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ABSTRACT
This paper studies the usage of the GPU as a collection of
groups of related processing units, where each group com-
municates in some way to complete a computation efficiently
and effectively. In particular, we use the GPU to perform
jump flooding to pass information among groups of process-
ing units in the design of two simple real-time soft shadow
algorithms. These two algorithms are purely image-based
in generating plausible soft shadows. Their computational
costs depend mainly on the resolution of the shadow map or
the screen. They run on an order of magnitude faster than
existing comparable methods.

Categories and Subject Descriptors
I.3.1 [Computer Graphics]: Graphics processors; I.3.3
[Computer Graphics]: Bitmap and framebuffer opera-
tions; I.3.7 [Computer Graphics]: Color, shading, shad-
owing, and texture

General Terms
Algorithms, Performance, Experimentation

Keywords
Game programming, interactive application, hard shadow,
programmable graphics hardware, penumbra map, parallel
prefix

1. INTRODUCTION
The modern programmable GPU is generally viewed as

a powerful processor because of its many processing units
working simultaneously. Most published works on GPU
computations capitalize on using each processing unit so-
phisticatedly but more or less individually to perform some
tasks [15]. On the other hand, in the history of parallel
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computation (with the GPU as one of its present form),
we note that there are many sophisticated communication
patterns that assist in computations. For example, Lad-
ner and Fischer [13] present the parallel prefix to solve the
prefix problem with associative operation. Motivated by
these works, we attempt to seek a good understanding of
the computational possibilities with sophisticated commu-
nication patterns among processing units in the GPU.

In this aspect, there are a few different flavors of recent
works such as the bitonic sorting [7], the N-buffer [10], and
the jump flooding algorithm [17]. The last paper is most
relevant to our work here. It successfully uses the GPU to
efficiently compute very accurate 2D Voronoi diagrams and
distance transforms. This is an exciting attempt in under-
standing and using communication similar to that in the
parallel prefix to design non-trivial algorithms. That work
relies heavily on the empty circle property of Voronoi dia-
gram [5] to be able to quantify the quality of the outputs.
However, it was not known whether the jump flooding al-
gorithm could still be useful to other computation problems
that might not have a special property to guarantee the qual-
ity of the results. Our work here ascertains that the jump
flooding algorithm is indeed useful to real-time shadow gen-
eration.

In interactive applications, shadows can enhance the real-
ism of the rendered images by providing information about
positions and relationships among objects, and contribute to
over all good immersing experience. Real-time shadow (es-
pecially soft shadow) generation costs a significant amount
of CPU and GPU cycles. Real-time shadow algorithms
can be categorized into object-based and image-based [12].
Object-based algorithms must deal with all the geometries
in the scene. So they do not scale well for complex scenes.
In contrast, the speed of image-based algorithms is less de-
pendent on the complexity of the scene. To this end, this
paper has the following two major contributions:

- It demonstrates ways to use jump flooding on a com-
putational problem that has no known property to
guarantee the quality of the outputs. This advances
the understanding of using the communication pat-
tern similar to that in the parallel prefix to handle yet
another type of non-associative operation.

- It presents two simple image-based soft shadow algo-
rithms JFA-L (jump flooding in light space) and JFA-
E (jump flooding in eye-space) that are of an order of
magnitude faster than existing comparable algorithms.
They achieve good frame rates with the current GPU
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Figure 1: The computational mechanisms of the re-
cent soft shadow algorithms based on shadow map-
ping. The dashed red arrow is our JFA-L’s way
of generating penumbra map directly from shadow
map to assist the computation of soft shadows. Our
JFA-E also follows the approach indicated by the
green arrow (same as iii, iv and v).

for very complex scenes of over hundreds of thousands
of triangles.

This paper is organized as following. Section 2 briefly sur-
veys the state-of-the-art soft shadow generation algorithms.
Section 3 outlines the jump flooding algorithm. Section 4
and Section 5 describe JFA-L and JFA-E respectively. Sec-
tion 6 discusses our soft shadow results. Finally, Section 7
concludes the paper with possible future work.

2. PREVIOUS WORK ON SOFT SHADOW
We briefly review several algorithms closely related to the

work in this paper. They are summarized in Figure 1. All
of them are based on shadow mapping [21], and use shadow
maps obtained from a single sample on the light (normally
the center of the light). For other soft shadow algorithms,
please see the survey by Akenine-Möller and Haines [1] and
Hasenfratz et al. [12].

Wyman and Hansen’s penumbra maps [22] ((i) in Fig-
ure 1) and Chan and Durand’s smoothies [8] ((ii) in Fig-
ure 1) both build some additional geometries in object space
and then render them to generate a penumbra map. This
penumbra map, together with the shadow map, can be used
to generate the final soft shadows. Both algorithms are
object-based, and require the objects in the scene to be
polygonal and do not scale well for complex scenes.

Arvo et al. [2] use shadow map to generate an image
with hard shadows, and then use flood filling method to
spread out the occluding information from the boundaries
of hard shadows to obtain soft shadows ((iii) in Figure 1).
Besides some technical problems of the method (discussed
in Section 5), their approach of flooding is slow for real-time
applications.

Uralsky [18] adapts percentage closer filtering method [16]
to generate soft shadow directly from shadow map ((iv) in
Figure 1). The algorithm uses Monte Carlo sampling and
thus generates noisy effect in the results. Uralsky uses back
faces (with respect to the light) to build the shadow map.
This constrains the objects to be closed manifolds. It can
also generate erroneous self shadow for thin objects and

k=4 k=1k=2

Figure 2: The process of JFA for a 8× 8 grid with a
single seed at the bottom left corner of the grid.

brighter regions for concave objects (see also [19]). Part
III of the accompanying video (downloadable at the project
website) demonstrates these issues. Furthermore, the opti-
mization in Uralsky’s algorithm can result in dark spots in
small fully lit areas.

Brabec and Seidel [6] also generate soft shadow directly
from shadow maps ((v) in Figure 1). But the searching
for the nearest silhouette pixels is too slow for real-time
applications, especially for wide penumbra. And their use
of object identities prohibits self shadows.

We learned recently of the work by Guennebaud et al.
[11]. Like us, they also developed another purely image-
based method to generate real-time soft shadows.

3. JUMP FLOODING ALGORITHM
Suppose we have a pixel designated as a seed in an n× n

grid, and we want to propagate its information to all the
other pixels. One simple way is to use the standard flood
filling algorithm. In every round of the flooding, a pixel at
(x, y) obtains information from its (maximum) 8 neighboring
pixels at (x+a, y + b) where a, b ∈ {−1, 0, 1}. We call this a
round with step length of 1. The number of rounds of such
a method is linear to the resolution of the grid.

Jump flooding algorithm (JFA) can reduce the number of
rounds to logarithmic, by varying the step lengths. The step
lengths in these rounds are in the order: 2�lg n�−1, 2�lg n�−2,
. . ., 1. In a round with step length of k, a pixel at (x, y)
obtains information from other (maximum) 8 pixels at (x +
a, y + b) where a, b ∈ {−k, 0, k}. Figure 2 demonstrates the
process of JFA for a 8 × 8 grid with a single seed.

When executing JFA with more than one seed in a round,
a pixel p may receive (information of) more than one seed
from other pixels. Among all the seeds arriving at p, p has
to decide a seed s to record to pass on to other pixels in
subsequent rounds. The other seeds s′ that arriving at p
but not recorded by p are said to be killed by s at p. In the
case of using JFA to compute Voronoi diagram, p records
the seed s closest to p among all the seeds known so far by
p.

Our soft shadow algorithms JFA-L (Section 4) and JFA-
E (Section 5) also rely heavily on propagating occluders’
(seeds’) information stored in pixels on silhouettes or bound-
aries to other pixels to calculate their intensities. Here, we
use the calculated intensity to determine whether an oc-
cluder is to be recorded at a pixel p. We assume the light
source is a circle for our following discussion. For p receiving
information of an occluder o, it calculates the intensity by
shooting a ray from p to o (as in [2]). If the ray does not
intersect the light source, p is considered to be either in an
umbra region or in a fully lit region based on whether it is in
hard shadows, and does not propagate o to other pixels in
subsequent rounds. On the other hand, if the ray intersects
the light source at a point q, it first estimates the intensity
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Figure 3: JFA-L algorithm. (a) boundaries (silhouette pixels) in shadow map; (b)-(g) steps of jump flooding
with step lengths of 32, 16, 8, 4, 2 and 1; and (h) final result generated using the penumbra map (g) and the
shadow map. The 6 rounds of jump flooding in (b)-(g) generate a penumbra region with maximum width of
63 pixels. This number of rounds (instead of a complete 9 rounds of JFA for this example of 512× 512 image)
is generally enough for most applications.

based on the proportion of the light source visible to p by
partitioning the light source with the line orthogonal to cq
and passing through q, where c is the center of the light.
For an outer (inner, respectively) penumbra point p, if the
intensity is smaller (larger, respectively) than that already
stored in p, p then keeps the newly calculated intensity, and
goes on to propagate o to other pixels in subsequent rounds.

Such propagating of occluders’ information to calculate
intensities, when implemented as jump flooding (with oc-
cluders replacing seeds) to gain good speed, is unclear to
work at all. Unlike the case of Voronoi diagram computa-
tion with the empty circle property, we do not know of any
property here to provide a guarantee of good soft shadows
with such a non-trivial communication pattern. We address
in the next two sections the situations presented by JFA-L
and JFA-E to generate plausible soft shadows.

4. JUMP FLOODING IN LIGHT SPACE
The novelty of JFA-L is to efficiently generate a penumbra

map directly from shadow map by using JFA in light space
(as shown by the red dashed arrow in Figure 1). It uses
hard shadows to approximate umbra regions. So all the
penumbra regions can be seen by the center of the light,
and thus can be stored into a texture called penumbra map.
It only generates outer penumbrae, i.e. penumbrae out of
hard shadows.

JFA-L algorithm includes four major phases. The second
phase and each round of jump flooding in the third phase
are achieved with the standard technique of drawing a quad
of the same size as the shadow map to trigger a fragment
program running on every pixel.

4.1 JFA-L Algorithm
Building Shadow Map. The first phase of our algo-

rithm is almost identical to that of the standard shadow
mapping, except that we also store the light space coordi-
nate of every pixel in addition to the depth value. To in-
crease the resolution of the useful part of the shadow map,
one can use, for example, trapezoidal shadow map approach
[14].

Locating Occluders. For every pixel in the shadow
map, we test its eight neighboring pixels. If the depth
of one or more neighboring pixel is larger than its depth
(greater than a certain threshold), it is marked as a sil-
houette pixel. These silhouette pixels having information of
their light space coordinates behave as occluders for other
pixels in penumbra regions.

Generating Penumbra Map. To compute a penumbra
map, we spread out the coordinate information of occluders
from the silhouette pixels to other pixels using jump flood-
ing (see Figure 3 and Part I of the accompanying video for
our implementation of jump flooding with 6 rounds). When
a pixel receives the coordinate of an occluder from flood-
ing, it shoots a ray from itself to the occluder to calculate
the intensity as mentioned in Section 3. Among all occlud-
ers received, a pixel keeps the one computed with minimum
intensity value and then passes it on to other pixels in sub-
sequent rounds. Here, the calculation of the intensity can
be pre-computed and stored in a texture indexed by the
intersection point of the ray with the light.

Generating Final Image. In the last phase, we render
the scene from the eye position. For every pixel, we trans-
form it to the light space. First, we check whether the pixel
is in hard shadows. If so, the intensity of this pixel is set to
0. Otherwise, we check whether there is a coordinate value
stored in the corresponding pixel in the penumbra map. If
so, this pixel is in a penumbra region, and its intensity is
then calculated by shooting a ray from this pixel to the re-
spective coordinate value in the penumbra map. Note that
we do not directly use the intensity stored in the penum-
bra map as that can result in blocky soft shadows when the
shadow map does not have a good resolution. If both of
the above fail, the pixel is fully lit and thus has a normal
intensity of 1.

4.2 Analysis
An immediate limitation of JFA-L is that it does not gen-

erate inner penumbrae, i.e. penumbrae inside of hard shad-
ows. We have investigated many attempts (such as the sec-
ond layer shadow maps [20, 3]), but found no suitable sup-
plement to the JFA-L algorithm to generate inner penum-
brae without introducing new problems. Nevertheless, from
our experiment and our analysis below, JFA-L remains very
useful in generating convincing soft shadows for real-time
purposes.

JFA-L does not calculate exact intensities at penumbra re-
gions but only some form of approximations. This is not an
issue for real-time applications, such as games, as long as the
algorithm can achieve the following two goals of parity and
smoothness in order to generate convincing soft shadows.
On the parity, an algorithm calculates soft shadow intensity
for a pixel if, and only if, the pixel is in a penumbra re-
gion. On the smoothness, calculated intensities of adjacent
penumbra pixels must vary smoothly.
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Parity. We have the following simple argument that
when a pixel p is calculated to be in a penumbra region
by JFA-L, then this is indeed so for p. Let o be the occluder
received at p through jump flooding for the calculation of
the intensity of p. By the fact that the ray from p to o inter-
sects the light source, p cannot be fully lit. Also, p cannot
be in an umbra region too, as our algorithm does not assign
intensity to pixels in umbra regions. So, p can only be in a
penumbra region, as claimed.

On the other hand, if p does not receive intensity value
through jump flooding, then it is not certain that p is not
in any penumbra region. When such p is indeed in the mid-
dle of a penumbra region, the undesirable visual effect is
the existence of holes in the calculated penumbra region. In
all our experiments, we do not observe such effects. One
explanation is that penumbra regions tend to be narrow
in width, thus are highly unlikely to accommodate visible
holes. Another possible explanation is to view the jump
flooding computation of intensity here as in some way re-
lated to the jump flooding computation of distance in [17].
This view is reasonable, but not absolute, as the intensity of
a pixel is in some way proportional to the distance from the
silhouette pixels in the light space. By the result of [17] that
JFA computes excellent approximation to Voronoi diagram,
we can expect JFA to communicate occluders to almost all,
if not all, pixels (especially those nearby ones) in penumbra
regions.

Smoothness. We have the following reasoning to be-
lieve that JFA-L computes smooth transition in intensity
from pixel to pixel. By the way the intensity is defined, the
calculated intensity with a single occluder for a continuous
surface is smooth across the pixels (in the penumbra map)
representing the surface.

So, let us suppose that all occluders can reach all pix-
els (which is clearly not true because occluders are killed
along the way during jump flooding). Then, for any two
neighboring penumbra pixels (technically, it should be two
infinitesimally close by points), regardless of the fact that
they record the same or different occluders, the calculated
intensities are smooth across the pixels as we always keep in
each pixel the occluder that generates the minimum inten-
sity.

By the nature of jump flooding with many ways to reach
from one pixel to another pixel throughout the rounds, many
occluders have good chances to communicate to many pix-
els before being killed. Thus, there are enough occluders to
reach enough relevant pixels, i.e. a partial fulfillment of the
assumption in the previous paragraph, and these are enough
to generate plausible smooth intensity across pixels. Addi-
tionally, as mentioned before, penumbra regions are nar-
row and near to the hard shadow boundaries, the occlud-
ers recorded for two adjacent pixels are either the same or
nearby occluders, and thus generate smooth intensity across
the adjacent penumbra pixels.

Flooding Experiment. To provide some confidence to
the above reasoning, we use the fantasy scene (Figure 10)
of over a hundred thousands of triangles to generate two
series of 462 frames (as shown in Part V of the accompa-
nying video), one using jump flooding and the other using
standard flooding to generate the corresponding penumbra
maps. The percentages of pixels (with respect to the to-
tal number of 430k to 940k penumbra pixels in each image)
with differences in intensities (ΔI) for each frame are plot-

ΔI<0.05
0.05≤ΔI<0.1
0.1≤ΔI<0.2
0.2≤ΔI

(a)

(b)

(c)

Figure 4: (a) Statistics of pixels with differences in
intensities; (b) penumbra map generated by jump
flooding; and (c) penumbra map generated by stan-
dard flooding.

ted as four curves in Figure 4(a). The four curves represent
differences in intensities of below 0.05, 0.05 to below 0.1, 0.1
to below 0.2, and at least 0.2. We note that the intensi-
ties of the majority of pixels as generated by jump flooding
and standard flooding are of small differences, if not the
same. Figure 4(b) and 4(c) show the penumbra maps (at
the pergola area) of the frame with the largest difference.
We also show the frames with large differences in Part VI of
the accompanying video. We do not see significant visible
differences for these frames. In the experiment, we also note
that the number of pixels with differences in parity between
jump flooding and standard flooding is less than 0.1%, and
this thus is not of significance at all.

5. JUMP FLOODING IN EYE SPACE
The novelty of JFA-E is to efficiently generate a final im-

age with soft shadow from an image with hard shadows.
This algorithm seems to follow immediately from Arvo et
al.’s algorithm [2] by replacing the standard flooding with
JFA. However, we need to deal with two problems. Firstly,
Arvo et al.’s algorithm sometimes falsely recognizes pixels
on hard shadow boundaries when using the conditions that
such a pixel (1) must lie between lit and shadow regions, and
(2) must be occluded by a silhouette pixel in shadow map.
This is because condition (2) is not foolproof: Some pixels
occluded by a silhouette pixel in shadow map may also be
occluded by other objects in between them, and thus not on
hard shadow boundaries. These incorrectly identified pixels
lead to holes in umbra regions. Part IV of the accompa-
nying video demonstrates this phenomenon. Secondly, we
need to address an undesirable “jump too far” effect of the
jump flooding process that also results in holes in umbra
regions (in Section 5.2. and Figure 6). The next subsection
describes the five phases of the JFA-E algorithm.

5.1 JFA-E Algorithm
Building Shadow Map. This is the same as that of

JFA-L.
Generating Hard Shadows. In generating hard shad-
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(a) (b) (c) (d) (e) (f)

Figure 5: JFA-E algorithm. (a)-(f) are steps of jump flooding with step lengths of 32, 16, 8, 4, 2 and 1, and
(f) is the final result.

ows with the standard technique, we also store the 3D co-
ordinates of points corresponding to all pixels. Each co-
ordinate is stored in RGB channels, and a flag indicating
whether the pixel is in hard shadows in the alpha channel.

Locating Occluders. To extract the boundaries of hard
shadows, we check for every pixel in hard shadows its eight
neighboring pixels with a fragment program. If at least one
of the neighboring pixels is lit, and if the distance (in 3D
space) between the corresponding points of this lit pixel and
the pixel in hard shadows is small enough, we consider this
pixel as a boundary pixel. Once a boundary pixel is ascer-
tained, the coordinate of the corresponding occluding sil-
houette pixel is also recorded for the pixel into a texture,
which is the input to jump flooding.

Generating Penumbra Regions. Then, we run a frag-
ment program with the required number of rounds of jump
flooding to calculate intensities (see Figure 5 and Part II
of the accompanying video for our implementation of jump
flooding with 6 rounds). As in the JFA-L approach, we use a
look-up texture indexed by the intersection point to obtain
pre-calculated intensity values. For each pixel in a penum-
bra region, we keep the highest or lowest intensity value,
respectively, during the flooding according to whether it is
inside or outside, respectively, hard shadows.

Generating Final Image. For every pixel, the result of
jump flooding in the previous phase can determine whether
it is in a penumbra region. If so, its intensity in the final
image is read from the output in the previous phase. Oth-
erwise, we use the hard shadow result to determine whether
it is in hard shadows. If so, its intensity in the final image
is set to 0. If both of the above fail, the pixel is fully lit and
thus has a normal intensity of 1.

5.2 Analysis
Jump Too Far. The advantage of JFA-E as compared

to JFA-L is that it attempts to generate both the inner and
outer penumbrae. However, this comes with a side effect of
some parts of umbra regions to be mistaken as inner penum-
brae that appeared visually as holes inside umbra regions.
See Figure 6(a) for an illustration where we have the sit-
uation as seen from the eye. Pixel p′ is on hard shadow
boundaries, and it may jump to q′ in a round with a large
step length. The ray passing through point q and the oc-
cluder point e intersects with the light. So q′ is treated as in
a penumbra region, while it should be in an umbra region. q′

may further flood its occluder to other nearby pixels. This
results in a hole around point q′ in the final image. Fig-
ure 6(b) gives an example in our fantasy scene with such an
artifact.

We have two simple ways to reduce the occurrences of such
problems. The first way is to record object identities of oc-

eye light

p

q

p’

q’

o

objects

view
plane

e

(a)

hole

(b)

Figure 6: (a) 2D illustration of the jump too far
problem; and (b) a corresponding example of an un-
desirable hole in the hard shadow under the mush-
rooms in our fantasy scene.

cluders, and to allow jump flooding of occluder only to pix-
els with the same object identity. (Note that this is not the
same use of object identities as in [6] where self-shadowing
is lost.) This effectively eliminates the jump too far prob-
lem of wrong inner penumbrae. However, this method still
fails for some concave objects. The second way is a simple
form of continuity check: a midpoint between the bound-
ary of the occluder and the pixel under consideration must
have penumbra intensity before the pixel under considera-
tion can have penumbra intensity. Again, one can create
an arrangement to show that this does not fully remove the
jump too far problem. Nevertheless, our experiments with
both of them are very positive – each manages to remove all
the hole artifacts.

Parity and Smoothness. We note that the relationship
of distance and intensity used in our argument for JFA-L is
generally not true here for flooding in eye space. This is
because the image seen by the eye is distorted by the pro-
jection. Two points may be very near to each other when
seen from the light, but are actually very far apart when
seen from the eye. So we cannot ascertain that the intensity
is in any way related to the distance in the eye space. Nev-
ertheless, we do not detect significant problems, as testified
in the experiment discussed in the next paragraph, in using
jump flooding in place of standard flooding.

Flooding Experiment. We also generate from the fan-
tasy scene (Figure 10) the two series of 462 frames, one using
jump flooding and the other using standard flooding. Fig-
ure 7(a) shows the corresponding curves in the case of JFA-E
(with respect to the total number of 10k to 99k penumbra
pixels in each image) as that of JFA-L in Figure 4(a). The
results of the frame with the maximum difference are shown
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Figure 7: (a) Statistics of pixels with differences in
intensities; (b) result generated by jump flooding;
and (c) result generated by standard flooding.

in Figure 7(b) and 7(c). We also show the frames with large
differences in Part VI of the accompanying video. Once
again there are no significant and noticeable visual differ-
ences between each pair of frames. In the experiment, we
also note that the number of pixels with differences in par-
ity between jump flooding and standard flooding is less than
6.8%.

6. EXPERIMENTAL RESULTS
We have implemented JFA-L and JFA-E with trapezoidal

shadow maps [14] using Visual C++.net 2003 and Cg 1.4.
The hardware platform is Pentium IV 3.0GHz, 1GB DDR2
RAM with a NVIDIA GeForce 6800 GT PCI-X, 256MB
DDR3 video memory.

JFA-L Results. We have run JFA-L on five models with
increasing magnitude of triangles. For every model, we use
shadow maps of three different resolutions, while fixing the
resolution of the screen at 512 × 512. See Part V of the ac-
companying video for the results. An output of the fantasy
scene using JFA-L is shown in Figure 10(a). This scene in-
cludes a tree, a pergola, three mushrooms, a rock, a flower
and four animated characters in a terrain. The Fantasy2
scene is similar to the Fantasy scene with duplicated objects
to increase the number of triangles. Figure 8(a) shows the
average time taken per frame. Each time bar highlights the
part taken by JFA in a light color. It is clear that the time
taken by JFA is mostly dependent on the resolution of the
shadow map. For a same model, when we double the resolu-
tion, the number of the total pixels increases by four times
and so is the time taken to perform JFA. Among different
models, the time taken by JFA differs slightly as different
number of pixels are active (with more complex silhouette
having more) in executing the same fragment program.

JFA-E Results. Figure 8(b) shows the average time
per frame of JFA-E for different models. We use screens of
three different resolutions, while fixing the resolution of the
shadow map at 1024 × 1024. See Part V of the accompa-
nying video for results. Figure 10(b) shows an output of
the fantasy scene using JFA-E. We note that JFA-E runs
with 6 rounds of jump flooding on screen with resolution of

(a) (b)

Figure 8: Comparison of the time of JFA and other
parts in (a) JFA-L and (b)JFA-E. The three time
bars for every model (from left to right) represent
resolutions of 256×256, 512×512 and 1024×1024 of the
shadow map (for JFA-L) or the screen (for JFA-E).
The numbers in the parenthesis are the numbers of
triangles of the models.

(a) (b) (c)

Figure 9: Soft shadows of Knight generated using
(a) JFA-E with 6 passes, (b) Arvo et al’s algorithm
with 63 passes, and (c) Arvo et al’s algorithm with
20 passes.

512 × 512 can achieve 23 frames per second for the knight
model (Figure 9), as compared to Arvo et al’s approach of
about only 2 frames per second with 63 passes of standard
flooding (to achieve similar quality as ours). When using
only 20 passes as suggested in their paper, Arvo et al’s al-
gorithm can only achieve 6 to 7 frames per second, while
generating results of lower quality.

JFA-L and JFA-E. By the way the intensity is calcu-
lated, both algorithms have the problem of shrinking umbra
regions as that of Arvo et al.’s. This problem is observed at
any cross shape shadows of two objects, when one is on top
of the other; see, for example, the shadows cast by the cross-
ing of the ear and the buttock of the bunny in Figure 3(h)
and Figure 5(f).

Both algorithms rely on the quality of the shadow map.
As such, when there is an artifact in the shadow map (for
JFA-L) or hard shadows (for JFA-E), the corresponding soft
shadows also have artifacts. In particular, when some fea-
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(a) (b)

Figure 10: Results of the fantasy scene using (a)
JFA-L, and (b) JFA-E.

tures of hard shadows appear and disappear, they are fur-
ther exaggerated due to flooding and appear as undesirable
blinking of soft shadows.

JFA-E has a problem with inner penumbrae when a small
hole inside the hard shadows is changing in shape or disap-
pearing due to the insufficient resolution of the shadow map.
When this happens, we observe undesirable blinking of soft
shadows – such effect does not appear in JFA-L as it has no
inner penumbrae. JFA-E thus is not appropriate for scenes
with small holes in hard shadows. Such blinking effects also
appear when a part of the hard shadow boundaries is oc-
cluded by other objects in one frame but become visible in
the next. Without this artifact, during walkthrough or fly-
through, JFA-E produces more realistic soft shadows. On
the other hand, we like JFA-L for it is robust in producing
plausible soft shadows for scenes with complex hard shadow
boundaries, and it runs faster than JFA-E.

To compare soft shadows derived from shadow volume
[9] and shadow mapping, we experiment with some codes
available from the web on the shadow volume approach of
[4]. This algorithm is object-based and handles only objects
that are polygonal and manifolds. It does not seem to scale
well for complex scenes as it performs with low frame rate
for scenes containing just a few thousands of triangles.

7. CONCLUDING REMARKS
This paper presents two novel and simple real-time soft

shadow algorithms based on shadow mapping. In JFA-L,
we use jump flooding to generate a penumbra map directly
from shadow map, and then use it to generate soft shad-
ows. In JFA-E, we improve upon Arvo’s algorithm in speed
and in quality of soft shadows. Both algorithms are purely
image-based. They can achieve interactive speed with plau-
sible soft shadows even for very complex scenes. One possi-
ble future work is to record more information of occluders,
such as silhouette edges rather than just silhouette points,
to compute more accurate intensity.

In another view, these algorithms extend our understand-
ing in utilizing GPU for non-trivial communication among
processing units that is seldom found in the present uses
of GPU. Possible future work is to continue searching for
the use of jump flooding or other interesting communica-
tion patterns utilizing GPU.
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