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Current businesses rely heavily on efficient access to their databases. Manual tuning of these
database systems by performance experts is increasingly infeasible: for small companies, hiring
an expert may be too expensive; for large enterprises, even an expert may not fully understand
the interaction between a large system and its multiple changing workloads. This trend has led
major vendors to offer tools that automatically and dynamically tune a database system.

Many database tuning knobs concern the buffer pool for caching data and disk pages. Specif-
ically, these knobs control the buffer allocation, and thus the cache miss probability, which has
direct impact on performance.

Previous methods for automatic buffer tuning are based on simulation, black-box control, gra-
dient descent, and empirical equations. This paper presents a new approach, using calculations
with an analytically-derived equation that relates miss probability to buffer allocation; this equa-
tion fits four buffer replacement policies, as well as twelve data sets from mainframes running
commercial databases in large corporations.

The equation identifies a buffer size limit that is useful for buffer tuning and powering down
idle buffers. It can also replace simulation in predicting I/O costs. Experiments with PostgreSQL
illustrate how the equation can help optimize online buffer partitioning, ensure fairness in buffer
reclamation, and dynamically retune the allocation when workloads change. It is also used, in
conjunction with DB2’s interface for retrieving miss data, for tuning DB2 buffer allocation to
achieve targets for differentiated service.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of
Systems; H.4 [Information Systems Applications]: Miscellaneous

General Terms: Design, Performance

Additional Key Words and Phrases: Buffer allocation, miss probability, autonomic computing

1. INTRODUCTION

Most business processes require access to some databases. Competitive pressures
require these accesses to be quick, so the database systems must be well-tuned.

Traditionally, database tuning is done manually by experts (e.g. database ad-
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ministrators), but this is increasingly infeasible: With the large drop in hardware
prices and huge increase in capacity, database systems have grown bigger and more
complicated. Furthermore, the workload may be heterogeneous (e.g. server consoli-
dation), dynamic (e.g. Web-driven) or unknown (e.g. outsourcing service). Human
expertise for tuning such systems can be hard to find, or prohibitively expensive.
This has led major vendors to offer software tools for automatic and dynamic tun-
ing: Automatic Database Diagnostic Monitor for Oracle [Dias et al. 2005], Resource
Advisor for SQL Server [Narayanan et al. 2005] and Self-Tuning Memory Manager
for DB2 [Storm et al. 2006].

As evident from the tuning aids provided by these three tools, a key issue is the
allocation of memory to the buffer pool (or, simply, buffer) for caching data and
disk pages. Buffer tuning determines Pmiss, the probability that some referenced
object is not in the cache, thus degrading performance.

This paper addresses three issues in buffer tuning:

(1) Buffer size M : Despite the dramatic price drop for memory, buffer size re-
mains an issue, as there are always competing demands for memory space
from code, working storage (for sorting, hashing, etc.), metadata, networking,
etc. [Lightstone et al. 2002]. There is also recent interest in powering down
excess memory [Cai and Lu 2005].

(2) Buffer share Mi: A large enterprise may run concurrently several workloads
with diverse characteristics (short interactive transactions, long queries for de-
cision support, etc.) and different performance goals (e.g. response time vs
throughput). Similarly, an outsourcing service provider may host — on the
same machine — multiple client databases, with different service level agree-
ments. For such reasons, a system that runs k different workloads may partition
a buffer of size M into smaller sizes M1, . . . , Mk (so M = M1 + · · ·+ Mk), one
for each workload. By buffer allocation, we refer to both size M and share
Mi.

(3) Dynamic self-tuning: Workloads are constantly changing, by the month
(system upgrade), hour (e.g. daily work cycle) and minute (e.g. flash crowds).
Hence, buffer size and share need to be tuned automatically and dynamically.

The impact of buffer allocation on miss probability Pmiss is through a complex
interaction between the workload’s reference pattern and the buffer management
policy, and affected by innumerable factors.

To illustrate, the reference pattern depends on how data contention is resolved by
the concurrency control, whether multi-query optimization pipelines the subexpres-
sion evaluation, the design and usage of indices, whether there is disk striping and
prefetching, how the database changes over time, what the hardware architecture
and software versions are, and how the whole lot is configured.

These myriad factors and their complex interaction make it difficult to predict
how a change in buffer allocation affects Pmiss. Automatic and dynamic buffer
tuning is thus a hard problem.

1.1 Current techniques

Present tuning techniques use simulation, black-box control, gradient descent and
empirical equations.
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Trace simulation is used in current tuning software for commercial systems to
estimate I/O costs for different buffer allocation [Dias et al. 2005; Narayanan et al.
2005; Storm et al. 2006]. However, traces may not be available and simulation code
is hard to modify (e.g. when there is a change in index organization).

Black-box control is an iterative loop that treats the buffer as an unknown func-
tion from buffer allocation to Pmiss [Ko et al. 2003; Lu et al. 2002]. Convergence
may not be guaranteed, or may be slower than dynamic changes in the workload.

Gradient descent is a popular iterative technique [Chung et al. 1995; Ko et al.
2003; Suh et al. 2004; Thiébaut et al. 1992; Tian et al. 2003] that use a mea-

sured gradient ∆Pmiss

∆M to direct the change in M . Pmiss fluctuation can cause large
gradient errors, thus destabilizing the convergence.

Empirical equations have no theoretical basis — they are chosen for their ability
to fit data [Hsu et al. 2001; Storm et al. 2006; Tsuei et al. 1997]. One widely-used
example is Belady’s power law [Chung et al. 1995; Tian et al. 2003], but that is
known to give a poor fit for database workloads [Brown et al. 1996]. Moreover,
although there is a limit to how much buffer space is needed by any workload,
these equations do not identify such an upper bound.

We will say more about these techniques in later sections.

1.2 Our approach

The main contributions of this paper are:

(1) We present a new approach to buffer tuning that is based on a Buffer Miss

Equation. Our technique is to fit available data with the equation, then use the
equation for tuning calculations. Unlike empirical equations, the Buffer Miss
Equation is derived from an analytical model (see Appendix), and it identifies
an upper bound M∗ on buffer size that is useful for tuning.

(2) We validate the equation with four buffer replacement policies (Sec. 2.2) and
twelve reference traces from mainframe commercial databases in large corpora-
tions (Sec. 2.3). This ability to fit multiple policies and patterns is nontrivial.

(3) We demonstrate how the equation can be used to:
(a) estimate I/O costs from Pmiss data when no reference trace is available for

simulation (Sec. 3.2);
(b) dynamically partition a buffer to minimize total misses (Sec. 4.1);
(c) dynamically and fairly reclaim and re-allocate buffer space when there is

memory pressure or a change in workload (Sec. 4.2);
(d) rapidly retune a buffer partition (Sec. 4.3);
(e) improve the gradient-descent method (Sec. 4.4); and
(f) dynamically adjust buffer allocation to reach a Pmiss target under differ-

entiated service (Sec. 4.4).
The experiments either use instrumented PostgreSQL, or DB2’s interface for
retrieving Pmiss data.

1.3 Overview

In the following, Sec. 2 introduces the Buffer Miss Equation and validates it for
different replacement policies and several commercial reference traces, and explains
the intuition for its efficacy. Sec. 3 uses static allocation to demonstrate some
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M buffer size
Mi size of buffer share for workload i, M = M1 + · · · + Mk

Pmiss probability of a buffer miss
P ∗ probability of a cold miss (i.e. first reference to a page)
M∗ smallest buffer size for which Pmiss = P ∗

Mb size of non-buffer memory occupied by database (Fig. 11)
Pc parameter that controls convexity of Pmiss curve
µ target Pmiss for differentiated service

Table I. Glossary of notation.

basic ideas in using the equation. Sec. 4 then demonstrates dynamic self-tuning
to minimize miss probability, and shows how memory can be reclaimed and re-
allocated in a fair way. The final experiment shows how our approach can help,
or replace, the widely-used gradient-descent method. Sec. 5 relates this paper to
previous work, and Sec. 6 concludes with a summary. The Appendix describes the
underlying mathematical derivation.

Note that this paper is not about the Buffer Miss Equation itself, but on its
application in buffer tuning. To draw an analogy, Floyd et al.’s paper on equation-
based congestion control [Floyd et al. 2000] is not about the TCP equation (that
was derived from a previous paper [Padhye et al. 2000]), but on applying that
equation to control network traffic.

2. EQUATION AND VALIDATION

The buffer tuning techniques in this paper are based on a Buffer Miss Equation that
we introduce in Sec. 2.1. We validate it for different buffer replacement policies in
Sec. 2.2 and with various commercial workloads in Sec. 2.3, before explaining it in
Sec. 2.4. The equation requires Pmiss data to determine its parametric values, and
Sec. 2.5 discusses possible sources for this data.

2.1 Buffer Miss Equation

The Buffer Miss Equation is

Pmiss =
1

2
(H +

√

H2 − 4)(P ∗ + Pc) − Pc, (1)

where H = 1 +
M∗ + Mb

M + Mb
, for M ≤ M∗.

(Pmiss = P ∗ for M > M∗.) P ∗, Pc, M
∗ and Mb are parameters that depend on the

transaction workload, buffer management, database instance, hardware configura-
tion, etc. These four parameters are minimal, in the following sense (Table I lists
some notation used in this paper):

—P ∗ is the probability of a cold miss (i.e. the first reference to a page). It is
an inherent characteristic of every reference pattern, and any equation for Pmiss

must account for it.

—When Pmiss is plotted against M , they generally trace a decreasing curve, as
illustrated in Fig. 1. Previous equations for Pmiss models this decrease as contin-
uing forever [Belady 1996; Hsu et al. 2001; Storm et al. 2006; Tsuei et al. 1997].
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(b) our equation
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(a) previous equations
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Fig. 1. Comparing our equation to previous equations.

This cannot be so — there must be some M = M∗ at which Pmiss reaches its
minimum P ∗, as illustrated in Fig. 1(b). Hence, our equation is the first to model
this feature of Pmiss behavior for database workloads.

—Memory for a database system is used for various purposes. Other than the buffer
pools for caching data and disk pages, space is also needed for sorting, hashing,
locks, code, etc. [Storm et al. 2006]. The memory used for such purposes is
modeled by Mb (see Fig. 11 in the Appendix).

—Pmiss is the result of interaction between the reference pattern and buffer man-
agement; the latter covers replacement policy, prefetching, record creation, etc.,
and these are modeled by Pc. In effect, Pc controls the convexity of the Pmiss

curve.

Suppose we have a set of (M, Pmiss) data points. If P ∗ is known (the case for
Fig. 2 in Sec. 2.2), we use regression [Tay and Zou 2006] to find values for M∗, Mb

and Pc to give a best fit between the points and the curve defined by the Buffer Miss
Equation. If P ∗ is not known (the case for Fig. 3 in Sec. 2.3), we search iteratively
for a P ∗ value that gives a best fit.

Other analytical (non-empirical) models for cache misses in the literature all
impose some restrictions on either the replacement policy (e.g. LRU [Dan and
Towsley 1990]) or the reference pattern (e.g. independence [Dan et al. 1995]). In
contrast, our equation has no such restriction: changes in replacement policy or
reference locality only change the parametric values, not the equation. We next
validate this claim.

2.2 Validation: different policies

We modify TPCC-UVa [Llanos 2006], an open-source implementation of the TPC-C
benchmark [2006], to generate workloads to PostgreSQL version 8.0.0. The exper-
iments are run on a Pentium 2.8 GHz Linux workstation. Our database size is
520 MB, stored in an IBM SCSI 10000RPM hard disk. The default page size of
PostgreSQL is 8KB.

We also implement LRU (Least Recently Used), FIFO (First In First Out) and
Random replacement polices for PostgreSQL. For each policy, including the original
2Q policy of PostgreSQL-8.0.0, we run the TPC-C workload with different buffer
pool sizes.

Fig. 2 plots measurements for a workload of 5 terminals, each generating 15
NEW-ORDER transactions to 1 warehouse. For each policy, the equation provides
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Policy P ∗ Pc Mb M∗ R2

2Q 0.0153 −0.0119 42.53 2693 0.992
LRU 0.0126 −0.0112 28.85 2596 0.973
FIFO 0.0152 −0.0087 97.63 2764 0.978

Random 0.0152 −0.0086 74.13 2631 0.995

Fig. 2. The Buffer Miss Equation holds for different replacement policies. (TPC-C
uses randomization in generating its transactions, so different experiments may have
different P ∗ for cold misses.) Note the correspondence between convexity and Pc.

a smooth curve that gives a close fit for its data points.
Statisticians measure the quality of a regression fit by the coefficient of determi-

nation R2; a perfect fit gives R2 = 1. The R2 values in Fig. 2 exceed 0.97, thus
indicating an excellent fit for each curve.

The interaction between replacement policy and reference pattern is very hard
to model; previous analyses of LRU-K and GCLOCK, for example, were based on
the Independent Reference Model, which is a strong assumption that does not take
into account temporal and spatial locality of references [O’Neil et al. 1999; Xi et al.
2001]. It is therefore significant that the Buffer Miss Equation is able to model
various replacement policies by simply changing its parametric values.

2.3 Validation: commercial workloads

Many validation studies in the literature are based on simulation with TPC bench-
marks, like we have done in Fig. 2. However, these benchmarks are synthetic.

To stress test the equation’s ability to fit different workloads, we use Hsu et al.’s
data [2001]. That data was generated from trace simulation, where the traces were
recorded on IBM mainframes with industrial-strength DB2/MVS for 12 commer-
cial workloads from “ten of the world’s largest corporations” (including aerospace,
banking, consumer goods, direct mail marketing, financial services, insurance, re-
tail, telecommunications and utilities).

We can see from Fig. 3 that our equation gives very good fit for most of the
workloads. It also works well with the non-smooth shape of measured data such as
Bank and Retail. Most of the R2 values exceed 0.95.

Note that, by changing the parametric values, the equation is able to assume
very different shapes to fit the data.
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Trace P ∗ Pc Mb M∗ R2

Aerospace 0.0460 -0.0329 12393 212849 0.996
ConsGds 0.0402 -0.0259 1165 54647 0.831

DirMktg1 0.0455 -0.0245 4997 163234 0.994
TelecomB1 0.0210 -0.0100 3302 139994 0.997

Trace P ∗ Pc Mb M∗ R2

DirMktg2 0.0242 0.0109 42023 150597 0.990
FinSvcs 0.0244 0.0038 51006 331107 0.969

Insurance 0.0178 -0.0102 11797 242887 0.975
TelecomB2 0.0110 0.0022 21678 172019 0.989

Trace P ∗ Pc Mb M∗ R2

Bank 0.0338 0.0338 1255320 2472528 0.966
Retail 0.0317 0.0300 1141689 954140 0.939
TeleA 0.0275 0.0275 203255 312154 0.924
Utility 0.0293 -0.0192 220075 995467 0.993

Fig. 3. The Buffer Miss Equation holds for various commercial workloads. Note how,
by changing the parametric values, the same equation can assume very different
shapes.
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RAMt diskt

time

r =3

likely scenario: small r and large tRAM/tdisk likely scenario: large r and small tRAM/tdisk

unlikely scenario: small r and small tRAM/tdisk unlikely scenario: large r and large tRAM/tdisk

Fig. 4. Intuition for the References+Replacement Invariant: Likely and

unlikely scenarios when workload reference pattern interacts with page

replacement policy.

2.4 Intuition and Derivation

How is it possible that one equation with just four parameters is able to fit such
a variety of replacement policies and reference patterns? To understand this, we
briefly present here its underlying intuition.

We derive Eqn. 1 from the following Page Fault Equation [Tay and Zou 2006]:

P fault =
1

2
(H +

√

H2 − 4)(P ∗ + Pc) − Pc,

where H = 1 +
M∗

RAM − M0

MRAM − M0
, for M ≤ M∗

RAM.

Here, P fault is the probability of a page fault, MRAM is the size of random access
memory (RAM), and P ∗, Pc, M∗

RAM and M0 are parameters. The Page Fault
Equation is based on the following References+Replacement Invariant [Tay and
Zou 2006]:

(1 −
1

r
)(1 +

tRAM

tdisk
) ≈ 1, (2)

where r is the average number of times a page is read from disk, tRAM is the average
time a page stays in memory before eviction, and tdisk is the average time between
a page’s eviction and its re-entry into main memory.

The Invariant 2 captures the following intuition — see Fig. 4: it is likely for
r to be small and tRAM

tdisk
to be large (as when there is little memory pressure), or

for r to be large and tRAM

tdisk
to be small (as when there is much memory pressure);

and it is unlikely for r and tRAM

tdisk
to be both small or both large. This is a general

observation that should hold for any workload and any replacement policy, except
for some worst-case scenarios.

Tay and Zou then derived the Page Fault Equation from the Invariant by applying
Little’s Law [Jain 1991] to the page flow into and out of memory, and we derive the
Buffer Miss Equation from the Page Fault Equation by focusing on the buffer pool
(see Appendix A.1).

The equation’s ability to fit the variety of patterns and policies thus comes from
the above general observation in the Invariant.
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2.5 Sources of Pmiss data

The Buffer Miss Equation relies on a set of (M, Pmiss) data to determine its para-
metric values. Where do these data points come from?

Case I There are previous measurements.
The system may be running a familiar production workload, for which there
is a record of Pmiss data. Some systems may also phase in a large change
in buffer allocation through incremental changes [Storm et al. 2006], and
each such small adjustment in M can provide a data point.

Case II There are no previous measurements.

(a) The replacement policy has the inclusion property [Mattson et al. 1970].
This property says that the buffer contents for M also includes those for
M ′ if M ≥ M ′. For example, LRU and LFU (Least Frequently Used) have
this property (but FIFO does not). For such policies, one can construct a
Mattson stack [Zhou et al. 2004].
Briefly, this is how it works: The stack orders all references so far in an
epoch by recency; there are also two counters, one for cold misses and one
for the number of references to each stack position; at the end of the epoch,
the counters can be used to calculate Pmiss for any M (in effect, this is a
simulation).

Since the Mattson stack can be used to calculate Pmiss for any M , it might
seem like there’s no longer any need for our equation. This is not so, for
the following reasons:

(1) By fitting the data with our equation, we can do tuning calculations
that cannot be done with the Mattson stack alone. For example, the
fairness criterion for buffer re-allocation in Sec. 4.2 (Eqn. 5) is stated
in terms of the equation’s parameters.

(2) Pmiss values calculated with a Mattson stack can be non-concave. Con-
cavity is a useful property for optimization problems [Brown et al. 1996;
Zhou et al. 2004]. We can use our equation to fit a concave shape to
the data (Fig. 3), and thus facilitate tuning optimizations (see Sec. 5).

(3) The equation provides a concise record (just 4 parameters) of the Pmiss

data, and the stack and counters can be discarded. The next time this
workload is run, we can start with this equation (rather than from
scratch, with no data). The equation can also be archived for offline
analysis of how the Pmiss curve is affected by changes in hardware,
software and workload.

(b) The replacement policy does not have the inclusion property.
In practice, most replacement policies do not have the inclusion prop-
erty. For example, LRU requires locking and manipulation of the stack,
so a lower-cost approximation like CLOCK is often preferable [Bansal and
Modha 2004]. Current versions of PostgreSQL and DB2 use variations of
2Q and GCLOCK, which do not have the inclusion property.
For such policies, one can do on-the-fly simulation to generate (M, Pmiss)
data points, as follows: The buffer manager contains a simulator for the
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replacement policy [Dias et al. 2005; Narayanan et al. 2005; Storm et al.
2006], and logs the references while the system is running at M = B, say.
Once the log is deemed sufficiently long, the manager can run a background
simulation of the policy against the reference trace to get Pmiss data for
any M 6= B.
Cost consideration may limit the number of simulated (M, Pmiss) points
but, as we shall see in Sec. 4.4, our equation can work effectively with just
a few data points. Besides, the simulation can be scaled back progressively
as more Pmiss measurements become available.

3. STATIC ALLOCATION

We first consider how the Buffer Miss Equation can be used to determine the buffer
size M and partition it into M1, M2, . . ., Mk. To simplify the introduction of ideas,
we assume these are done statically, using previously collected Pmiss data (Case I
in Sec. 2.5). We will consider dynamic adjustments in Sec. 4.

3.1 Buffer size M

One contribution of our equation is in identifying the buffer size M∗ where Pmiss

is reduced to cold misses (see Fig. 1). This property can be used for buffer sizing.
Several papers on buffer allocation start with a given M , then focus on how much

to give to each query [Ng et al. 1995; Yu and Cornell 1991]. But how big should M
be? Memory space is needed for many other purposes — for the operating system,
network connections, metadata, sorting, hashing, etc.

Since any memory beyond M∗ is not used by the workload, M∗ is a natural
choice for buffer size M .

Given a set of Pmiss data, one can fit it with the equation to determine M∗.
For example, if we use just the data points for M < 1200 in Fig. 2, curve fitting
gives M∗ = 2341, 2559, 2818 and 2494 for 2Q, LRU, FIFO and Random, which are
within 13%, 1%, 2% and 6% (respectively) of the values in Fig. 2. This accuracy is
despite the predicted M∗ values being far from the data points at M < 1200.

3.2 Reducing M for a buffer in a black box

In contrast to the above example of extrapolating from the data to estimate M∗, one
may sometimes need to extrapolate backwards to determine the impact of reducing

from M = Mbig to M = Msmall (e.g. server consolidation).
This problem may be made more difficult if the performance analyst has access

to Pmiss measurements but not the reference trace: In practice (e.g. for proprietary
reasons), the database server may be a black box that contains the buffer, and only
the buffer size and the misses that appear as disk reads are observable.

In particular, the hits are invisible, so it is impossible to tell what misses at
M = Msmall may be generated by the references that are hits at M = Mbig.

Nonetheless, our equation can be used to predict the number of misses at M =
Msmall. Multiplying Eqn. 1 by the (unknown) reference length, we get

nmiss =
1

2
(H +

√

H2 − 4)(n∗ + nc) − nc, (3)

where nmiss is number of misses, n∗ the cold misses, and nc the counterpart of Pc.

ACM Transactions on Storage, Vol. V, No. N, November 2007.



A new approach to dynamic self-tuning of database buffers · 11

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  20000  40000  60000  80000  100000  120000  140000

D
is

k 
re

ad
s 

(p
ag

es
)

Buffer pool size (pages)

points outside input range
input points

fit curve

Fig. 5. Only the points (from Hsu’s DirMktg2 data set) inside the range 40000 < M <

80000 are used for regression to get the curve. Backward extrapolation gives accurate
predictions for 13000 < M < 40000.

By observing the misses from outside the server black box, one can measure nmiss

for known M values, as well as n∗. Once this data is fitted with Eqn. 3, we can use
the equation to extrapolate backwards.

Fig. 5 illustrates this for Hsu’s DirMktg2 data set. We use only the nmiss measure-
ments for 40000 < M < 80000 for curve fitting. The plot shows that the equation
accurately predicts (less than 8% error) the nmiss values for 13000 < M < 40000.

3.3 Buffer partition M1, . . . , Mk

An enterprise may run heterogeneous workloads (e.g. batch and interactive) on
one server, and a service provider may use one machine to host workloads from
different clients. To protect the performance of each workload (so it satisfies some
service level agreement, say), the buffer size M may have to be partitioned into
buffer pools of size M1, . . . , Mk.

Suppose we want to partition M into M1, M2 and M3 for 3 workloads. Given
three sets of miss probabilities (one for each workload and without the constraint
M1 + M2 + M3 = M), we can fit set i by our equation to get a miss probability
function fi(Mi). We can then predict the aggregate Pmiss by

Pmiss(M1, M2, M3) = w1f1(M1) + w2f2(M2) + w3f3(M3), (4)

where wi is the probability that a data reference belongs to pool i.
To test this idea, we implement multiple buffer pools in PostgreSQL, with each

pool using its own LRU replacement policy. We run an experiment with 3 work-
loads, each with its own database and buffer pool.

The three workloads have 10, 20 and 35 terminals respectively. Each workload
has a different mix of TPC-C transactions (NEW-ORDER, PAYMENT, STOCK-
LEVEL, ORDER-STATUS and DELIVERY) and each terminal commits 30 trans-
actions.

For each workload, we first measure miss probabilities for Mi ≤ 60 pages and fit

ACM Transactions on Storage, Vol. V, No. N, November 2007.
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Fig. 6. Pmiss prediction for buffer partitioning. By fitting miss probability data for each workload,
the equation can be used to predict overall Pmiss for any buffer partition.

the data with the equation to get fi(Mi), as shown in Fig. 6. We also measure the
number of references Li for workload i, and estimate wi by wi ≈ Li/(L1 +L2 +L3),
without considering how a change in the partition affects wi.

We then run the 3 workloads concurrently under the constraint M1 + M2 +
M3 = 150, measure the aggregate Pmiss for the buffer and compare it to the value
predicted with Eqn. 4. The results are plotted in Fig. 7; among the 55 comparisons,
the maximum relative error is 6.4%, and the average relative error is 1.9%. This
accuracy is achieved despite our severe restriction in using only data from Mi ≤ 60
for fitting the equation.

One can thus accurately locate the partition that optimizes a given objective
function of the workloads’ miss probabilities. For example, our prediction correctly
locates (M1, M2, M3) = (20, 50, 80) as the partition that minimizes Pmiss for the
buffer. Note that we have no data for M3 > 60, thus demonstrating extrapolation
with f3(M3).

4. DYNAMIC SELF-TUNING

Having laid the groundwork, we now focus on dynamic self-tuning of the buffer
allocation. Sec. 4.1 first considers using epochs to make the static allocation of
Sec. 3 online. Sec. 4.2 examines how memory can be fairly reclaimed or re-allocated
when there is a change in the workload, and Sec. 4.3 further considers how this can
be done quickly when there are insufficient Pmiss measurements. Sec. 4.4 then
compares our tuning approach to the widely-used gradient-descent method.

4.1 Epochs and online allocation

A basic idea for dynamic tuning is to divide time into rounds [Ko et al. 2003],
intervals [Brown et al. 1996] or epochs [Zhou et al. 2004], collect data for each
epoch and — when there is sufficient data — use measurements from previous
epochs to retune in each epoch.

For example, in the buffer sizing problem of Sec. 3.1, the data for M < 1200
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Fig. 7. Comparison between predicted and measured Pmiss for buffer partition. For the 55

comparisons, the maximum relative error is 6.4%, and the average relative error is 1.9%.

may have been obtained in previous epochs, when buffer allocation was changed as
some concurrent workloads terminate or start up. Some system may also impose a
limit on transferring memory from one workload to another [Storm et al. 2006], so
that the transfer takes multiple epochs, each thus generating another data point.

If the workload is changing continuously, then a standard technique is to define
a sliding window of recent epochs, and discard old measurements that slide out of
the window.

For dynamic buffer partitioning, we use epochs of length 2 minutes each — long
enough for a pool to reach steady state if its size has changed. We run a workload
mix similar to that in Sec. 3.3, but with each terminal generating transactions
indefinitely.

The buffer size M is changed at the beginning of each of the first 14 epochs, but
the partition remains M1 = M2 = M3. The miss probabilities Pmiss

1 , Pmiss
2 and

Pmiss
3 are recorded in Table II.
At the end of the 14th epoch, the Buffer Miss Equation is used to fit the data for

each pool. The 3 equations are then used in a nested iteration to find a partition to
minimize the aggregate Pmiss (Eqn. 4), while keeping M constant and Pmiss

i < 0.4
(modeling a service level constraint).

The calculated optimal partition is (134,29,32). Table II shows an immediate
reduction in Pmiss from 0.268 for the equi-partition (65,65,65) in epoch 14 to 0.249
for partition (134,29,32) in epoch 15. This Pmiss reduction appears small, but is
significant for two reasons:

(1) With equi-partitioning, a similar reduction in Pmiss requires 80+80+80 = 240
pages, instead of 134 + 29 + 32 = 195 pages.
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Epoch Partition Pmiss
1 Pmiss

2 Pmiss
3 Pmiss

1 (24,24,24) 0.437 0.429 0.416 0.434

2 (40,40,40) 0.347 0.358 0.360 0.350

3 (50,50,50) 0.311 0.347 0.353 0.320

4 (60,60,60) 0.280 0.328 0.330 0.292

5 (30,30,30) 0.377 0.397 0.393 0.381

6 (70,70,70) 0.252 0.319 0.302 0.266

7 (80,80,80) 0.236 0.308 0.301 0.253

8 (85,85,85) 0.228 0.295 0.282 0.243

9 (75,75,75) 0.237 0.315 0.323 0.256

10 (110,110,110) 0.209 0.291 0.256 0.225

11 (100,100,100) 0.217 0.287 0.271 0.232

12 (95,95,95) 0.213 0.284 0.291 0.231

13 (90,90,90) 0.223 0.284 0.285 0.237

14 (65,65,65) 0.254 0.309 0.313 0.268

15 (134,29,32) 0.207 0.395 0.377 0.249

16 (134,29,32) 0.215 0.380 0.379 0.254

17 (134,29,32) 0.213 0.401 0.377 0.254

18 (134,29,32) 0.207 0.401 0.383 0.251

19 (134,29,32) 0.213 0.386 0.401 0.252

20 (134,29,32) 0.209 0.386 0.390 0.251

Table II. Using the Buffer Miss Equation to minimize aggregate Pmiss. Each set of
Pmiss

i
data from the first 14 episodes is fitted with the equation at the end of epoch

14; the 3 equations are then used to find the optimal partition (134, 29, 32). This
partition of M = 195 gives a Pmiss that is similar to the equi-partition (80, 80, 80) of
M = 240 (saving 240 − 195 = 45 pages).

(2) The Pmiss reduction results in a throughput increase from 489 transactions/min
at epoch 14 to 517 transactions/min thereafter.

4.2 Fair reclamation and re-allocation

With static buffer allocation, overprovisioning is necessary to accommodate peak
workloads. One compelling reason for dynamic self-tuning is that it allows overcom-
mitment (instead of overprovisioning) of memory and facilitates greater database
server consolidation.

However, overcommitment requires rules and mechanisms for buffer reclamation
when memory is short [Waldspurger 2002], as when a new job arrives to join the
workload mix. We now demonstrate how our equation can be used to calculate the
amount of space to reclaim from competing workloads.

Suppose the buffer is partitioned into pools of size M1, . . . , Mk. We want to
reclaim amount ∆i from Mi, so the i-th pool has Mi − ∆i after reclamation.

Let ∆ = ∆1 + · · · + ∆k be the target total to reclaim from the workloads. For
example, some ∆ > 0 may be needed for assignment to a new arrival. Conversely,
a terminating workload may release its buffer space for distribution to the other
workloads, so ∆ < 0. If one workload has passed its peak, the buffer may be
repartitioned by setting ∆ = 0.

It follows that ∆i ≥ 0 and ∆i < 0 are both possible; ∆i < 0 just means the i-th
pool is enlarged after reclamation. What ∆i should be depends on the reclamation
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criterion, such as minimizing the aggregate Pmiss, equalizing the miss probabilities
Pmiss

i among the workloads, etc.

We illustrate with a fairness criterion: After reclamation,
Pmiss

i

P ∗

i

should be the

same for all i, where P ∗

i is the cold miss probability for workload i. (In a reference
string of length L, n∗

i = P ∗

i L is the number of distinct references and ni = Pmiss
i L is

the number of misses, so
Pmiss

i

P ∗

i

= ni

n∗
i

is the number of misses per distinct reference.)

Suppose the Pmiss
i data have been fitted with the Buffer Miss Equation, giving

parameters M∗

i , Mbi and Pci. One can show (Appendix A.2) that
Pmiss

i

P ∗

i

=
Pmiss

j

P ∗

j

for

all i and j after reclamation if

∆i = (Mi + Mbi) − βi(

k
∑

r=1

(Mr + Mbr) − ∆) (5)

where βi =
(Pci

P ∗

i

+ 1)(M∗

i + Mbi)
∑k

r=1(
Pcr

P ∗

r
+ 1)(M∗

r + Mbr)

For validation, we conduct an experiment with 3 pools, like the one in Table II.
For the first 14 epochs, we collect Pmiss

i data and fit them with the equation, giving
the parameters in Fig. 8. In epochs 15 to 17, the buffer of M = 255 pages is equally
partitioned. At epoch 18, ∆ = 60 pages are reclaimed, using Eqn. 5, which gives
(∆1, ∆2, ∆3) = (−20.4, 68.6, 11.8); after reclamation, the partition is (105, 16, 74).

Fig. 8 shows that
Pmiss

2

P ∗

2

is always smallest before reclamation, which is unfair.

After 60 pages are reclaimed using our fairness criterion, the range in
Pmiss

i

P ∗

i

is

narrower, and no
Pmiss

i

P ∗

i

is consistently smallest.

4.3 Fast retuning

So far, we assume there are sufficient Pmiss measurements for regression to calibrate
the parameters. If there is a sudden change in workload (e.g. an increase in the
number of terminals), one might want to immediately repartition without waiting
through several epochs of data collection.

If the buffer manager is using a replacement policy that has the inclusion property,
fast adaptation can be done by constructing a Mattson stack to calculate Pmiss for
various M (Case II(a) in Sec. 2.5).

To test this idea, we use LRU in PostgreSQL. We start 3 different workloads with
20, 16 and 14 terminals and a buffer size M = 240 partitioned into (80, 80, 80). The
references in epoch 2 are used to construct a Mattson stack for each workload. In
epoch 3, each stack is used to calculate 72 Pmiss

i data points, which are then fitted
with the Buffer Miss Equation.

In Fig. 9, there is an unfair spread in
Pmiss

i

P ∗

i

values for the first 3 epochs. When

epoch 4 begins, we use Eqn. 5 and ∆ = 0 to repartition the buffer into (121, 89, 30).

Fig. 9 shows an immediate narrowing in the range of
Pmiss

i

P ∗

i

.

This exercise is repeated: At epoch 10, workload 1 reduces from 20 to 16 termi-
nals and workload 2 increases from 16 to 20 terminals, while workload 3 remains
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Parametric values for 3 workloads from epochs 1 to 14:

Pool P ∗

i
Pci Mbi M∗

i
R2

i = 1 0.0133 -0.0121 116 44615 0.98

i = 2 0.0262 -0.0244 97 30097 0.91

i = 3 0.0174 -0.0156 112 31265 0.93

Fig. 8. Partition (85, 85, 85) for epochs 15 to 17 and repartition to (105, 16, 74) there-

after. Before reclamation,
P

miss

2

P∗

2

is significantly lower than
P

miss

1

P∗

1

and
P

miss

3

P∗

3

; after

reclamation, the three are similar.

unchanged. Fig. 9 shows a bigger spread of
Pmiss

i

P ∗

i

in epoch 10.

In epoch 12, we construct a Mattson stack, and the buffer is repartitioned at the

beginning of epoch 14 into (102, 121, 17). After a 1-epoch time lag, the
Pmiss

i

P ∗

i

range

narrows again in epoch 15.

We thus see how the Mattson stack and Buffer Miss Equation can be used to-
gether to quickly retune buffer allocation as workload changes. However, as the
stack is constructed from the references in a single epoch, this procedure’s effec-
tiveness depends on how representative that epoch is.

If the replacement policy does not have the inclusion property, fast retuning can
be done similarly: Instead of (in effect, a simulation with) a Mattson stack, we can
run a background simulation of the policy against logged references (Case II(b) in
Sec. 2.5). The number of points one can generate may be limited by simulation
cost and epoch length, but we see in the next subsection that a few points may
suffice for the equation to work effectively.

4.4 Comparison with gradient descent: service differentiation

Finally, we compare our technique to the oft-used gradient-descent method [Chung
et al. 1995; Ko et al. 2003; Suh et al. 2004; Thiébaut et al. 1992; Tian et al. 2003],
using an experiment that demonstrates the use of DB2’s interface for Pmiss retrieval
(publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp); Oracle has a similar
interface (www.dbspecialists.com/presentations/buffercache.html).

Gradient descent is used by Ko et al. to drive Pmiss to a target miss probability
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Fig. 9. Quick retuning with Mattson stack. Partition is (80, 80, 80) for epochs 1 to
3; Mattson stack is constructed in epoch 2; repartition to (121, 89, 30) in epoch 4;

workload changes in epoch 10 (note the range increase in
P

miss

i

P∗

i

); Mattson stack is

constructed in epoch 12; repartition to (102, 121, 17) in epoch 14.

µ [Ko et al. 2003]. To reach this target, they use the iteration

M(n + 1) = M(n) +
ǫ

g(n)
(Pmiss(n) − µ), (6)

where M(n) and Pmiss(n) are the buffer allocation and miss probability in epoch

n, ǫ is a weight and g(n) = Pmiss(n)−Pmiss(n−1)
M(n)−M(n−1) , i.e. g(n) estimates gradientdPmiss

dM of

the Pmiss curve. If all (M(n), Pmiss(n)) lie on a decreasing curve, then a negative
ǫ will guarantee that M(n) converges to µ.

In reality, (M(n), Pmiss(n)) data can fluctuate and may be non-monotonic (e.g.
transient effects from user arrivals or departures), possibly causing M(n) to diverge
from µ. Moreover, the convergence rate remains an issue.

To illustrate, we run a TPC-C workload (mixture of 5 transactions types) on a
DB2 database with 8 warehouses. The number of terminals in each epoch is con-
stant, but changes cyclicly between epochs: 50,40,30,50,40,30,. . . . This simulates
the departure and arrival of users.

One can view the fluctuations as perturbations of a single workload. We set target
µ = 0.2 and (following Ko et al.) ǫ = −0.5, and start with M = 500 in epoch 1 and
M = 700 in epoch 2; these two data points suffice for gradient descent to proceed.
Fig. 10 shows that Pmiss(n) suffers big deviations from µ before reaching the target
in epoch 13.

The big deviations are due to poor gradient estimates that are caused by data
fluctuation. One can use our equation to solve this problem, as follows: Suppose
we have epochs n = 1, 2, . . . , k so far;
(i) fit (M(1), Pmiss(1)), . . . , (M(k), Pmiss(k)) with the equation;

(ii) use the equation to evaluate g(k) = dPmiss

dM at M(k);
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Fig. 10. Convergence comparison of three methods to bring Pmiss to a target µ:
(a) gradient-descent with gradient estimated from successive epochs, (b) gradient-
descent with gradient calculated with fitted equation, and (c) M calculated with

Eqn. 7. For (a) and (b), ǫ = −0.5 (following Ko et al.).

(iii) use Eqn. 6 to determine M(k + 1).
Thus, the fitting smooths away the fluctuations, and the curve’s gradient gives

a better estimate of the Pmiss gradient. Fig. 10 shows that, with this technique,
Pmiss(n) converges steadily in 6 epochs to the target µ.

We can, in fact, replace the gradient descent entirely by using the equation to
calculate M , as follows:
(i) fit (M(1), Pmiss(1)), . . . , (M(k), Pmiss(k)) with the equation;
(ii) determine M(k + 1) by solving, from Eqn. 1,

M =
r

r2 − r + 1
(M∗ + Mb) − Mb, where r =

µ + Pc

P ∗ + Pc
. (7)

As there are four parameters (M∗, Mb, P
∗, Pc), we start with k = 3 and search for

a Pc value to give a best fit for 3 points. Fig. 10 shows immediate convergence:
Pmiss(4) = 0.194, which is 3% from the target µ = 0.2. We see here that the
equation can work effectively with a minimal number of data points.

After convergence, all three methods oscillate about µ, together with the cyclical
change in workload.

5. RELATED WORK

We now survey some related work.
Lightstone et al. [2002] have described the technological and manpower issues that

motivate the industrial push for self-designing, self-administering and self-tuning
systems [Autoadmin 2006; Autonomic computing 2006]. Benoit [2005] singles out
the buffer pool as one of the most important targets for self-tuning. (Another im-
portant memory allocation issue being the space reserved for operators like sorting
and hashing [Dageville and Zait 2002].)

In fact, recent tuning software from major vendors all address the issue of buffer
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tuning [Dias et al. 2005; Narayanan et al. 2005; Storm et al. 2006]. However, they
use trace simulation — instead of equations — to estimate the impact of buffer
allocation on I/O costs. There are two issues with this approach: traces may
be outdated or unavailable; and hardware, software and workload evolution may
require changes to the simulator implementation.

Many authors have found it useful to base their buffer tuning techniques on an
equation relating Pmiss to M [Chung et al. 1995; Storm et al. 2006; Tian et al.
2003; Tsuei et al. 1997]. Tian et al. consider the problem of allocating memory to
database objects (tables, indices, etc.); this is different from the problem, considered
here and elsewhere [Brown et al. 1996; Chung et al. 1995; Ko et al. 2003; Lu et al.
2002; Suh et al. 2004; Thiébaut et al. 1992], of buffer partitioning to suit multiclass
workloads.

In any case, the equation used by Tian, Chung, Tsuei et al. [Chung et al. 1995;
Tian et al. 2003; Tsuei et al. 1997] is the power law that Brown et al. [1996] find
is a poor fit for database workloads. The power law is a rational function of M ,
whereas Storm et al. [2006] use an exponential function, but without validation.

Brown et al. avoid the need for a specific equation, and rely only on the function
being concave. They use the line joining two neighboring data points (i.e. gradient
descent) to direct the way towards a target miss probability µ. Concavity guar-
antees that their method converges. Unfortunately, real data often do not satisfy
concavity (see Fig. 3).

Nonetheless, one can still apply their idea, by first fitting the raw data with the
Buffer Miss Equation. It is easy to show that the resulting curve has only one
change in convexity, located near M∗ (see the end of the curve in Fig. 5). Since
Pmiss only changes significantly for M ≪ M∗, the important part of the equation’s
curve is always concave.

Concavity is a helpful property for optimization problems [Zhou et al. 2004].
For example, concavity guarantees that Pmiss (averaged over all workloads i) is

minimized when the partition yields
∂Pmiss

i

∂Mi
=

∂Pmiss

j

∂Mj
for all i and j, and there are

algorithms that use this property [Suh et al. 2004; Thiébaut et al. 1992]. As in
the case of gradient descent (Sec. 4.4), raw data can give poor estimates of these
derivatives, and cause convergence to be erratic and slow. Again, the Buffer Miss
Equation can be used to smooth the data (Sec. 4.4), or calculate the minimizing
partition (see Sec. 4.1).

However, for service differentiation, the objective is not to minimize average
Pmiss, but to satisfy class-specific service goals. Like Brown et al., Ko et al. [2003]
translate the problem of satisfying workload-specific latency goals into target Pmiss

i

values. They consider Pmiss
i to be an unknown function of Mi, and apply black-

box control loops; one of these use gradient descent. Their simplest controller for
reaching target µ takes the form

M(n + 1) = M(n) + α(Pmiss(n) − µ),

where M(n) and Pmiss(n) are the buffer allocation and miss probability in epoch n,
and α is a weight parameter. Given sufficient data for our Buffer Miss Equation to
fit, one can replace such a control algorithm with the simple calculation in Eqn. 7.
Fig. 10 shows that this can provide faster convergence than gradient descent and
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black-box techniques. Quick and effective response is also demonstrated in Table II,
Fig. 8 and Fig. 9.

For Lu et al., service differentiation is formulated as a target ratio ρij for the hit
probabilities of workloads i and j; they then design an adaptive controller on Mi

Mj
to

drive convergence of
1−Pmiss

i

1−Pmiss

j

towards ρij . Again, given the Buffer Miss Equation,

one can — like in Eqn. 7 — replace the control algorithm by a calculation of the
desired Mi

Mj
.

The Buffer Miss Equation is derived from Tay and Zou’s Page Fault Equa-
tion [2006], which makes two modeling breakthroughs:

(1) it identifies a memory size M∗

RAM at which page faults reach a minimum;

(2) it is derived from an analytical model that does not require restrictive assump-
tions.

In this paper, we exploit these properties through the Buffer Miss Equation:

(1) M∗

RAM locates the buffer size M∗ at which Pmiss reaches its minimum (see
Fig. 11). In contrast, previous equations (e.g. power law) all model Pmiss as
decreasing forever [Belady 1996; Hsu et al. 2001; Storm et al. 2006; Tsuei et al.
1997].

Buffer management studies often start with a given buffer size M , and focus
on dividing this buffer among queries [Ng et al. 1995; Yu and Cornell 1991].
They do not examine what M should be. In our context, the queries constitute
a workload. The buffer management policy results in a Pmiss-vs-M curve for
this workload, thus defining an M∗ that is a candidate for the buffer size.

It is a natural candidate: it corresponds to the knee point (in the throughput-
vs-M graph) that Tsuei et al. [1997] consider to be optimal, and is analogous
to the cache point used by Dageville and Zait [2002] to size memory for SQL
operators.

There is increasing interest in reducing energy costs for data centers, and mem-
ory is a prime consumer of electricity [Lefurgy et al. 2003]. M∗ can therefore be
used by various energy-saving algorithms to identify excess memory for power-
ing down [Cai and Lu 2005].

(2) Pmiss is defined by an intricate interaction — between workload reference pat-
tern and buffer management policy — that is very hard to analyze mathe-
matically. Previous analytical models all impose strong assumptions on the
access pattern (e.g. independent references) or replacement policy (e.g. pure
LRU) [Dan and Towsley 1990; Dan et al. 1995; O’Neil et al. 1999; Xi et al.
2001]. As for the empirical equations, they have no theoretical justification at
all.

The strong underlying assumptions or empirical nature of current equations
for buffer tuning leave one in doubt over their ability to model real Pmiss

data. In contrast, Tay and Zou’s model is based on their general but intuitive
References+Replacement Invariant (Fig. 4). This gives us some confidence that
the Buffer Miss Equation is robust, as demonstrated in Figs. 2 and 3.
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6. CONCLUSION

Current methods for buffer tuning are based on simulation, black-box control, gra-
dient descent, and empirical equations. This paper presents a new approach to
dynamic buffer self-tuning, using a Buffer Miss Equation that is validated with
different replacement policies (Fig. 2) and commercial reference traces (Fig. 3).

Unlike empirical equations, the Buffer Miss Equation is based on an analyti-
cal model (Sec. 2.4). The data points for calibrating the equation may be from
previous measurements (Case I in Sec. 2.5). If the replacement policy has the in-
clusion property, the data can also be generated on-the-fly (like a simulation) with a
Mattson stack, but the equation remains useful for tuning calculation, performance
optimization and measurement record (Case II(a)). If the replacement policy does
not have the inclusion property, the data points can be generated by a background
simulation with logged references (Case II(b)); this simulation can be scaled back
progressively as more Pmiss measurements become available.

The equation identifies a natural candidate M∗ for buffer size (Sec. 3.1). It can
be used to extrapolate I/O costs when buffer size is changed (Fig. 5), without
need for reference traces. For multiclass workloads, by fitting Pmiss data from each
workload, we can predict miss probability for every partition (Fig. 7), and optimize
the partition dynamically (Table II). By restricting the range of data points, we
demonstrate the accuracy of the equation in predicting Pmiss outside the range
(Sec. 3.1, Figs. 5, 6, 7).

By analyzing the equation (Appendix A.2), we determine how memory can be
fairly reclaimed or re-allocated (Eqn. 5) when workloads change, and demonstrate
such a dynamic alteration for the case where Pmiss data are already available
(Fig. 8), as well as with on-the-fly measurements (Fig. 9).

The equation can be used to smoothen and speed up convergence of the popular
gradient-descent method for reaching a workload-specific Pmiss target, or replace
that method entirely (Fig. 10). This experiment also shows that the equation can
work effectively with minimal Pmiss data.

While the other experiments are done by instrumenting PostgreSQL, the final
experiment uses only DB2’s interface for retrieving miss probability.

Appendix

A.1 From Page Fault Equation to Buffer Miss Equation

This section derives the Buffer Miss Equation from the following Page Fault

Equation [Tay and Zou 2006]:

P fault =
1

2
(H +

√

H2 − 4)(P ∗ + Pc) − Pc, (8)

where H = 1 +
M∗

RAM − M0

MRAM − M0
, for M ≤ M∗

RAM.

(P fault = P ∗ for M ≥ M∗

RAM.)
Here, P fault is the probability of a page fault, MRAM is the size of random access

memory (RAM), and P ∗, Pc, M∗

RAM and M0 are parameters. In particular, M0

measures RAM space occupied by non-replaceable pageframes, like those belonging
to the kernel.
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Fig. 11. Relationship between the Page Fault Equation and the Buffer Miss Equa-
tion. M0 models memory occupied by the kernel, Mb models memory occupied by
application code and data outside of the database buffer.

Tay and Zou have shown that this equation gives an excellent fit for page fault
data from a wide variety of workloads involving Windows, Linux, different replace-
ment policies, multiprogramming, dynamic allocation, garbage collection, interac-
tive applications, etc. The equation’s robustness suggests that it should fit database
workloads as well.

For this paper, our focus is on M (the size of the database buffer), so we need a
change of variables. The amount of active RAM is

MRAM = M0 + Mb + M, (9)

where Mb measures RAM space occupied by the buffer manager, metadata, indices,
sorting, hashing, network connections, etc. This is illustrated in Fig. 11.

If most of the paging activity is caused by buffer misses, then we have

P fault ≈ Pmiss. (10)

In particular, as MRAM increases, P fault and Pmiss reach the cold miss P ∗ at the
same point, so

M∗

RAM = M0 + Mb + M∗, (11)

Substituting Eqns. 9, 10 and 11 into Eqn. 8 gives the Buffer Miss Equation.

A.2 Fair reclamation

This section shows the derivation of ∆i for fair reclamation. The Buffer Miss
Equation has an equivalent form

(r − 1 +
1

r
)(M + Mb) = Ma,
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where r =
Pmiss + Pc

P ∗ + Pc
and Ma = M∗ + Mb.

Reclaiming ∆i from pool i results in

(ri − 1 +
1

ri
)(Mi −△i + Mbi) = Mai

Let

γi = ri − 1 +
1

ri
=

Mai

Mi − ∆i + Mbi
.

For the interesting case of Pmiss
i ≫ P ∗

i , we have ri ≫ 1, so

γi ≈ ri − 1 =
Pmiss

i + Pci

P ∗

i + Pci
− 1.

This gives

Pmiss
i

P ∗

i

= 1 + (
Pci

P ∗

i

+ 1)γi = 1 +
(Pci

P ∗

i

+ 1)Mai

Mi − ∆i + Mbi
.

For equal
Pmiss

i

P ∗

i

, we get (using ∆ =
∑k

r=1 ∆r),

(Pci

P ∗

i

+ 1)Mai

Mi − ∆i + Mbi
=

∑k
r=1(

Pcr

P ∗

r
+ 1)Mar

∑k
r=1 Mr − ∆ +

∑k
r=1 Mbr

,

which is equivalent to Eqn. 5.
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