framework, a component does not necessarily 
have to be semantically meaningful. When a user wants 
to manipulate some polygons as a whole, these polygons 
can be grouped as a component. The component 
decompositions of two original meshes need not be 
compatible in the sense of having the same number of 
components and the same connectivity among the 
components. A user can define components either 
manually using system-provided tools, or using some 
automatic methods [15, 16, 19] to obtain an initial 
decomposition. Besides, pre-defined components in 
meshes (e.g. OBJ or VRML files) can also be used. 
Figure 3 shows a typical workflow of our framework.  
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Figure 3: Main steps in a typical workflow of our framework. 
At any step, a user can re-visit any previous step to modify the 
specifications. In addition, the user only needs to specify those 
requirements of interest, and the system can complete the 
remaining work through deductions. 

4. Global-Level Correspondence 
Given Os and Ot, users can specify correspondences over 
their components. The result of this global-level 
correspondence process is to establish correspondences 
between all components in Os and Ot. 

Section 4.2 introduces our method for recording 
user-specified correspondences. In this framework, not 
only can users specify one-to-one correspondences over 
components (i.e. correspondence of exactly one 
component of Os to one component of Ot), they can also 
specify group-to-group correspondences, where a group 
of components in Os is paired with a group in Ot. With 
the ability of specifying correspondences over 
component groups, the user can choose to defer 
decisions on component decomposition,  thus  allowing 
a user to experiment with the morph. 

Section 4.3 organizes all recorded correspondences 
to keep the history of user specifications, enabling the 
support of undoing specifications and incremental 
modifications to component decomposition. 

Section 4.4 introduces how the framework assists 
user specification by locating the probable counterparts 
of user-selected components. Such counterparts are 
those components, which have similar connectivity to 
the selection.  

Section 4.5 provides details on the computation of 
the complete component correspondence. A user can 
choose to specify any number of correspondences, and 
the framework finally deduces component pairs 
accordingly with all user specifications respected. In 
achieving this, our framework provides a range of 
automations: from totally manual (where the user 
specifies detailed correspondences for every component) 
to semi-automated (where the user specifies only 
important correspondences) to fully automated (where 
the system computes all correspondences). 

Some definitions are first introduced in Section 4.1. 

4.1. Terminology 
The source connectivity graph S and the target 
connectivity graph T are represented as the two graphs 
G(VS, ES) and G(VT, ET) respectively, where VS and VT 
are sets of components and ES and ET are sets of 
connections.  For the example of S and T in Figure 2, we 
have VS = {a,b,c,d,e,f}, ES = {1,2,3,4,5} and VT = 
{p,q,r,s,t,u}, ET = {6,7,8,9,10}. Note that when a user 
modifies the decomposition, for example, by merging 
two connected components, the connectivity graph is 
changed and updated automatically. Given S and T, a 
user can specify a global-level correspondence by 
associating a group of components of Os with a group of 
components of Ot. Such a user-specified correspondence 
is termed a constraint.  
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The final product of this correspondence process is a 
common connectivity graph M=G(VM , EM), where VM is 
the set of correspondence nodes and EM is the set of 
correspondence edges. A correspondence node and a 
correspondence edge represent a pair of corresponding 
components (i.e. component pairs) and a pair of 
corresponding connections (i.e. connection pairs) 
respectively. A correspondence node has one of these 
forms: (vs , vt), (vs , ζV) or (ζV , vt) where vs∈VS, vt∈VT, 
and ζV denotes a null-component used when a 
component has no counterpart. Every vs or vt appears in 
exactly one correspondence node of M. Similarly, a 
correspondence edge has one of these forms: (es , et), (es , 
ζE) or (ζE , et) where es∈ES, et∈ET and ζE denotes a null-
connection used when a connection has no counterpart. 
Every es or et appears in exactly one correspondence 
edge of M. For the two connectivity graphs in Figure 2, 
a possible M constructed is shown in Figure 4.  

 
 
 
 
 
 
 
 

Figure 4: Common connectivity graph M. Note that the 
component c of the source, which is paired with a null 
component ζV, will gradually shrink during the morph. 
Conversely, the component u of the target will gradually grow. 

 

4.2. Correspondence Between Component Groups  
To enable correspondence specification between groups 
of components, we need to keep track of all possible 
correspondences over components and over connections 
for both S and T.  Naïvely recording all these 
possibilities is generally inefficient in terms of storage 
and computation. Instead, we record and update them in 
an implicit and concise way as described below.  

4.2.1. Permissibility 
A permissible component pair is defined as a component 
pair that can possibly appear in the final M. The set of 
all permissible component pairs is denoted as RV.  Note 
that {(vs, ζV) | vs∈VS} and {(ζV, vt) | vt∈VT} are always 
subsets of RV, as it is always possible that a component 
of an object has no counterpart from the other object.  In 
addition, a correspondence between two groups of 
components is denoted as 〈X, Y〉 where X⊆VS and Y⊆VT. 
Specifically, 〈X, Y〉 means that both ( , )x y  and ( , )x y  
are not permissible for all x∈X, y∈Y, Sx V X∈ − and 

.Ty V Y∈ − We say 〈X, Y〉 is permissible if, and only if, 
∀x∀y, (x, y)∈RV. The permissibility of a correspondence 
over connections can be defined in a similar way. The 
set of all permissible connection pairs is denoted as RE. 

A combined notation for correspondences over both 
components and connections has the form 〈P, Q〉, in 
which P = G(X, E), where X ⊆ VS, E ⊆ ES, and Q = G(Y, 
F), where Y ⊆ VT , F ⊆ ET. Note that in P, X may not 
contain all the nodes that the edges in E are incident to. 
Therefore, P may not be a usual graph and likewise for 
Q. They are denoted as graphs here for the convenience 
of description. The definition of permissibility of 
correspondences is extended to this notation: 〈P, Q〉 is 
permissible if, and only if, 〈X, Y〉 is permissible and 〈E, 
F〉 is permissible. 

Throughout the process of specifying global-level 
correspondences, all current correspondences between S 
and T are encapsulated in a correspondence set defined 
as { }, 1,2,...,i i i n= =^ P Q , where 〈Pi, Qi〉 is permissible 
and P1, P2, …, Pn is a partition of S and Q1, Q2, …, Qn is 
a partition of T.  Let Pi = G(Xi, Ei) and Qi = G(Yi, Fi), we 
have RV and RE implicitly recorded as: 

{ }( ) { }( ){ } ( ){ }∪
i

VVViViV YXR ζζζζ ,−∪×∪=  

{ }( ) { }( ){ } ( ){ }∪
i

EEEiEiE FER ζζζζ ,−∪×∪=  

4.2.2. Processing Constraints 
 
 
 
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Maintenance of ^  after applying two constraints to 
S and T in Figure 2. In (a) and (b), the component 
correspondences after each constraint are shown as the 
rightmost pictures (see also the color plate). In (c), the first 
constraint 〈{b,d},{p,s}〉 which induces the connection 
correspondence 〈{1,2,3,4,5}, {6,7,8,9}〉 is circled in dashed 
lines while the second constraint 〈{a,b},{s,t,u}〉, which induces 
the connection correspondence 〈{1,2,3},{8,9,10}〉 is circled in 
solid lines. 

When a user specifies a constraint, pairing components 
is more intuitive than pairing connections. Therefore, in 
the current implementation, a constraint is a 
correspondence over components 〈X, Y〉, where X ⊆ VS, 
Y ⊆ VT. From such a constraint, the system induces 
another correspondence between all connections 
incident to components in X, denoted as the set E, and 
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all connections incident to components in Y, denoted as 
the set F. Both correspondences are jointly represented 
as 〈P, Q〉 where P=G(X, E) and Q=G(Y, F).  

Initially, we have ^ = {〈S,T〉}, where every 
component of S can be possibly paired with every 
component of T. Given a 〈P, Q〉, we partition each 〈Pi, 
Qi〉∈^  into 〈Pi′, Qi′〉 and 〈Pi″, Qi″〉, where Pi′=P ∩ Pi, 
Qi′= Q ∩ Qi, Pi″= Pi − Pi′ and Qi″= Qi − Qi′.  Any trivial 
cases of 〈G(φ,φ), G(φ,φ)〉 are removed from ^ . It can be 
shown that all the correspondences in^ are permissible 
and ^  now successfully encapsulates 〈P, Q〉. Figure 5 
shows our constraint processing upon two constraints for 
S and T in Figure 2. 

4.3. Constraint Tree 
To record the history of specified constraints, we use a 
binary tree termed constraint tree, where each 〈Pi, Qi〉 
in ^ is represented as a leaf. Whenever we perform a 
partitioning of 〈Pi, Qi〉 upon a new constraint, we create 
a left child and a right child for this leaf, which 
correspond to the new correspondences 〈Pi′, Qi′〉 and 
〈Pi″, Qi″〉 respectively. Obviously the ith constraint is 
encapsulated in those nodes at the ith level of the 
constraint tree, and the current correspondence set ^ is 
actually the set containing all the leaves. 

The content of a parent node is always equal to the 
union of the contents of its children.  The constraint tree 
for the example in Figure 5 is shown in Figure 6. Such a 
tree structure makes it easy to undo any constraint 
specification while other constraints are unaffected, as 
discussed in the next subsection. 

 

 

 

Figure 6: Constraint tree for the example in Figure 5. 
 

4.3.1. Flexible Undoing 
When a user wants to undo a specific ith constraint, a 
naïve approach is to remove constraints in reverse order 
from the most recent one to the ith constraint. As a result, 
the user will lose all those constraints that are specified 
after the ith constraint. Using the constraint tree, this 
framework is able to remove solely the influences of the 
ith constraint. For each pair of nodes nl and nr at level i, 
let np be the parent of nl and nr. We merge the two 
respective left (right, respectively) subtrees of nl and nr 
to be the new left (right, respectively) subtree of np. To 
merge two subtrees, we superimpose them and combine 
the contents of the superimposed nodes to obtain a new 
subtree having the same structure. This operation 
effectively removes the nodes at the level representing 

the unwanted constraint from the constraint tree.  

For the example in Figure 6, if we remove the first 
constraint, we merge the leaf containing b and the leaf 
containing a to be the left child of the root and merge the 
other two leaves to be the right child of the root. The 
updated constraint tree is exactly the same as a 
constraint tree with only the second constraint.   

4.3.2. Modifying Component Decomposition  
When a user modifies the component decompositions of 
Os and Ot in the process of specifying correspondences. 
In such a case, we need to update S, T and the constraint 
tree while preserving all unaffected constraints. Such a 
modification can always be expressed as one of the two 
kinds of operations: splitting a component into two, and 
merging two connected components into one. 

Splitting can be handled easily, as we only need to 
find the leaf that contains the component to be split, 
replace it with two new components and update their 
connections. The structure of the constraint tree is not 
affected. 

Merging is more complicated if the components to 
be merged are not within the same leaf. In such a 
circumstance, the structure of the constraint tree has to 
be updated. First, we locate the leaves where the two 
components to be merged are located. Next, we search 
upward from the leaf level to find their nearest common 
ancestor. The constraint that is represented by the level 
below this common ancestor is then the one that 
separates the two components. Then, this constraint is 
removed via the flexible undoing discussed in the 
previous subsection.  These three steps are repeated until 
all the constraints that cause the separation of the two 
components are removed. Finally, the components to be 
merged are replaced with the new component and the 
connections are updated accordingly. 

4.4. Identifying Candidates 
The constraint tree keeps track of all the permissible 
component pairs and connection pairs implicitly. 
Therefore, for a leaf 〈Pi, Qi〉, all the components in Pi are 
naturally possible counterparts for any component in Qi, 
and vice versa. In a morphing, however, a user generally 
expects the connectivity among components be kept as 
much as possible. For example, if the head and the body 
of a cow have been paired with the head and the body of 
a triceratops respectively, the user may not regard the 
horns of the triceratops as good counterparts for a leg of 
the cow although they are in the same leaf. Therefore, 
the user usually expects a good counterpart to be similar 
in connectivity to the selected components. We call a 
counterpart that can meet such kind of user expectation a 
candidate. To identify candidates from the set of 
possible counterparts, we need to analyze the 
connectivity as follows. 
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Within a leaf, the components are placed into groups 
of maximally connected components. In Figure 7, for 
example, leaf II has one group of T where t and u are 
connected by 10 while leaf IV has two groups of T, 
which contains q and r respectively. For a group within 
a leaf, a different leaf is called its neighboring leaf if the 
leaf contains a connection incident to any component 
within the group, or contains a component incident to 
any connection within the group. Consequently, we 
define the similarity in connectivity as follows: a group 
in S is similar in connectivity to a group in T if they are 
from the same leaf of the constraint tree and have the 
same set of neighboring leaves; see Figure 7 for an 
example. 

 

 
 
 
 
 

Figure 7: Analysis of similarity in connectivity for the example 
in Figure 6. For clarity, the contents of S and T are shown 
separately and in the same shades as the leaves shown in 
Figure 6. In leaf IV, the group {e} in S is similar in 
connectivity to both the group {q} and the group {r} in T as 
they have the same set of neighboring leaves, {III}. On the 
other hand, the group {c} in S has no similar counterpart in T. 
 

The above definition can also be extended to provide 
a range of intermediate degrees of similarity in 
connectivity for two groups, by considering how much 
their sets of neighboring leaves overlap.  

4.5. Constructing Common Connectivity Graph 
Once the user finishes all the specifications about 
component correspondence, the framework constructs M 
as follows. We first refine the constraint tree and then 
construct correspondence nodes and correspondence 
edges of M from all its non-empty leaves.  

The refinement step first processes the tree until 
each resulting leaf has at most one maximally connected 
group from S and at most one from T, giving preference 
to groups which are similar in connectivity. Then, we 
pair individual components and connections, giving 
preference to those components connected to other 
leaves, until each resulting leaf contains at most one 
component or connection of S and at most one 
component or connection of T. Figure 8 shows a 
possible result for the example in Figure 7 after the 
refinement step. 

When the refinement step is done, the framework 
then calculates the common connectivity graph M from 
the current correspondence set ^ as follows. First, 
construct a correspondence node for the component pair 
in every 〈Pi, Qi〉. ζV is paired with every component that 

has no counterpart. Then, construct a correspondence 
edge for connections in every 〈Pi, Qi〉 similarly. ζE is 
paired with every connection that has no counterpart. 
Wherever any connection from a correspondence edge is 
incident to any component from a correspondence node, 
we set this correspondence edge to be incident to this 
correspondence node. For the example in Figure 8, the 
computed M is shown in Figure 4. 

 

 

 

 

 

Figure 8: In Figure 7, leaf IV contains multiple groups of 
maximally connected component. The components groups {e} 
and {f} can be arbitrarily paired with {q} and {r} as they both 
have leaf III as their only neighboring leaf in Figure 7. Then, 
the individual components and connections are paired, with 
preference to those directly connected to other leaves.  The 
result is as shown in this figure. 

 

5. Local-Level Correspondence 
For each component pair containing no null-component, 
users can specify and pair local features to control the 
morphing (Section 5.1). In addition to user-specified 
local-level correspondences, the framework deduces 
implied local-level correspondences according to user 
specifications (Section 5.2) and adds assumed ones 
where appropriate to improve the morphing (Section 
5.3). An automatic patch-partitioning method (Section 
5.4) is proposed here to create compatible patch layouts 
subsequently. These are used to establish the complete 
vertex correspondence for this component pair. For any 
component pair containing a null-component, its 
complete vertex correspondence is constructed 
automatically (Section 5.5).  

5.1. User-Specified Local-level Correspondences 
In this framework, a user can specify several types of 
local features within a component: a feature vertex is a 
mesh vertex, a feature line is a sequence of connected 
mesh edges and a feature loop is a closed loop of mesh 
edges. Then, the user can pair a local feature in one 
component with one in its corresponding component; the 
two local features then forms a local feature pair. Two 
end-vertices of a feature line are also treated as feature 
vertices. Note that after obtaining a morph, a user can 
still revisit this step to add or modify local feature pairs 
in order to improve the morph. 

5.2. Implied Local-level Correspondences 
A boundary between two connected components is 
shared by both of them. Thus, from those user-specified 
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global-level and local-level correspondences involving 
boundaries, the framework is able to deduce implied 
local-level correspondences to save user effort as 
discussed in the following.  

First, correspondences over component boundaries 
can be derived from connection pairs in the common 
connectivity graph M. Each boundary of a component 
represents a connection. Thus, from M, we can deduce a 
set of corresponding boundaries (each boundary is then a 
feature loop). For the example of M in Figure 4, the 
boundary of component d connecting component f and 
the boundary of component p connecting component r 
form an implied local feature pair for component pair d 
and p as deduced from the correspondence edge (5,7). 
Also, this correspondence edge implies another local 
feature pair at boundaries in the component pair f and r.  

Second, within a pair of components, if two 
corresponding local features are both specified at 
boundaries and the two neighbors at these two 
boundaries are also corresponding, the framework also 
records these two local features as a pair of local 
features in their neighbors.  

5.3. Assumed Local-level Correspondences 
A user can choose to specify just those local feature 
pairs of interest. The framework is then able to add 
assumed local feature pairs when the user has finished 
the specification so far. In the event that the user 
subsequently specifies other new feature pairs after the 
assumed features are added, the existing assumed 
features are removed and new ones are calculated where 
appropriate. In the following, we define the distance 
between two vertices as the length of the shortest path 
between them along the mesh edges, and the distance 
between two local features as the minimum distance 
between their vertices.  

First, consider two corresponding components each 
have only one local feature. For example, in Figure 9(b) 
(in the color plate), the boundary of one tail and that of 
the other tail are corresponding, as deduced from M. To 
better align the two components, the framework adds 
one more feature vertex pair at their tips. In such a 
component, the vertex farthest away from its boundary 
is computed here and treated as its tip vertex. Such 
assumed correspondence between tip vertices can help 
to avoid the “tip-shrinkage” problem mentioned in [9]. 
Thus, each component has at least two local features 
after all assumed tip vertex pairs are computed.  

Second, for two corresponding boundaries ls and lt of 
a component pair (cs, ct), there should be at least two 
feature vertex pairs on them so that the system knows 
how they are aligned during morphing. When the user 
does not provide this, the framework will add assumed 
feature vertex pairs on ls and lt as follows.  

The general idea to decide the alignment is to 
examine ls and lt, together with local features nearby, to 
obtain a relative orientation. This is an attempt to avoid 
undesirable twisting during a morph. For ls, we locate its 
nearest local feature ls′ on cs. Let vs be the vertex of ls on 
the shortest path from ls to ls′. Let lt′ be the 
corresponding local feature of ls′ on ct, and let vt be the 
vertex of lt on the shortest path from lt to lt′. We set (vs, 
vt) as one assumed feature vertex pair, and obtain 
another assumed feature vertex pair formed by the two 
vertices on the boundaries farthest away from (or 
opposite to) vs and vt respectively. Though the treatment 
for ls and lt is asymmetric in this approach, our 
experiment has shown reasonably good outcomes in 
most cases, such as the one shown in Figure 9(a) (in the 
color plate).  

Third, if there is more than one connection between 
two components in a mesh and the same between their 
corresponding components in the other mesh, the 
correspondences between their boundaries are not 
uniquely defined and are assigned arbitrarily in the 
computation of M. When the user specifies 
correspondences between some boundaries, the 
framework assumes the correspondences for the 
remaining boundaries by re-computing M. Figure 9(c) 
(in the color plate) illustrates this in the morphing from a 
mug to a donut. 

5.4. Automatic Patch Partitioning 
Given local feature pairs in corresponding components, 
there are various methods to establish complete vertex 
correspondence with all local feature pairs aligned. The 
common approach is to first partition the meshes into 
pairs of compatible patches and then perform mapping 
and merging for each pair of patches [6, 9, 11].  

Praun et al. [17] present an algorithm to establish 
compatible patch layouts for meshes that share a 
common coarse model and respect features. Generally, a 
user needs to choose base domain and identify features 
for these meshes. Given such meshes, this method 
establishes correspondences between meshes and allows 
remeshes with the same connectivity. In our framework, 
however, users can choose to specify any number of 
local feature pairs for two corresponding components. 
As such, we propose an algorithm to automatically 
construct the common base domain based on all local-
level correspondences within a component pair. Then 
the parameterization method in [17] is employed to 
establish compatible patch layouts for the component 
pair. Details are as follows. 

First, we group all local features in each component 
into feature groups, each of which is a maximally 
connected group of local features. Second, a spanning 
tree is constructed by connecting all the feature groups 
in one component. Third, another spanning tree is 
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constructed to connect all the feature groups that are in 
the leaf nodes of the first spanning tree. At this stage, the 
component being processed is partitioned into patches 
according to these two spanning trees. Last, we treat the 
net formed by the two spanning trees as a base domain 
to guide the partitioning of the other component into a 
compatible patch layout. The user can choose to modify 
these patch layouts when necessary. 

With compatible patch layouts for each pair of 
components, there are several methods for topological 
merging that can be used to create the complete vertex 
correspondence for each pair of patches, for example, 
barycentric and harmonic mapping [10, 20]. However, 
establishing the meta-mesh by overlapping the mapping 
of two meshes is known to be costly in computation. By 
working on components instead of the whole meshes, 
such computation in our framework is speeded up. 
Alternatively, the framework can also use other efficient 
methods such as multi-resolution remeshing in the place 
of topological merging. 

5.5. Handling Null-components 
For a component pair (cs, ct) where cs∈Os and ct=ζV  (or 
cs=ζV and ct∈Ot, respectively), there will be a 
component disappearing (or growing, respectively) in 
the morphing sequence. Without loss of generality, we 
only discuss the case of component disappearing (ct=ζV). 
Let cs′ be a component connected to cs at boundary ls in 
Os and (cs′, ct′) be a component pair. The system handles 
this in two ways according to user input. 

In the first case, when the user specifies local-level 
correspondence for the component pair (cs′, ct′), the user 
can assign a local feature lt in ct′ to be the counterpart of 
ls. In this case, the framework is responsible for 
producing a morph where cs will gradually disappear 
into lt. The following method is applied then to 
automatically construct a new component c at lt to be the 
counterpart of cs. First, it creates the topology (i.e. the 
mesh connectivity) of c by copying the topology of cs. 
Note that vertices of both components naturally form 
vertex pairs, each of which comprise two corresponding 
vertices in cs and c. Next, for each vertex pair (vs, vt), if 
vs is at ls, vt is already a vertex of lt ; otherwise, vt is set at 
the position of v where (u, v) is a vertex pair and u is the 
boundary vertex closest to vs. By replacing ct with c, the 
framework then establishes the complete vertex 
correspondence for this component pair. 

In the second case, when the user has not assigned 
correspondence for the boundary ls when the user 
continued into the process of patch partitioning, the 
system simply merges cs into cs′ so that the counterpart 
of ls is determined by the topological merging. Note that 
when ct′=ζV, the merging of cs into cs′ is also applied.  

6. Interpolation Control 
Given the complete vertex correspondence for every 
component pair, various methods can be applied for 
vertex interpolation, for example, linear interpolation or 
as-rigid-as-possible interpolation [3] to obtain a morph. 
Based on the use of components, this framework enables 
a user to edit morphing trajectories at both the global 
and the local levels. 

Through manual or automatic means, a user can 
construct a skeleton for a mesh by assigning for each 
component a bone, which is a polyline. It is not required 
that the bone for a component accurately represents the 
component’s shape.   

Although the use of skeletons is not novel, there are 
several challenges in using skeletons in our framework. 
The most obvious one is that the skeletons of two 
original meshes are usually very different in both their 
shapes and numbers of bones. Due to the one-to-one 
relationship between a component and its bone, we 
construct correspondences over bones directly from the 
common correspondence graph M, by adding null-bones 
for null-components in M. Subsequently, the morphing 
of skeletons can be computed by interpolating between 
every two corresponding bones. 

Skeleton-based control has been used in many 
applications (see [4, 5, 13]). To bind mesh vertices to 
underlying bones in a morph, there are many possible 
implementations. One is to adapt the weighted vertex 
method to blend the associations between mesh vertices 
and the line segments of underlying bones. For each 
mesh vertex, we find the point on its underlying bone 
that is nearest to the vertex, and compute its arc-length 
values along the bone. By interpolating arc-length values 
and relative positions of mesh vertices with respect to 
their nearest points on the bones, each mesh vertex in 
the source can be transformed to its corresponding 
vertex in the target according to the complete vertex 
correspondence. 

Due to the low computational cost of skeleton 
morphing, such a morph can serve as a fast means to get 
a general idea of how the final morph will look 
like. Therefore, users can decide whether to modify the 
global-level specifications before moving on to the more 
costly computation of mesh morphing. 

As for user control in the interpolation step, a user 
can specify the position or orientation of a component 
by editing keyframes of the bone of the component. 
Accordingly, the system is able to deduce the 
trajectories of its vertices. Such kind of editing is usually 
much easier and more intuitive than editing trajectories 
of individual vertices. Figure 10 illustrates this using a 
morphing sequence where we combine the morph from a 
calf to a cow with the morph from the cow to a 
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triceratops. In each morph, we add two component 
keyframes to achieve the walking effect from the calf to 
the cow then to the triceratops. In addition, the user can 
also specify vertex trajectory at an intermediate frame. 
In that case, new vertex position will be used to update 
the arc-length and relative position of vertices at that 
frame. Thus, the user can achieve sophisticated 
morphing trajectories efficiently at both global and local 
levels. 

 
Figure 10: Component keyframe editing. In this morph, a calf 
is transformed into a cow, then into a triceratops while 
walking.  

7. Results 
We implemented a prototype system for the component–
based morphing framework on a Pentium IV 2GHz PC. 
The main focus of our experiments is to test the 
efficiency and effectiveness of user interaction reported 
in this paper. Below are samples of our experiments 
(Figures 11 to 14 are shown in the color plate). More 
results and video files are available at: 
http://www.comp.nus.edu.sg/~tants/morphing.html. 

• Trial-and-error morphing design using components (a 
duck and a dinosaur) 
The user first cut each object into its tail, body and head. 
Then, the user paired solely the two heads, and the 
system produced a morph accordingly. Realizing that 
there were six legs in the intermediate objects, as shown 
in Figure 11(a), the user then went back to specify two 
legs for each object and pair their right legs, as shown in 
Figure 11(b). Maintaining all previous user 
specifications, the system updated the morph 
correspondingly and produced a better morph. The 
whole process took just a few minutes. It can be clearly 
seen that a user can design a morph at the global level 
without considering any mesh detail and can refine the 
specifications whenever necessary.  

• Effective deduction in genus-1 morphing (a mug and a 
donut) 
This example shows that our user can also design high-
genus morphing with ease. In this example, the user first 
decomposed each object into two components, and then 
paired the body of the mug with a half of the donut. 
Because there are two connections between the two 
components in each object, the user then paired one 
boundary in the mug with one boundary in the donut, as 
shown in Figure 9(c). Based on these user specifications, 
the system completed other tasks through deduction and 
the whole morph is completed in less than 1 minute. 
Figure 12 shows deduced local feature pairs in (a) and 
computed patch layouts in (b). Note that we achieved 
this morph shown in (c) by just a few clicks, whereas in 
[9] and [12], to design a similar morph, the user spent 

more than half an hour. 

• Trial-and-error morphing design at the local level (a 
rocket and a glass) 
Figure 13 illustrates trial-and-error morphing design at 
the local level. After cutting each object into three 
components, the user specified one pair of components 
and then the system produced a morphing accordingly. 
Realizing that intermediate shapes were distorted at the 
top, as shown in (a), the user then revisited the local-
level correspondence step to add one pair of feature lines 
as in (b). Subsequently, the system respected all the 
specifications and produced a better morph as in (c). 

• Different morphing designs using components (a 
rocket and a duckling) 
Figure 14 demonstrates the effectiveness and efficiency 
of utilizing components in multi-level morphing control. 
Given the same models, a rocket and a duckling, the user 
assigned different component correspondences and 
conveniently achieved two interesting morphs shown in 
(a) and (b). 

 

Table 1 reports the numbers of user-specified and 
system-deduced correspondences for our examples. 
From the results, we can see that user interaction in our 
framework is efficient and effective, and all our morphs 
were obtained within a few minutes. We also invited 
several non-expert students in our university to try our 
system, and they all reported that it is easy and 
convenient for them to design a morph in our system.  

 

8. Discussion 
We have demonstrated a system that implements our 
proposed framework. The novelty of the component-
based morphing framework lies in that it reduces user 
workload and provides flexibility in user control such 
that even an amateur can design a morph with ease. 
Specifically, it utilizes components to address major 
issues about interactive control, and its main advantages 
are summarized as follows.  

First, with the component decomposition, mesh 
vertices can be perceived and manipulated in groups. 
Connectivity among components, which is much simpler 
than that among vertices, is capitalized in our 
framework. This makes user interaction in both the 
correspondence and the interpolation steps intuitive and 
efficient, especially when dealing with meshes of 
complex shapes. In addition, users can still fine-tune 
morphs by working directly on individual vertices. 

Second, the whole framework is designed with the 
philosophy of helping users as much as possible and not 
imposing on users any system-caused restriction. In 
every step of the whole morphing process, the system 
first gets user specifications, then deduces implied user 
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requirements based on these specifications, and finally 
adds assumed but reasonable choices. Moreover, if a 
user revisits this step to modify the specifications, the 
system updates assumed choices, respecting all user 
specifications. The use of the constraint tree and the 
deduction of implied and assumed local-level 
correspondences are means of realizing this philosophy. 

Our framework has several limitations and potential 
extensions. Currently, we do not deal with the case 
where a boundary is shared by more than two 
components. In this case, a connectivity graph will be 
replaced by a connectivity hyper-graph. Another 
challenging extension is to handle topological changes, 
which includes changes in genus, during morphing 
design. Such a morph involves the appearing or 
disappearing of a connection between two components. 
Consequently, we should develop techniques to handle 
such changes in connection, and to deduce implied and 
assumed correspondences over such connections.  
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Morphs Cow-Triceratops Duck-Dino Mug-Donut Rocket-Glass Rocket-Duckling 
Triangles in source / target  5806 / 5660 550 / 5076 1640 / 576 330 / 2642 330 / 3836 
Components in source / target 9 / 11 5 / 5 2 / 2 3 / 3 7 / 7 
Figure number 9(a)-(b)  11 12 13 14 (a) 14 (b) 
USER-SPECIFIED component correspondences 4 2 1 1 3 3 
USER-SPECIFIED local feature pairs 2 0 1 3 2 3 
SYSTEM-DEDUCED local feature pairs 23 12 4 10 16 15 

 specifying component correspondences 15 sec 10 sec 5 sec 5 sec 10 sec 10 secEstimated 
user time   specifying local feature pairs 10 sec 0 sec 5 sec 20 sec 15 sec 20 sec

Table 1: Statistics of our morphing examples 
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(a) (b)  

(c) (d)  

(e) (f)  

Figure 1: An example of user control in the framework. (a) 
The user only pairs components of interest. (b) The system 
deduces the complete component correspondence. (c) The 
user only specifies local feature pairs of interest (but none 
here); the system deduces implied (orange) and assumed 
(blue) local features. (d) Through automatic patch 
partitioning, the system computes the complete vertex 
correspondence for the two meshes. (e) The system produces 
the morphing sequence through vertex interpolation. (f) The 
user manipulates a component as a whole (such as the head 
here) to edit morphing trajectories. 

 

 

            

Figure 9: (a) Assumed feature vertex pairs at boundaries. 
With correspondences at boundaries (shown in orange) for 
two body components, the system adds two pairs of feature 
vertices (shown in blue) for every two corresponding 
boundaries. (b) Assumed feature vertex pair at tips. Each tail 
has only one boundary (shown in orange). Based on their 
shapes, the system adds a pair of feature vertex at their tips  
(shown in blue). (c) Assumed local feature pair at boundaries. 
The user specifies one pair of boundaries for the two 
components, (shown in green); the system then automatically 
pairs the remaining boundaries (shown in blue). 

(a)  (b)

Figure 11: Global level trial-and-error morph design. (a) A 
intermediate object which has six legs. (b) Specify two legs and 
pair the right legs to improve the morphing. 

(a)  (b)  

 (c)  

Figure 12: Demonstration of morphing of genus-1 objects. (a) 
One user-specified feature loop pair (in green), one system-
deduced feature loop pair and four system-deduced feature 
vertex pairs (in blue). (b) Computed compatible patch layouts 
based on the six pairs of local features. (c) Morphing from a 
mug to a donut. 

(a)  

 

(b)   (c)   

Figure 13: Local level trial-and-error morph design. (a) A 
distorted intermediate object in the initial morph. (b) User-
specified local feature pairs in their tops. (c) An intermediate 
object in the improved morph. 

 

 
Figure 14: Two different morphs with same components but 
different component correspondences. 

 

 
 
 
 

Figure 5: (a) and (b). 
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