
Eurographics/SIGGRAPH Symposium on Computer Animation (2003)
D. Breen, M. Lin (Editors)

© The Eurographics Association 2003.

Interactive Control of Component-based Morphing

Yonghong Zhao, Hong-Yang Ong, Tiow-Seng Tan and Yongguan Xiao

School of Computing, National University of Singapore, Singapore

Abstract
This paper presents an interactive morphing framework to empower users to conveniently and effectively
control the whole morphing process. Although research on mesh morphing has reached a state where
most computational problems have been solved in general, the novelty of our framework lies in the
integration of global-level and local-level user control through the use of components, and the
incorporation of deduction and assistance in user interaction. Given two polygonal meshes, users can
choose to specify their requirements either at the global level over components or at the local level within
components, whichever is more intuitive. Based on user specifications, the framework proposes several
techniques to deduce implied correspondences and add assumed correspondences at both levels. The
framework also supports multi-level interpolation control — users can operate on a component as a
whole or on its individual vertices to specify trajectories. On the whole, in the multi-level component-
based framework, users can choose to specify any number of requirements at each level and the system
can complete all other tasks to produce final morphs. Therefore, user control is greatly enhanced and
even an amateur can use it to design morphing with ease.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Methodology and Techniques]:
Interaction techniques, I.3.7 [Three-Dimensional Graphics and Realism]: Animation, I.3.8 Application

1. Introduction
Morphing (or metamorphosis) of polygonal meshes
involves the creation of a smooth transition from a
source mesh to a target mesh. For two meshes, there are
numerous ways to transform one to the other.
Algorithms for morphing are mainly evaluated by
criteria related to the ease of user control and the visual
quality of morphing sequence. Morphing is such an
aesthetic problem that fully automatic methods cannot
meet all the needs that arise in all applications.
Therefore, user interaction is important and unavoidable.

A mesh morphing process basically consists of two
steps: establishing the correspondence where each
vertex of a source mesh is mapped to a vertex of a target
mesh, and calculating the interpolation where
trajectories are defined for all corresponding vertices.
Research on mesh morphing has reached a state where
most computational problems in these two steps have
been solved in general [2, 14].

However, a similar claim cannot be made for user
control. Efficiency of user interaction has not received
much attention by previous morphing works; they
usually concentrate on the computational issues and
overlook the interactive process of specifying and
modifying user requirements. There was no good
scheme to make user interaction intuitive, flexible and
efficient. For example, to specify high-level

correspondences, such as pairing a leg of a duck with a
leg of a dinosaur, users generally had to express such a
requirement indirectly in terms of many low-level vertex
correspondences. This is usually neither obvious nor
natural, especially when two original meshes are very
different in shapes.

The presented framework seeks to enhance user
control throughout the whole morphing process. It is
termed a component-based framework as it utilizes
components of objects to achieve such a goal. The
technical uniqueness of our framework lies in multi-
level user control through the use of components, and
deduction and assistance to make user control easy;
Figure 1 (in the color plate) shows an example of user
control. Specifically, major contributions of this
framework are as follows:

• Multi-level correspondence control
Global-level and local-level user specifications interact
with each other, and enable our users to specify their
requirements in either level whichever is more intuitive.
Users can directly specify global-level correspondences
by pairing components to represent their high-level
requirements, without resorting to the more tedious low-
level vertex pairing. Yet, when fine control is required,
users can specify local-level correspondences over local
features within a pair of corresponding components.

Zhao et al / Interactive Control of Component-based Morphing

 © The Eurographics Association 2003.

• Interactive and flexible user control
Due to the incorporation of multi-level user control, the
framework can automatically deduce correspondences
from one level to the other. Moreover, to make user
interaction more flexible, several techniques are
presented to provide assistance and deduction in user
control. At the global level, we utilize a novel constraint
tree to provide candidate counterparts for user-selected
components, maintain user specifications after
modifications to components and correspondences, and
finally deduce correspondences over all components. At
the local level, the framework derives those local-level
correspondences not stated but implied by user
specifications and adds assumed correspondences where
appropriate to improve the morphing. In this framework
all user specifications are respected and no system
restriction are imposed on users.

• Multi-level interpolation control
Users can edit trajectories by operating on components
as a whole. Trajectories over individual vertices can be
deduced accordingly. This allows users to manipulate
the interpolation quickly and easily at the global level.
When local-level control is desired, trajectories of
individual vertices can also be specified.

2. Previous Work
3D mesh morphing has been extensively studied in
recent decades. Necessarily, we limit our review to focus
on methods related to interactive morphing control.

Recent techniques allow users to specify vertex pairs
and use them to calculate the complete vertex
correspondence between two original meshes. To handle
topological changes in morphing, DeCarlo and Gallier
[6] allow users to partition two original meshes into
triangular and quadrilateral patches. Gregory et al. [9]
decompose mesh surfaces in a morph according to user-
specified feature nets over them. In the work of Lee et
al. [12], a user can specify vertex pairs on two original
meshes and then the correspondence problem is solved
through their simplified models. Kanai et al. [11] allow
users to specify feature vertices and connect them
subsequently. The system then constructs control
meshes based on user input. Alexa [1] allows users to
specify scattered features and then align them using a
global mapping and warping method. Praun et al. [17]
present an algorithm that establishes consistent
parameterization for a set of meshes sharing a base
domain. To morph one mesh into the other, the users are
required to specify corresponding vertices in both
meshes for each vertex in the base domain.

In the above works, users usually have to invest
considerable effort to get final morphs, especially for
meshes of complex shapes. In those morphing methods
using patches [6, 9, 11], a user must specify a feature net
by assigning feature vertex pairs and then identifying

connectivity among those vertices. In [17], the users are
required to specify corresponding vertices for every
vertex in the common base domain. [1, 12] do not have
such a requirement. However, they do not utilize the
shapes of meshes in calculating correspondences; their
users may need to spend significant effort to locally
adjust vertex correspondences. Contrary to these, our
framework allows its users to specify any number of
requirements, and computes a morph through deduction.
This greatly reduces workload and complexity in user
interaction and makes designing morphs easy.

In addition, morphing design in these previous
works is only a one-directional process. However, our
framework supports a trial-and-error process, which is
more flexible and convenient. A user can start to design
a morph by specifying a small number of requirements,
and then interactively improve those unsatisfactory parts
of the morphing result through more specifications.

Lazarus and Verroust [13] provide high-level control
in the morphing of star-shaped meshes by allowing users
to control axes of objects. This method automatically
establishes vertex correspondences at the stage of mesh
re-sampling. Thus, users cannot control correspondences
over vertices flexibly. Our work differs in that we
provide multi-level user control without imposing any
system-caused restrictions on users, and we can handle
morphing complex meshes by using components.

On morphing objects of other kinds of
representations, the following are some works related to
our approach. Shapira and Rappoport [18] morph 2D
polygons by partitioning them into star-shaped pieces.
Our work is similar to theirs in partitioning complex
objects into simpler forms for morphing. Unlike their
work, our method does not have the requirement that
objects must be compatibly decomposed and thus a user
can design a morph more conveniently. Galin et al. [7,
8] address the soft object morphing using Minkowski
sums for the interpolation of skeletal elements. Though
our work is similar to theirs in using components, there
are fundamental differences in the technicalities because
of different object representations.

3. Components and Framework Overview
A mesh exists as a collection of polygons and contains
no explicitly defined high-level information. To
manipulate a mesh at a high level, one way is to
decompose it into a collection of primitives, each of
which comprises a group of polygons. Such a primitive
is termed a component. Two connected components
share some edges, which we call a boundary. A
component can have a number of boundaries, each of
which represents a connection with a neighboring
component. For a mesh, we represent its components
and the connections between them as a connectivity
graph. In this graph, each component is represented as a

Zhao et al / Interactive Control of Component-based Morphing

© The Eurographics Association 2003.

node, and a connection between two components as an
edge connecting the two nodes of the components.
Figure 2 illustrates the above definitions. We shall use
this example throughout Section 4.

Figure 2: The source object Os , the target object Ot , and their
respective connectivity graphs S and T. In this figure and
subsequent figures, the connections of connectivity graphs are
shown explicitly as white nodes for ease of illustration.

In this framework, a component does not necessarily
have to be semantically meaningful. When a user wants
to manipulate some polygons as a whole, these polygons
can be grouped as a component. The component
decompositions of two original meshes need not be
compatible in the sense of having the same number of
components and the same connectivity among the
components. A user can define components either
manually using system-provided tools, or using some
automatic methods [15, 16, 19] to obtain an initial
decomposition. Besides, pre-defined components in
meshes (e.g. OBJ or VRML files) can also be used.
Figure 3 shows a typical workflow of our framework.

Global-level Correspondence (Section 4)

Local-level Correspondence (Section 5)

User Process
Two Meshes

Os and Ot

Morph

Local Feature
Correspondence

Specification

Complete Vertex
Correspondence

Computation

Component
Correspondence

Specification

Common
Connectivity Graph

Computation

System Process

Interpolation Control (Section 6)

Component
Trajectory

Editing Vertex
Interpolation

Component
Correspondence

Deduction

Vertex Trajectory
Deduction

Local Feature
Correspondence

Deduction

Vertex
Trajectory

Editing

Morphing
Sequence

Figure 3: Main steps in a typical workflow of our framework.
At any step, a user can re-visit any previous step to modify the
specifications. In addition, the user only needs to specify those
requirements of interest, and the system can complete the
remaining work through deductions.

4. Global-Level Correspondence
Given Os and Ot, users can specify correspondences over
their components. The result of this global-level
correspondence process is to establish correspondences
between all components in Os and Ot.

Section 4.2 introduces our method for recording
user-specified correspondences. In this framework, not
only can users specify one-to-one correspondences over
components (i.e. correspondence of exactly one
component of Os to one component of Ot), they can also
specify group-to-group correspondences, where a group
of components in Os is paired with a group in Ot. With
the ability of specifying correspondences over
component groups, the user can choose to defer
decisions on component decomposition, thus allowing
a user to experiment with the morph.

Section 4.3 organizes all recorded correspondences
to keep the history of user specifications, enabling the
support of undoing specifications and incremental
modifications to component decomposition.

Section 4.4 introduces how the framework assists
user specification by locating the probable counterparts
of user-selected components. Such counterparts are
those components, which have similar connectivity to
the selection.

Section 4.5 provides details on the computation of
the complete component correspondence. A user can
choose to specify any number of correspondences, and
the framework finally deduces component pairs
accordingly with all user specifications respected. In
achieving this, our framework provides a range of
automations: from totally manual (where the user
specifies detailed correspondences for every component)
to semi-automated (where the user specifies only
important correspondences) to fully automated (where
the system computes all correspondences).

Some definitions are first introduced in Section 4.1.

4.1. Terminology
The source connectivity graph S and the target
connectivity graph T are represented as the two graphs
G(VS, ES) and G(VT, ET) respectively, where VS and VT
are sets of components and ES and ET are sets of
connections. For the example of S and T in Figure 2, we
have VS = {a,b,c,d,e,f}, ES = {1,2,3,4,5} and VT =
{p,q,r,s,t,u}, ET = {6,7,8,9,10}. Note that when a user
modifies the decomposition, for example, by merging
two connected components, the connectivity graph is
changed and updated automatically. Given S and T, a
user can specify a global-level correspondence by
associating a group of components of Os with a group of
components of Ot. Such a user-specified correspondence
is termed a constraint.

q r

p

s
t

u
6 7

8

9
10

T Ot

q r
p

s
t

u

a

b

1 c

2 3
d

e f
4

5

 S Os

a
b

c

d

e f

Zhao et al / Interactive Control of Component-based Morphing

 © The Eurographics Association 2003.

The final product of this correspondence process is a
common connectivity graph M=G(VM , EM), where VM is
the set of correspondence nodes and EM is the set of
correspondence edges. A correspondence node and a
correspondence edge represent a pair of corresponding
components (i.e. component pairs) and a pair of
corresponding connections (i.e. connection pairs)
respectively. A correspondence node has one of these
forms: (vs , vt), (vs , ζV) or (ζV , vt) where vs∈VS, vt∈VT,
and ζV denotes a null-component used when a
component has no counterpart. Every vs or vt appears in
exactly one correspondence node of M. Similarly, a
correspondence edge has one of these forms: (es , et), (es ,
ζE) or (ζE , et) where es∈ES, et∈ET and ζE denotes a null-
connection used when a connection has no counterpart.
Every es or et appears in exactly one correspondence
edge of M. For the two connectivity graphs in Figure 2,
a possible M constructed is shown in Figure 4.

Figure 4: Common connectivity graph M. Note that the
component c of the source, which is paired with a null
component ζV, will gradually shrink during the morph.
Conversely, the component u of the target will gradually grow.

4.2. Correspondence Between Component Groups
To enable correspondence specification between groups
of components, we need to keep track of all possible
correspondences over components and over connections
for both S and T. Naïvely recording all these
possibilities is generally inefficient in terms of storage
and computation. Instead, we record and update them in
an implicit and concise way as described below.

4.2.1. Permissibility
A permissible component pair is defined as a component
pair that can possibly appear in the final M. The set of
all permissible component pairs is denoted as RV. Note
that {(vs, ζV) | vs∈VS} and {(ζV, vt) | vt∈VT} are always
subsets of RV, as it is always possible that a component
of an object has no counterpart from the other object. In
addition, a correspondence between two groups of
components is denoted as 〈X, Y〉 where X⊆VS and Y⊆VT.
Specifically, 〈X, Y〉 means that both (,)x y and (,)x y
are not permissible for all x∈X, y∈Y, Sx V X∈ − and

.Ty V Y∈ − We say 〈X, Y〉 is permissible if, and only if,
∀x∀y, (x, y)∈RV. The permissibility of a correspondence
over connections can be defined in a similar way. The
set of all permissible connection pairs is denoted as RE.

A combined notation for correspondences over both
components and connections has the form 〈P, Q〉, in
which P = G(X, E), where X ⊆ VS, E ⊆ ES, and Q = G(Y,
F), where Y ⊆ VT , F ⊆ ET. Note that in P, X may not
contain all the nodes that the edges in E are incident to.
Therefore, P may not be a usual graph and likewise for
Q. They are denoted as graphs here for the convenience
of description. The definition of permissibility of
correspondences is extended to this notation: 〈P, Q〉 is
permissible if, and only if, 〈X, Y〉 is permissible and 〈E,
F〉 is permissible.

Throughout the process of specifying global-level
correspondences, all current correspondences between S
and T are encapsulated in a correspondence set defined
as { }, 1,2,...,i i i n= =^ P Q , where 〈Pi, Qi〉 is permissible
and P1, P2, …, Pn is a partition of S and Q1, Q2, …, Qn is
a partition of T. Let Pi = G(Xi, Ei) and Qi = G(Yi, Fi), we
have RV and RE implicitly recorded as:

{ }() { }(){ } (){ }∪
i

VVViViV YXR ζζζζ ,−∪×∪=

{ }() { }(){ } (){ }∪
i

EEEiEiE FER ζζζζ ,−∪×∪=

4.2.2. Processing Constraints

Figure 5: Maintenance of ^ after applying two constraints to
S and T in Figure 2. In (a) and (b), the component
correspondences after each constraint are shown as the
rightmost pictures (see also the color plate). In (c), the first
constraint 〈{b,d},{p,s}〉 which induces the connection
correspondence 〈{1,2,3,4,5}, {6,7,8,9}〉 is circled in dashed
lines while the second constraint 〈{a,b},{s,t,u}〉, which induces
the connection correspondence 〈{1,2,3},{8,9,10}〉 is circled in
solid lines.

When a user specifies a constraint, pairing components
is more intuitive than pairing connections. Therefore, in
the current implementation, a constraint is a
correspondence over components 〈X, Y〉, where X ⊆ VS,
Y ⊆ VT. From such a constraint, the system induces
another correspondence between all connections
incident to components in X, denoted as the set E, and

b

1
c

2 3
d

e f
4 5

r

p

s
t

u

6
7

8
9

10

Initial 1st constraint Result (a)

From 1st constraint 2nd constraint Result
(b)

a

 S

q

T

1st constraint

2nd constraint (c)

Represented object

component pair
connection pair
(source , target)

(c,ζV)

(2, ζE)
 (3, 8)

(e, q)

(4, 6)
(d, p)

(b, s)
(1, 9)

(a, t)

(ζE, 10)

(ζV, u)

(5, 7) (f, r)

M

(c,ζV)

(a, t)

(ζV, u)

(e, q)

(d, p)

(b, s)

(f, r)

Zhao et al / Interactive Control of Component-based Morphing

© The Eurographics Association 2003.

all connections incident to components in Y, denoted as
the set F. Both correspondences are jointly represented
as 〈P, Q〉 where P=G(X, E) and Q=G(Y, F).

Initially, we have ^ = {〈S,T〉}, where every
component of S can be possibly paired with every
component of T. Given a 〈P, Q〉, we partition each 〈Pi,
Qi〉∈^ into 〈Pi′, Qi′〉 and 〈Pi″, Qi″〉, where Pi′=P ∩ Pi,
Qi′= Q ∩ Qi, Pi″= Pi − Pi′ and Qi″= Qi − Qi′. Any trivial
cases of 〈G(φ,φ), G(φ,φ)〉 are removed from ^ . It can be
shown that all the correspondences in^ are permissible
and ^ now successfully encapsulates 〈P, Q〉. Figure 5
shows our constraint processing upon two constraints for
S and T in Figure 2.

4.3. Constraint Tree
To record the history of specified constraints, we use a
binary tree termed constraint tree, where each 〈Pi, Qi〉
in ^ is represented as a leaf. Whenever we perform a
partitioning of 〈Pi, Qi〉 upon a new constraint, we create
a left child and a right child for this leaf, which
correspond to the new correspondences 〈Pi′, Qi′〉 and
〈Pi″, Qi″〉 respectively. Obviously the ith constraint is
encapsulated in those nodes at the ith level of the
constraint tree, and the current correspondence set ^ is
actually the set containing all the leaves.

The content of a parent node is always equal to the
union of the contents of its children. The constraint tree
for the example in Figure 5 is shown in Figure 6. Such a
tree structure makes it easy to undo any constraint
specification while other constraints are unaffected, as
discussed in the next subsection.

Figure 6: Constraint tree for the example in Figure 5.

4.3.1. Flexible Undoing
When a user wants to undo a specific ith constraint, a
naïve approach is to remove constraints in reverse order
from the most recent one to the ith constraint. As a result,
the user will lose all those constraints that are specified
after the ith constraint. Using the constraint tree, this
framework is able to remove solely the influences of the
ith constraint. For each pair of nodes nl and nr at level i,
let np be the parent of nl and nr. We merge the two
respective left (right, respectively) subtrees of nl and nr
to be the new left (right, respectively) subtree of np. To
merge two subtrees, we superimpose them and combine
the contents of the superimposed nodes to obtain a new
subtree having the same structure. This operation
effectively removes the nodes at the level representing

the unwanted constraint from the constraint tree.

For the example in Figure 6, if we remove the first
constraint, we merge the leaf containing b and the leaf
containing a to be the left child of the root and merge the
other two leaves to be the right child of the root. The
updated constraint tree is exactly the same as a
constraint tree with only the second constraint.

4.3.2. Modifying Component Decomposition
When a user modifies the component decompositions of
Os and Ot in the process of specifying correspondences.
In such a case, we need to update S, T and the constraint
tree while preserving all unaffected constraints. Such a
modification can always be expressed as one of the two
kinds of operations: splitting a component into two, and
merging two connected components into one.

Splitting can be handled easily, as we only need to
find the leaf that contains the component to be split,
replace it with two new components and update their
connections. The structure of the constraint tree is not
affected.

Merging is more complicated if the components to
be merged are not within the same leaf. In such a
circumstance, the structure of the constraint tree has to
be updated. First, we locate the leaves where the two
components to be merged are located. Next, we search
upward from the leaf level to find their nearest common
ancestor. The constraint that is represented by the level
below this common ancestor is then the one that
separates the two components. Then, this constraint is
removed via the flexible undoing discussed in the
previous subsection. These three steps are repeated until
all the constraints that cause the separation of the two
components are removed. Finally, the components to be
merged are replaced with the new component and the
connections are updated accordingly.

4.4. Identifying Candidates
The constraint tree keeps track of all the permissible
component pairs and connection pairs implicitly.
Therefore, for a leaf 〈Pi, Qi〉, all the components in Pi are
naturally possible counterparts for any component in Qi,
and vice versa. In a morphing, however, a user generally
expects the connectivity among components be kept as
much as possible. For example, if the head and the body
of a cow have been paired with the head and the body of
a triceratops respectively, the user may not regard the
horns of the triceratops as good counterparts for a leg of
the cow although they are in the same leaf. Therefore,
the user usually expects a good counterpart to be similar
in connectivity to the selected components. We call a
counterpart that can meet such kind of user expectation a
candidate. To identify candidates from the set of
possible counterparts, we need to analyze the
connectivity as follows.

a b c d e f
1 2 3 4 5

p q r s t u
6 7 8 9 10

b d
1 2 3 4 5

p s
6 7 8 9

a c e f

q r t u
10

b
1 2 3

s
8 9

d
4 5

p
6 7

a

t u
10

c e f

q r

Zhao et al / Interactive Control of Component-based Morphing

 © The Eurographics Association 2003.

Within a leaf, the components are placed into groups
of maximally connected components. In Figure 7, for
example, leaf II has one group of T where t and u are
connected by 10 while leaf IV has two groups of T,
which contains q and r respectively. For a group within
a leaf, a different leaf is called its neighboring leaf if the
leaf contains a connection incident to any component
within the group, or contains a component incident to
any connection within the group. Consequently, we
define the similarity in connectivity as follows: a group
in S is similar in connectivity to a group in T if they are
from the same leaf of the constraint tree and have the
same set of neighboring leaves; see Figure 7 for an
example.

Figure 7: Analysis of similarity in connectivity for the example
in Figure 6. For clarity, the contents of S and T are shown
separately and in the same shades as the leaves shown in
Figure 6. In leaf IV, the group {e} in S is similar in
connectivity to both the group {q} and the group {r} in T as
they have the same set of neighboring leaves, {III}. On the
other hand, the group {c} in S has no similar counterpart in T.

The above definition can also be extended to provide
a range of intermediate degrees of similarity in
connectivity for two groups, by considering how much
their sets of neighboring leaves overlap.

4.5. Constructing Common Connectivity Graph
Once the user finishes all the specifications about
component correspondence, the framework constructs M
as follows. We first refine the constraint tree and then
construct correspondence nodes and correspondence
edges of M from all its non-empty leaves.

The refinement step first processes the tree until
each resulting leaf has at most one maximally connected
group from S and at most one from T, giving preference
to groups which are similar in connectivity. Then, we
pair individual components and connections, giving
preference to those components connected to other
leaves, until each resulting leaf contains at most one
component or connection of S and at most one
component or connection of T. Figure 8 shows a
possible result for the example in Figure 7 after the
refinement step.

When the refinement step is done, the framework
then calculates the common connectivity graph M from
the current correspondence set ^ as follows. First,
construct a correspondence node for the component pair
in every 〈Pi, Qi〉. ζV is paired with every component that

has no counterpart. Then, construct a correspondence
edge for connections in every 〈Pi, Qi〉 similarly. ζE is
paired with every connection that has no counterpart.
Wherever any connection from a correspondence edge is
incident to any component from a correspondence node,
we set this correspondence edge to be incident to this
correspondence node. For the example in Figure 8, the
computed M is shown in Figure 4.

Figure 8: In Figure 7, leaf IV contains multiple groups of
maximally connected component. The components groups {e}
and {f} can be arbitrarily paired with {q} and {r} as they both
have leaf III as their only neighboring leaf in Figure 7. Then,
the individual components and connections are paired, with
preference to those directly connected to other leaves. The
result is as shown in this figure.

5. Local-Level Correspondence
For each component pair containing no null-component,
users can specify and pair local features to control the
morphing (Section 5.1). In addition to user-specified
local-level correspondences, the framework deduces
implied local-level correspondences according to user
specifications (Section 5.2) and adds assumed ones
where appropriate to improve the morphing (Section
5.3). An automatic patch-partitioning method (Section
5.4) is proposed here to create compatible patch layouts
subsequently. These are used to establish the complete
vertex correspondence for this component pair. For any
component pair containing a null-component, its
complete vertex correspondence is constructed
automatically (Section 5.5).

5.1. User-Specified Local-level Correspondences
In this framework, a user can specify several types of
local features within a component: a feature vertex is a
mesh vertex, a feature line is a sequence of connected
mesh edges and a feature loop is a closed loop of mesh
edges. Then, the user can pair a local feature in one
component with one in its corresponding component; the
two local features then forms a local feature pair. Two
end-vertices of a feature line are also treated as feature
vertices. Note that after obtaining a morph, a user can
still revisit this step to add or modify local feature pairs
in order to improve the morph.

5.2. Implied Local-level Correspondences
A boundary between two connected components is
shared by both of them. Thus, from those user-specified

a

b
c 2

e f 1 3

d

4 5

I

III II

IV

q r

 p

s

t

u

6 7

8
9

10

T

I

III II

IV

S

d p u 5 7 10

a4 t 6

e f 1 3 q r 9 8

b s c 2

S T I

III II

IV I

III II

IV

Zhao et al / Interactive Control of Component-based Morphing

© The Eurographics Association 2003.

global-level and local-level correspondences involving
boundaries, the framework is able to deduce implied
local-level correspondences to save user effort as
discussed in the following.

First, correspondences over component boundaries
can be derived from connection pairs in the common
connectivity graph M. Each boundary of a component
represents a connection. Thus, from M, we can deduce a
set of corresponding boundaries (each boundary is then a
feature loop). For the example of M in Figure 4, the
boundary of component d connecting component f and
the boundary of component p connecting component r
form an implied local feature pair for component pair d
and p as deduced from the correspondence edge (5,7).
Also, this correspondence edge implies another local
feature pair at boundaries in the component pair f and r.

Second, within a pair of components, if two
corresponding local features are both specified at
boundaries and the two neighbors at these two
boundaries are also corresponding, the framework also
records these two local features as a pair of local
features in their neighbors.

5.3. Assumed Local-level Correspondences
A user can choose to specify just those local feature
pairs of interest. The framework is then able to add
assumed local feature pairs when the user has finished
the specification so far. In the event that the user
subsequently specifies other new feature pairs after the
assumed features are added, the existing assumed
features are removed and new ones are calculated where
appropriate. In the following, we define the distance
between two vertices as the length of the shortest path
between them along the mesh edges, and the distance
between two local features as the minimum distance
between their vertices.

First, consider two corresponding components each
have only one local feature. For example, in Figure 9(b)
(in the color plate), the boundary of one tail and that of
the other tail are corresponding, as deduced from M. To
better align the two components, the framework adds
one more feature vertex pair at their tips. In such a
component, the vertex farthest away from its boundary
is computed here and treated as its tip vertex. Such
assumed correspondence between tip vertices can help
to avoid the “tip-shrinkage” problem mentioned in [9].
Thus, each component has at least two local features
after all assumed tip vertex pairs are computed.

Second, for two corresponding boundaries ls and lt of
a component pair (cs, ct), there should be at least two
feature vertex pairs on them so that the system knows
how they are aligned during morphing. When the user
does not provide this, the framework will add assumed
feature vertex pairs on ls and lt as follows.

The general idea to decide the alignment is to
examine ls and lt, together with local features nearby, to
obtain a relative orientation. This is an attempt to avoid
undesirable twisting during a morph. For ls, we locate its
nearest local feature ls′ on cs. Let vs be the vertex of ls on
the shortest path from ls to ls′. Let lt′ be the
corresponding local feature of ls′ on ct, and let vt be the
vertex of lt on the shortest path from lt to lt′. We set (vs,
vt) as one assumed feature vertex pair, and obtain
another assumed feature vertex pair formed by the two
vertices on the boundaries farthest away from (or
opposite to) vs and vt respectively. Though the treatment
for ls and lt is asymmetric in this approach, our
experiment has shown reasonably good outcomes in
most cases, such as the one shown in Figure 9(a) (in the
color plate).

Third, if there is more than one connection between
two components in a mesh and the same between their
corresponding components in the other mesh, the
correspondences between their boundaries are not
uniquely defined and are assigned arbitrarily in the
computation of M. When the user specifies
correspondences between some boundaries, the
framework assumes the correspondences for the
remaining boundaries by re-computing M. Figure 9(c)
(in the color plate) illustrates this in the morphing from a
mug to a donut.

5.4. Automatic Patch Partitioning
Given local feature pairs in corresponding components,
there are various methods to establish complete vertex
correspondence with all local feature pairs aligned. The
common approach is to first partition the meshes into
pairs of compatible patches and then perform mapping
and merging for each pair of patches [6, 9, 11].

Praun et al. [17] present an algorithm to establish
compatible patch layouts for meshes that share a
common coarse model and respect features. Generally, a
user needs to choose base domain and identify features
for these meshes. Given such meshes, this method
establishes correspondences between meshes and allows
remeshes with the same connectivity. In our framework,
however, users can choose to specify any number of
local feature pairs for two corresponding components.
As such, we propose an algorithm to automatically
construct the common base domain based on all local-
level correspondences within a component pair. Then
the parameterization method in [17] is employed to
establish compatible patch layouts for the component
pair. Details are as follows.

First, we group all local features in each component
into feature groups, each of which is a maximally
connected group of local features. Second, a spanning
tree is constructed by connecting all the feature groups
in one component. Third, another spanning tree is

Zhao et al / Interactive Control of Component-based Morphing

 © The Eurographics Association 2003.

constructed to connect all the feature groups that are in
the leaf nodes of the first spanning tree. At this stage, the
component being processed is partitioned into patches
according to these two spanning trees. Last, we treat the
net formed by the two spanning trees as a base domain
to guide the partitioning of the other component into a
compatible patch layout. The user can choose to modify
these patch layouts when necessary.

With compatible patch layouts for each pair of
components, there are several methods for topological
merging that can be used to create the complete vertex
correspondence for each pair of patches, for example,
barycentric and harmonic mapping [10, 20]. However,
establishing the meta-mesh by overlapping the mapping
of two meshes is known to be costly in computation. By
working on components instead of the whole meshes,
such computation in our framework is speeded up.
Alternatively, the framework can also use other efficient
methods such as multi-resolution remeshing in the place
of topological merging.

5.5. Handling Null-components
For a component pair (cs, ct) where cs∈Os and ct=ζV (or
cs=ζV and ct∈Ot, respectively), there will be a
component disappearing (or growing, respectively) in
the morphing sequence. Without loss of generality, we
only discuss the case of component disappearing (ct=ζV).
Let cs′ be a component connected to cs at boundary ls in
Os and (cs′, ct′) be a component pair. The system handles
this in two ways according to user input.

In the first case, when the user specifies local-level
correspondence for the component pair (cs′, ct′), the user
can assign a local feature lt in ct′ to be the counterpart of
ls. In this case, the framework is responsible for
producing a morph where cs will gradually disappear
into lt. The following method is applied then to
automatically construct a new component c at lt to be the
counterpart of cs. First, it creates the topology (i.e. the
mesh connectivity) of c by copying the topology of cs.
Note that vertices of both components naturally form
vertex pairs, each of which comprise two corresponding
vertices in cs and c. Next, for each vertex pair (vs, vt), if
vs is at ls, vt is already a vertex of lt ; otherwise, vt is set at
the position of v where (u, v) is a vertex pair and u is the
boundary vertex closest to vs. By replacing ct with c, the
framework then establishes the complete vertex
correspondence for this component pair.

In the second case, when the user has not assigned
correspondence for the boundary ls when the user
continued into the process of patch partitioning, the
system simply merges cs into cs′ so that the counterpart
of ls is determined by the topological merging. Note that
when ct′=ζV, the merging of cs into cs′ is also applied.

6. Interpolation Control
Given the complete vertex correspondence for every
component pair, various methods can be applied for
vertex interpolation, for example, linear interpolation or
as-rigid-as-possible interpolation [3] to obtain a morph.
Based on the use of components, this framework enables
a user to edit morphing trajectories at both the global
and the local levels.

Through manual or automatic means, a user can
construct a skeleton for a mesh by assigning for each
component a bone, which is a polyline. It is not required
that the bone for a component accurately represents the
component’s shape.

Although the use of skeletons is not novel, there are
several challenges in using skeletons in our framework.
The most obvious one is that the skeletons of two
original meshes are usually very different in both their
shapes and numbers of bones. Due to the one-to-one
relationship between a component and its bone, we
construct correspondences over bones directly from the
common correspondence graph M, by adding null-bones
for null-components in M. Subsequently, the morphing
of skeletons can be computed by interpolating between
every two corresponding bones.

Skeleton-based control has been used in many
applications (see [4, 5, 13]). To bind mesh vertices to
underlying bones in a morph, there are many possible
implementations. One is to adapt the weighted vertex
method to blend the associations between mesh vertices
and the line segments of underlying bones. For each
mesh vertex, we find the point on its underlying bone
that is nearest to the vertex, and compute its arc-length
values along the bone. By interpolating arc-length values
and relative positions of mesh vertices with respect to
their nearest points on the bones, each mesh vertex in
the source can be transformed to its corresponding
vertex in the target according to the complete vertex
correspondence.

Due to the low computational cost of skeleton
morphing, such a morph can serve as a fast means to get
a general idea of how the final morph will look
like. Therefore, users can decide whether to modify the
global-level specifications before moving on to the more
costly computation of mesh morphing.

As for user control in the interpolation step, a user
can specify the position or orientation of a component
by editing keyframes of the bone of the component.
Accordingly, the system is able to deduce the
trajectories of its vertices. Such kind of editing is usually
much easier and more intuitive than editing trajectories
of individual vertices. Figure 10 illustrates this using a
morphing sequence where we combine the morph from a
calf to a cow with the morph from the cow to a

Zhao et al / Interactive Control of Component-based Morphing

© The Eurographics Association 2003.

triceratops. In each morph, we add two component
keyframes to achieve the walking effect from the calf to
the cow then to the triceratops. In addition, the user can
also specify vertex trajectory at an intermediate frame.
In that case, new vertex position will be used to update
the arc-length and relative position of vertices at that
frame. Thus, the user can achieve sophisticated
morphing trajectories efficiently at both global and local
levels.

Figure 10: Component keyframe editing. In this morph, a calf
is transformed into a cow, then into a triceratops while
walking.

7. Results
We implemented a prototype system for the component–
based morphing framework on a Pentium IV 2GHz PC.
The main focus of our experiments is to test the
efficiency and effectiveness of user interaction reported
in this paper. Below are samples of our experiments
(Figures 11 to 14 are shown in the color plate). More
results and video files are available at:
http://www.comp.nus.edu.sg/~tants/morphing.html.

• Trial-and-error morphing design using components (a
duck and a dinosaur)
The user first cut each object into its tail, body and head.
Then, the user paired solely the two heads, and the
system produced a morph accordingly. Realizing that
there were six legs in the intermediate objects, as shown
in Figure 11(a), the user then went back to specify two
legs for each object and pair their right legs, as shown in
Figure 11(b). Maintaining all previous user
specifications, the system updated the morph
correspondingly and produced a better morph. The
whole process took just a few minutes. It can be clearly
seen that a user can design a morph at the global level
without considering any mesh detail and can refine the
specifications whenever necessary.

• Effective deduction in genus-1 morphing (a mug and a
donut)
This example shows that our user can also design high-
genus morphing with ease. In this example, the user first
decomposed each object into two components, and then
paired the body of the mug with a half of the donut.
Because there are two connections between the two
components in each object, the user then paired one
boundary in the mug with one boundary in the donut, as
shown in Figure 9(c). Based on these user specifications,
the system completed other tasks through deduction and
the whole morph is completed in less than 1 minute.
Figure 12 shows deduced local feature pairs in (a) and
computed patch layouts in (b). Note that we achieved
this morph shown in (c) by just a few clicks, whereas in
[9] and [12], to design a similar morph, the user spent

more than half an hour.

• Trial-and-error morphing design at the local level (a
rocket and a glass)
Figure 13 illustrates trial-and-error morphing design at
the local level. After cutting each object into three
components, the user specified one pair of components
and then the system produced a morphing accordingly.
Realizing that intermediate shapes were distorted at the
top, as shown in (a), the user then revisited the local-
level correspondence step to add one pair of feature lines
as in (b). Subsequently, the system respected all the
specifications and produced a better morph as in (c).

• Different morphing designs using components (a
rocket and a duckling)
Figure 14 demonstrates the effectiveness and efficiency
of utilizing components in multi-level morphing control.
Given the same models, a rocket and a duckling, the user
assigned different component correspondences and
conveniently achieved two interesting morphs shown in
(a) and (b).

Table 1 reports the numbers of user-specified and
system-deduced correspondences for our examples.
From the results, we can see that user interaction in our
framework is efficient and effective, and all our morphs
were obtained within a few minutes. We also invited
several non-expert students in our university to try our
system, and they all reported that it is easy and
convenient for them to design a morph in our system.

8. Discussion
We have demonstrated a system that implements our
proposed framework. The novelty of the component-
based morphing framework lies in that it reduces user
workload and provides flexibility in user control such
that even an amateur can design a morph with ease.
Specifically, it utilizes components to address major
issues about interactive control, and its main advantages
are summarized as follows.

First, with the component decomposition, mesh
vertices can be perceived and manipulated in groups.
Connectivity among components, which is much simpler
than that among vertices, is capitalized in our
framework. This makes user interaction in both the
correspondence and the interpolation steps intuitive and
efficient, especially when dealing with meshes of
complex shapes. In addition, users can still fine-tune
morphs by working directly on individual vertices.

Second, the whole framework is designed with the
philosophy of helping users as much as possible and not
imposing on users any system-caused restriction. In
every step of the whole morphing process, the system
first gets user specifications, then deduces implied user

Zhao et al / Interactive Control of Component-based Morphing

 © The Eurographics Association 2003.

requirements based on these specifications, and finally
adds assumed but reasonable choices. Moreover, if a
user revisits this step to modify the specifications, the
system updates assumed choices, respecting all user
specifications. The use of the constraint tree and the
deduction of implied and assumed local-level
correspondences are means of realizing this philosophy.

Our framework has several limitations and potential
extensions. Currently, we do not deal with the case
where a boundary is shared by more than two
components. In this case, a connectivity graph will be
replaced by a connectivity hyper-graph. Another
challenging extension is to handle topological changes,
which includes changes in genus, during morphing
design. Such a morph involves the appearing or
disappearing of a connection between two components.
Consequently, we should develop techniques to handle
such changes in connection, and to deduce implied and
assumed correspondences over such connections.

Acknowledgements
We would like to thank Dr. Huang Zhiyong for many
helpful discussions. This research is supported by the
National University of Singapore under grant R-252-
000-107-112.

References
1. M. Alexa. Merging Polyhedral Shapes with

Scattered Features. Visual Computer, 16:26-37,
2000.

2. M. Alexa. Recent Advances in Mesh Morphing.
Computer Graphics Forum, 21(2):173-196, 2002.

3. M. Alexa, D. Cohen-Or and D. Levin. As-rigid-
as-possible Shape Interpolation. SIGGRAPH’00,
157-164, 2000.

4. J. Bloomenthal and C. Lim. Skeletal Methods of
Shape Manipulation. International Conference on
Shape Modeling and Applications, 44-47, 1999.

5. R. Blanding, G. Turkiyyah, D. Storti and M.
Ganter. Skeleton-based Three-dimensional
Geometric Morphing. Computational Geometry –
Theory and Applications, 15:129-148, 2000.

6. D. DeCarlo and J. Gallier. Topological Evolution
of Surfaces. Graphics Interface’96, 194-203,
1996.

7. E. Galin and S. Akkouche. Shape Constrained
Blob Metamorphosis. Implicit Surfaces’96, 2:9-
23, 1996.

8. E. Galin, A. Leclercq and S. Akkouche. Blob-Tree
Metamorphosis. Implicit Surfaces’99, 4:9-16,
1999.

9. A. Gregory, A. State, M. Lin, D. Manocha and M.
Livingston. Feature-based Surface Decomposition
for Correspondence and Morphing between
Polyhedra. Computer Animation’98, 64-71, 1998.

10. T. Kanai, H. Suzuki and E. Kimura. Three-
Dimensional Geometric Metamorphosis Based on
Harmonic Maps. Visual Computer, 14(4):166-176,
1998.

11. T. Kanai, H. Suzuki and E. Kimura.
Metamorphosis of Arbitrary Triangular Meshes.
IEEE CG&A, 62-75, 2000.

12. A. Lee, D. Dobkin, W. Sweldens and P. Schroder.
Multiresolution Mesh Morphing. SIGGRAPH’99,
343-350, 1999.

13. F. Lazarus and A. Verroust. Metamorphosis of
Cylinder-like Objects. Journal of Visualization
and Computer Animation, 8:131-146, 1997.

14. F. Lazarus and A. Verroust. Three-dimensional
Metamorphosis: a Survey. Visual Computer, 14:
373-389, 1998.

15. X. Li, T. Woon, T. Tan and Z. Huang.
Decomposing Polygon Meshes for Interactive
Applications. I3DG’01, 35-42, 2001.

16. A. Mangan and R. Whitaker. Partitioning 3D
surface Meshes using Watershed Segmentation.
IEEE Transaction on Visualization and Computer
Graphics, 5(4):308-321, 1999.

17. E. Praun, W. Sweldens and P. Schröder.
Consistent Mesh Parameterizations.
SIGGRAPH’01, 179-184, 2001.

18. M. Shapira and A. Rappoport. Shape Blending
using the Star-skeleton Representation. IEEE
CG&A, 15:44-50, 1995.

19. S. Shlafman, A. Tal and S. Katz. Metamorphosis
of Polyhedral Surfaces using Decomposition.
Eurographics’02, 21(3):219-228, 2002.

20. M. Zöckler, D. Stalling and H. Hege. Fast and
Intuitive Generation of Geometric Shape
Transitions. Visual Computer, 16:241-253, 2000.

Morphs Cow-Triceratops Duck-Dino Mug-Donut Rocket-Glass Rocket-Duckling
Triangles in source / target 5806 / 5660 550 / 5076 1640 / 576 330 / 2642 330 / 3836
Components in source / target 9 / 11 5 / 5 2 / 2 3 / 3 7 / 7
Figure number 9(a)-(b) 11 12 13 14 (a) 14 (b)
USER-SPECIFIED component correspondences 4 2 1 1 3 3
USER-SPECIFIED local feature pairs 2 0 1 3 2 3
SYSTEM-DEDUCED local feature pairs 23 12 4 10 16 15

 specifying component correspondences 15 sec 10 sec 5 sec 5 sec 10 sec 10 secEstimated
user time specifying local feature pairs 10 sec 0 sec 5 sec 20 sec 15 sec 20 sec

Table 1: Statistics of our morphing examples

Zhao et al / Interactive Control of Component-based Morphing

© The Eurographics Association 2003.

(a) (b)

(c) (d)

(e) (f)

Figure 1: An example of user control in the framework. (a)
The user only pairs components of interest. (b) The system
deduces the complete component correspondence. (c) The
user only specifies local feature pairs of interest (but none
here); the system deduces implied (orange) and assumed
(blue) local features. (d) Through automatic patch
partitioning, the system computes the complete vertex
correspondence for the two meshes. (e) The system produces
the morphing sequence through vertex interpolation. (f) The
user manipulates a component as a whole (such as the head
here) to edit morphing trajectories.

Figure 9: (a) Assumed feature vertex pairs at boundaries.
With correspondences at boundaries (shown in orange) for
two body components, the system adds two pairs of feature
vertices (shown in blue) for every two corresponding
boundaries. (b) Assumed feature vertex pair at tips. Each tail
has only one boundary (shown in orange). Based on their
shapes, the system adds a pair of feature vertex at their tips
(shown in blue). (c) Assumed local feature pair at boundaries.
The user specifies one pair of boundaries for the two
components, (shown in green); the system then automatically
pairs the remaining boundaries (shown in blue).

(a) (b)

Figure 11: Global level trial-and-error morph design. (a) A
intermediate object which has six legs. (b) Specify two legs and
pair the right legs to improve the morphing.

(a) (b)

 (c)

Figure 12: Demonstration of morphing of genus-1 objects. (a)
One user-specified feature loop pair (in green), one system-
deduced feature loop pair and four system-deduced feature
vertex pairs (in blue). (b) Computed compatible patch layouts
based on the six pairs of local features. (c) Morphing from a
mug to a donut.

(a)

(b) (c)

Figure 13: Local level trial-and-error morph design. (a) A
distorted intermediate object in the initial morph. (b) User-
specified local feature pairs in their tops. (c) An intermediate
object in the improved morph.

Figure 14: Two different morphs with same components but
different component correspondences.

Figure 5: (a) and (b).

(a)

(b)

(b) (c)

(a)

Initial 1st constraint Result of 1st constraint 2nd constraint Result

