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Abstract—Virtualization and multicore technology now make
it possible to consolidate heterogeneous workloads on one physical
machine. Such consolidation helps reduce the amount of idle
resources. In particular, transcendent memory is a recent idea to
gather idle memory into a pool that is shared by virtual machines
(VMs). However, the size of transcendent memory is unstable and
frequently fluctuates with changing workloads. Contention among
VMs over transcendent memory can cause increased cache misses.

In this paper, we propose a mechanism to extend transcen-
dent memory (called Ex-Tmem) by using emerging non-volatile
memory. Ex-Tmem stores clean pages in a two-level buffering
hierarchy with locality-aware data placement and replacement.
In addition, Ex-Tmem enables memory-to-memory swapping by
using non-volatile memory and eliminates expensive I/O caused
by swapping. Extensive experiments on implemented prototype
indicate that Ex-Tmem improves performance by up to 50% and
reduces disk I/O by up to 37%, compared to existing Tmem.

Keywords : Virtual Machines (VMs), Transcendent Mem-
ory, Non-volatile Memory.

I. INTRODUCTION

For the past few decades, DRAM has been the building
block of main memory of computer systems due to its struc-
tural simplicity and relatively low cost. However, recent re-
search has manifested that it is technically difficult to manufac-
ture DRAM with large capacity [12] [14]. As a consequence,
DRAM is becoming insufficient for modern systems with an
increasing need of large main memory. Memory capacity per
core drops 30% every 2 years [12] [14].

To address this issue, several non-volatile memory (NVM)
technologies to replace DRAM have been under active de-
velopment, such as Phase-Change Memory (PCM) [10], Spin
Torque Transfer Magnetic RAM (STT-MRAM) [9] and Re-
sistive RAM (RRAM) [5]. These new memory technologies
possess the potential to provide a much higher capacity than
DRAM while offering comparable read/write performance.
More importantly, being non-volatile, they can retain data even
if they are not powered. Though currently unfit for complete
replacement due to cost, NVM has become a viable component
that may be added to current systems to improve performance.

Virtualization is a widely used technology that now sup-
ports a multibillion-dollar industry. With this technology, an
enterprise can consolidate heterogeneous workloads by giving
each a dedicated virtual machine (VM) and running the VMs
in parallel on one physical machine. Due to fixed memory
allocation for each VM, there are needy VMs demanding more
memory and VMs with idle memory unused.

Transcendent memory, or Tmem, is a new approach to
optimize RAM utilization in a virtual environment where
underutilized RAM from each guest VM and RAM unassigned
to any guest (fallow memory), are collected into a central pool
at hypervisor (or VMM), that is shared by VMs. It can be
viewed as a new level in the memory hierarchy for VMs,
between main memory and disks.

A VM can request Tmem to cache its evicted pages
from page-cache to save disk reads. However, Tmem is an
unstable resource, whose size varies frequently with changing
memory demand and working set size at VMs. Contention
among VMs over Tmem also causes increased cache misses.
This approach only works well for guests with non-concurrent
memory pressure. The cached clean pages in the Tmem are
discarded when hypervisor shrinks Tmem due to memory
pressure. If these pages are requested in future, they incur
expensive disk reads.

In this paper, we propose a mechanism to extend tran-
scendent memory (called Ex-Tmem) with NVM so that more
pages can be cached. Ex-Tmem puts clean pages in a two-
level cache hierarchy considering access locality and different
features of DRAM and NVM. With Ex-Tmem, memory-to-
memory swapping is enabled and expensive swap I/O is
totally removed. We have implemented our Ex-Tmem in Xen
hypervisor. Evaluation indicates that Ex-Tmem is efficient in
improving performance and reducing disk I/O. We believe, to
the best of our knowledge, that our work is the first to propose
such a mechanism.

The rest of this paper is organized as follows. Section II
provides background and motivation. We present design details
of Ex-Tmem in Section III. Section IV gives implementation
details. Evaluation and system performance results are pre-
sented in Section V. Section VI surveys related work. We
summarize this paper with the conclusion and possible future
work in Section VII.

II. BACKGROUND AND MOTIVATION

A. Non-volatile Memory

Increasing multi-core concurrency increases the demand on
the main memory to retain larger working set, so as to maintain
the performance growth. However, DRAM is already hitting
density, power and cost limits, i.e. as much as 40% of total
system energy is consumed by DRAM [14].

As a DRAM replacement, NVM technologies have been
actively developed, which are fast, byte-addressable and power



Technology Read latency (ns) Write Latency (ns) Read Voltage(V) Write Voltage (V) Endurance (writes/cell)
SLC Flash 25,000 200,000-500,000 2 15 105

PCM 48 150 < 3 < 3 108

STT-MRAM 32 40 0.7 +1 1015

RRAM 10-50 10-50 < 3 < 3 108

DRAM 15 15 1.8 2.5 1018

TABLE I: A Summary of NVM Characteristics.

efficient. PCM, STT-MRAM and RRAM are representative
NVM candidates for DRAM replacement. The main attributes
and technical parameters of these NVM technologies are
summarized in Table I.

PCM [10] uses distinct phase change materials (crystalline
or amorphous) with different resistance to store values of 1 or
0. Because PCM changes the state of underlying material with
thermal change, its write performance is slower than DRAM
and cells are limited to as few as 108 writes. PCM writes con-
sume more power than reads by about one order of magnitude.
Since PCM has higher density, but lower performance and
endurance than DRAM, it is a good candidate to build hybrid
main memory with DRAM. PCM chip with 2Gbits capacity is
commercially available.

STT-MRAM [9] has advantages of lower power consump-
tion over DRAM, more write cycles over PCM and better
scalability over conventional MRAM which uses magnetic
fields to flip the active elements. Its access latencies are 32
ns for read and 40 ns for write, at the same level as that of
DRAM [14]. A commercial 64Mbits STT-MRAM chip with
DDR3 interface was announced in 2013. However, cell size is
the biggest barrier, which limits the density of STT-MRAM.

RRAM [5] is another NVM technology with performance
that is comparable to DRAM but better write endurance than
Flash. However, this technology is still in its development
stages and commercial chip is not available yet.

NVM technology makes it possible to attach it directly
to the memory bus. NVM rapidly is becoming a promising
technology for the next-generation memory and increasing the
attention of system researchers. However, NVM with DIMM
interface is not commercially available.

As alternative, Non-Volatile DIMM (NVDIMM) [4] offers
a practical NVM as memory for system integrators. NVDIMM
combines DRAM and NAND Flash with DIMM interface. It
can be plugged into DIMM slots of a standard server and
it operates at DRAM speed. It is a persistent device which
retains data in the event of power failure or system crash. A
NAND Flash of the same capacity as DRAM is placed and
does not take any reads or writes during normal operation.
The Host will signal the NVDIMM to save or restore the
DRAM contents to/from the NAND flash when power is down
or up. NVDIMM is commercially available [4]. The Ex-Tmem
proposed here is implemented and evaluated using NVDIMM
as Tmem extension.

B. Transcendent Memory

In a typical virtualized system, the hypervisor contains
fallow memory which is not allocated to VMs and VMs have

idle unused memory. Transcendent memory (Tmem) is the
pool of memory obtained by collecting the host and guest
idle memory. This memory is managed by the hypervisor (or
VMM) and is available for all VMs. One can view Tmem as a
memory level residing between RAM and disk in the memory
hierarchy.

Tmem was first proposed and implemented by Magen-
heimer [11] and it is now part of major operating systems (e.g.
Xen 4.0, Linux 2.6.39 and Oracle VM Server 2.2). VM can
utilize Tmem by requesting the hypervisor to create a Tmem
pool. Once hypervisor successfully creates a pool to the VM,
the VM uses pool_id to perform operations on the pool. There
are two main usage models of Tmem:

1) Cleancache: This is a cache for clean pages. When the
Guest kernel evicts a page, it first attempts to use Cleancache
to store the evicted page. The Cleancache is not directly
addressable by the guest kernel. The hypervisor can discard
its contents anytime (e.g. under memory pressure), so it is
ephemeral [1].

2) Frontswap: Frontswap provides an interface to store
swap pages that a VM would otherwise have swapped to disk
[3]. The kernel will always attempt to store the swap page to
Frontswap before swapping to disk. A successful Frontswap
store avoids the disk write and a later disk read to swap disk.

Cleancache and Frontswap can each be private or shared.
What a VM puts into a private pool cannot be used by
other VMs, whereas pages in shared pools can be used by
any VM. There are four variations (private/shared x clean-
cache/frontswap). Shared pools works only for cluster file
system. This paper focuses on private pools.

The two primary operations performed on a Tmem pool
are tmem_put_page (or put) and tmem_get_page (or get). In
general, a put to an ephemeral Cleancache pool will rarely
fail but a get from a Cleancache pool will often fail. For a
persistent Frontswap pool, a put may frequently fail, but once
successfully put, a get will always succeed.

A VM evicts a clean page from page buffer and puts it
to Tmem Cleancache. Whenever the VM requests this page,
it checks Tmem and gets the page back from Tmem. This
get can fail, since Tmem can flush (i.e. delete) pages from an
ephemeral pool at any time, e.g. when Tmem shrinks due to
memory pressure. If a get succeeds, the page is copied to VM’s
page buffer and deleted from Cleancache, so Cleancache is
exclusive cache. If the VM cannot find the page in the Tmem,
the page fault generates a disk read as usual. However, the read
bypasses Cleancache and goes to VM’s page buffer directly.

A put to Tmem or get from Tmem requires a page copy
within RAM and incurs only instruction overhead. We can thus
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Fig. 1: Dynamically changing size of Tmem

view Tmem as another level in the memory hierarchy which
is a little slower than RAM, but much faster than disk.

Recall that the goal of Tmem is to make better utilization
of the host’s unallocated memory and the VM’s idle memory.
Ballooning is the underlying mechanism that gathers idle
memory at VMs. Ballooning utilizes a balloon driver in the
VMs which ’inflate’ to get memory from the kernel and return
it to the hypervisor. Similarly, when the hypervisor decides to
return memory claimed from the VMs, it deflates the VM’s
balloon, the balloon driver unpins the page-frames and returns
it to the VM.

C. Motivation

The size of Tmem is unstable because it may be reclaimed
by the hypervisor when it sees memory pressure coming from
the VMs. The hypervisor discards the Cleancache page data
and return the pages to requesting VMs’. If these discarded
pages are accessed later, the hypervisor will suffer a miss at
Tmem and have to read the page from disk. To understand
the dynamic behavior of Tmem, we measure the Tmem size
at runtime when 3 VMs are running different workloads, as
shown in Figure 1. We can see that Tmem is a dynamic re-
source fluctuating in size. Tmem shrinking results in discarding
cached pages, which affects performance of the system.

VM guest may swap memory pages to swap disk due to
memory pressure. Existing implementation of Tmem puts swap
pages into Frontswap to save disk I/O. But a successful put
cannot be guaranteed due to limited size of Tmem. In this
case, swap pages have to be written to swap disk. Later, when
the swap pages are accessed, they are read from Frontswap or
swap disk. We run 4 workloads in 4 VMs to collect the number
of swap pages read from Frontswap and swap disk. Figure 2
shows the normalized value of pages read from Frontswap
and swap disk. We can see that a large portion of swap read
is from swap disk. For example compiling Linux kernel reads
62% of swapping page from swap disk, while only reads 38%
pages from Frontswap of Tmem. Swap-out and swap-in incur
lots of disk write and read, which is detrimental to system
performance.

Based on the above observation, we are motivated to extend
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Tmem with emerging NVM so that more pages can be cached
to improve system performance and save expensive disk I/O.
We also found Tmem is a good interface to integrate NVM
into virtual machine environment.

VM1 
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VM2 VM3 

Tmem Extension 

NVM 

Tmem 

Allocated memory for VM 

Hypervisor 
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Fig. 3: Ex-tmem with NVM Extension

III. DESIGN OF EX-TMEM

In this section, we now present the design of our Ex-Tmem
for virtual machine.

A. Design Rationale

The main idea of Ex-Tmem is to use NVM as an extension
of the volatile Tmem so that more pages can be cached to
save disk I/O. NVM is physically placed on the memory bus
alongside DRAM. NVM appears as special memory space in
host and it is managed exclusively by the hypervisor. Hyper-
visor allocates memory from DRAM for virtual machines as
usual. The NVM space is not virtualized and reserved only
for Tmem extension and not available to the kernel to access
directly (Figure 3).

Ex-Tmem stores swap pages and clean pages in the follow-
ing ways: NVM is partitioned into two regions, Swap Region
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Fig. 4: Ex-Tmem Architecture

and Clean Region as shown in Figure 4(b). Swap Region
stores swap pages, while Clean Region and Tmem both cache
clean pages. By moving Frontswap from Tmem (DRAM) to
NVM, the entire Tmem is now available to Cleancache. There
is thus no contention between Frontswap and Cleancache in
Tmem.

Swapping memory page to disk is costly. Our Ex-Tmem
design eliminates swap I/O entirely by replacing swap disk
with NVM through Frontswap interface. Removing swap disk
is feasible because NVM density is higher than DRAM. Ex-
Tmem leverages on memory-to-memory swapping to write
swap data to Swap Region removing the expensive swap I/O
to disk. More on memory-to-memory swapping is discussed
in Section III-B.

Ex-Tmem exploits a two-level buffering hierarchy to store
clean pages. A locality-aware data placement and replacement
policy is proposed to identify hot pages and cold pages so that
they are stored in different levels, which will be discussed in
Section III-C.

B. Memory-to-Memory Swapping

In a VM, sometimes the memory requirements exceed
available allocated memory, thus causing page swapping.
The current Tmem scheme puts the swap pages to Tmem
Frontswap. If the put is successful, disk I/O is avoided.
Otherwise, the swap pages are written to swap disk, as shown
in Figure 4(a).

When swapping in, the system searches the Tmem
Frontswap first. If found, the swapped pages are read from
Tmem to save disk reads. Otherwise, they are read from swap
disk. Our earlier experiement in section II-C shows that a larger
amount of swap pages are read from swap disk than from
Frontswap.

To improve swap performance and reduce swap I/O, we
remove the swap disk and always put swap pages into NVM.
When a VM decides to swap out pages, Ex-Tmem puts them in
the Swap Region without writing to swap disk. The swap pages
are written to NVM through an operation that we call memory-
to-memory swapping. Our memory-to-memory swapping is
a fast page copy mechanism that swaps out pages from VM’s
memory to NVM. This eliminates swap I/O and improves the
system performance.

A straight-forward approach to use NVM for swapping is
to make NVM a ramdisk and allocate a portion of it as swap
disk to each VM. However, using ramdisk as swap disk is
inefficient because it incurs high overhead of I/O stack. Our
memory-to-memory swapping is more efficient than ramdisk
approach because of low latency of memory copy.

There is no boundary separating the Swap Region and
Clean Region. Ex-Tmem gives higher priority to swap pages
to be stored in Swap Region. Writing swap pages into Swap
Region will always be successful. When a swap page cannot
find free slots in NVM, the clean page at the tail of Clean
Region is discarded to make space in NVM. When swap pages
are read from the Swap Region, they are invalidated and the
space is reclaimed.

C. Two-level caching of Clean Pages

As mentioned in Section III-A, Tmem and Clean Region
form a two-level cache space for clean pages. We refer to the
DRAM back-end of Transcendent Memory as Tmem and the
NVM back-end of Transcendent Memory as Clean Region.
Tmem is small and dynamic, while Clean Region is from
NVM, which is large and stable. In general, NVM is slower
than DRAM, and write-limited, i.e. PCM and RRAM.

We construct DRAM-based Tmem as first-level cache,
while NVM-based Clean Region as second-level cache for
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clean pages. We place clean pages in the two levels according
to the workload access pattern and memory features. We design
algorithm to achieve the following goals:

1) Improve the overall hit rate to reduce access latency
and disk I/O.

2) Maximize the hit rate of the first-level buffer, which
is faster than the second-level buffer.

3) Reduce the number of writes to second-level which
is lifetime-limited.

Based on the access pattern for clean pages, they can be
classified as hot pages, warm pages and cold pages. We always
keep hot and warm pages in either the first-level or the second-
level cache, but evict cold pages from the buffer space.

First-level cache: One straight-forward method is to use
existing cache algorithms (i.e. LRU, LFU, 2Q, ARC) to
manage the first-level cache. For example, LRU is able to
remove cold pages from the first-level buffer to make space for
the most recently accessed page. However LRU may displace
a warmer page to make space for a cold one if the most
recently accessed page is cold. Furthermore, a cold page can
reside in the first-level cache for a considerable amount of
time, polluting the space. We improve on this by partitioning
the first-level cache (Tmem) into Hot Region and Put Buffer,
thereby quickly identifying and removing cold pages from the
first-level cache.

The Put Buffer is organized as a FIFO list, while the Hot
Region is organized as an LRU list (See Figure 5). The Put
Buffer is a unique portal to receive clean pages in FIFO order,
functioning as a filter to identify hot pages and cold pages. If
a page residing in the Put Buffer is referenced twice before it
is evicted, it is probably a hot page. The page is then moved
to the Hot Region and moved to the head of the LRU list. If
a page is accessed once or not accessed during its Put Buffer
residency, it is probably a warm or cold page, and it will be
evicted from the Put Buffer to the second-level cache – the
Clean Region. When the Put Buffer is full, the oldest residing

page in the FIFO list is evicted to the Clean Region. When
the Hot Region is full, the LRU end of the region is evicted
to the Clean Region.

Second-level cache: The second-level cache, i.e. Clean
Region, uses LFU (i.e. the least-frequently-used replacement
policy) to organize cold pages evicted from the first-level
cache. When a page from the Put Buffer or the Hot Region
is replaced to Clean Region, we use its reference frequency
to place the page in the LFU list. Pages with same reference
numbers are sorted by their recency of access. When the Clean
Region is full, the page at the tail of the LFU list (which has
the page with the lowest reference frequency) is discarded. A
page accessed twice in the Clean Region is moved up to the
Hot Region of first-level cache.

Therefore, the Hot Region stores pages with high short-
term access rates. The Clean Region on NVM detects pages
that have high long-term access rates. Hence, we could say that
the first-level cache captures recency, while the second-level
cache captures frequency. In this way, we efficiently make use
of the two-level cache to maximize the hit-rate and eliminate
disk I/O as much possible. The procedures of put and get
operation are described in Algorithm 1 and Algorithm 2.

Flush-on-reclaim: When host or VM requests back the
memory donated to Tmem, the memory is reclaimed from
the Tmem, causing Tmem shrink in size. A Flush-on-reclaim
policy is used when Tmem shrinks, the pages close to the tail
of the LRU list in the Hot Region are flushed to the Clean
Region that is part of NVM. These pages are then reclaimed
back to VM or host.

IV. IMPLEMENTATION

We have implemented Ex-Tmem on a server platform
provided by vendor Viking. This platform is called ADK
(ArxCis Development Kit) which is standard server with
NVDIMM. In ADK platform, both DRAM and NVDIMM
coexist. NVDIMM is supercapacitor-powered Non-Volatile
DIMM with DDR3 interface. NVDIMM combines the speed
and endurance of DRAM, together with data retention prop-
erties of NAND flash. It performs at DRAM speeds and
can sustain itself from host power failure or a system crash.
This solution can be viewed as the first commercially viable
alternative for NVM. With modified BIOS, NVDIMM is iso-
lated and reserved as a special memory zone to Linux kernel,
which is used as extension of Tmem in this paper. Hypervisor
allocates memory from DRAM for each VM as usual, but the
NVM space is not visible to VMs. NVM space is allocated
at page granularity. It provides dedicated NVM_Read() and
NVM_Write() to read and write pages from/to NVM space.

We have implemented our scheme in Xen-4.1.3 hypervisor.
In addition to the LRU page list in default Tmem, we add
two more page lists - a FIFO list to manage the buffer and
a LFU page list to manage the NVM. The page to location
mapping is handled efficiently using radix-tree. do_tmem_put,
do_tmem_get, tmem_evict are the three main methods that
perform write, read and evict operations on Tmem respectively.

Our modification in do_tmem_put writes the page always to
buffer list. Once the hypervisor decides to perform read/write
operation on NVM, it calls the corresponding NVM read/write



Algorithm 1: Put (page X)
Begin
Initialize:
Buffer queue B, Hot Region queue T and Clean Region
queue P
Ci = count of number of references of page i
Cpi = count of number of references of page i in P

if there are free page slots in B then
add X to B;

else
remove page Y from tail of B;
add X to B;
if there are free page slots in P then

insert Y in P ordered by Cy;
else

remove least frequently used page Z from P
where Cz = min(Cpi);
insert Y in P ordered by Cy;

end
end

Algorithm 2: Get (page X)
Begin
Initialize:
Cbx = count of number of references of page X in B
Cpx = count of number of references of page X in P
Ci = count of number of references of page i

if X is in T then
move X to head of T;

end
else if X is in B then

if Cbx >= 2 then
move X to head of T;

else
Cbx = Cbx + 1

end
end
else if X is in P then

if Cpx >= 2 then
if there are free slots in T then

move X to head of T;
else

remove page Y from tail of T;
insert Y in P ordered by Cy;
add X to head of T;

end
else

Cpx = Cpx + 1
end

end

API to immediately to complete the operation. This essentially
makes it a write-through cache. do_tmem_get finds the page
in these three lists. tmem_evict discards the page from the
Cleancache LFU list unless its a shared page.

Concurrency is achieved by using a good locking strategy.
There are locks at each datastructures that ensure to avoid
deadlock or livelock issues. There is a per-pool read-write
lock (pool_rwlock), per-object spinlock (obj_spinlock), a single
global spinlock (eph_lists_spinlock). These locks must be

acquired to perform any modifications on the data structures.

V. EVALUATION

Our experiments are performed with Ex-Tmem on the
ADK server platform with Intel 2.5GHZ CPU, 8GB DRAM
and a 1TB SATA hard disk plus 16GB NVDIMM. Hypervisor
is Xen 4.1.3 with 10 VMs deployed for experiements. Each
VM is allocated with 2 vCPUs, 500MB RAM, and 100GB
virtual disk. Ubuntu 12.04 is operating system in guest VM.

In our configuration, NVDIMM is twice the size of DRAM.
For each VM with 500MB allocated memory, 1GB NVDIMM
is enough to store swapping pages. So 16GB NVDIMM is
enough to store whole swapping pages for each VM and their
clean pages.

We evaluate our system against a) default Xen Tran-
scendent Memory [2] in Linux Kernel with no NVM and
NVM extended Transcendent Memory with existing schemes
b) traditional LRU [7][13], c) CLOCK-pro [8] which is an
improved CLOCK replacement policy and d) Multi-queue
replacement algorithm (MQ) [18].

For default Tmem, we consider only the DRAM back-
end (without any compression or deduplication enabled in
Transcendent Memory) for our experiments and evaluation.
The other configurations include an additional NVM back-
end. The DRAM and NVM make a hierarchal Transcendent
Memory which are managed by LRU, CLOCK-pro and MQ
respectively. In all these 3 policies DRAM holds higher level
in cache hierarchy than NVM. The hot pages are given priority
to be placed in DRAM and the coldest pages (defined by the
policy) in NVM are discarded. In LRU, DRAM and NVM
make a page list with the most recently accessed end at DRAM
and the least frequently accessed end at NVM. In CLOCK-
pro, the active-list is given priority to be placed in DRAM and
others placed in NVM. In MQ, the higher level queues with
pages that have been accessed frequently in the past are given
priority to be placed in DRAM, while others are moved to
NVM. Additionally, these configurations store all swap pages
into NVM without swapping to disk.

A. Workloads

We use a set of real traces to study the efficiency of our
proposed Ex-Tmem scheme on a wide spectrum of work-
loads. Considering the rapidly growing demand for big-data
operations on servers, we evaluate our system with real-time
big-data workloads generated by Apache Hadoop v2.3.0 on a
single-node Hadoop cluster with HDFS setup on a VM. The
workloads are:
MapReduce is a workload that transfers the large input dataset
through the shuffle and performs the three steps of generating
random data, performing the sort, and finally validating the
results.
Terasort is a MapReduce sort that samples the data generated
by Teragen. Terasort partitioner uses a two level trie that
indexes into a list of sample keys which are written to HDFS.
TestDFSIO benchmarks the underlying HDFS by performing
reads and writes.
We also use five workloads generated from Filebench which is
a storage benchmark that produces a realistic view of real-time
production systems. It creates file sets prior to actually running



a workload by pre-creating thousands of files in hundreds of
directories with files of varying sizes at specified ranges on
which to actually test. The 5 workloads are:
Web server, which generates sequences of open, read and
close on multiple files with multiple threads.
File server generates sequences of file operations – create,
delete, append, read and write.
Video server generates two different sets of videos, one which
is actively served and other inactive. Multiple threads serve the
active videos and a thread performs the task of replacing the
inactive videos.
Web proxy generates create-write-close, open-read-close, and
delete operations of multiple files in directory.
OLTP generates operations using the Oracle 9i database,
which performs random reads and writes, and writes to a log
file.

B. Performance

Running time: This is the measurement of the running
time of the application in the VM. Figure 6(a) shows data
comparing the running time of default Xen Transcendent
Memory, NVM extended Transcendent memory with LRU,
CLOCK-pro, MQ and our design. Results indicate extending
Transcendent Memory with NVM reduces running time of the
workloads by twice in many cases. This owes to the cost
of NVM. Comparing our scheme against LRU, we observe
up to 20% improvement for Hadoop workloads and 30% for
Filebench workloads. Our scheme also performs better than
CLOCK-pro and MQ by 5–20%. The running time depends on
the number of hits at first-level cache and the disk I/O caused
by cache misses. Our algorithm obtains large number of cache
hits from first-level than other schemes, which apparently
reduces the running time of the applications.

Hit rate: Fetching data from disk requires at least a factor
of 1000 more time than fetching data from a RAM buffer.
For this reason, improving overall hit rate can significantly
improve the response time of data-intensive applications. NVM
extension increases the hit ratio by 25-50% in Figure 6(b),
compared to default Tmem, reflecting the increase in capacity
to cache more pages. Our scheme effectively uses the Tmem
by increasing the number of hits at the cache layers. We find
a 4-12% increase in over-all hit rate with our policy compared
to CLOCK-pro and MQ. We have a two-level cache layers
that capture both the recency and frequency, which reduces
the misses. The results indicate that our algorithm eliminates
the cold pages from the cache faster than other policies. For
example, a one-time access page in LRU scheme has to travel
across the entire Tmem list before getting evicted to NVM. But
in our scheme, pages which are referenced once are filtered
quickly from the FIFO buffer. Our scheme thus prevents the
cold pages from occupying page slots in the top-level cache.
Our approach of cache design, reduces the disk I/O by 10–
37%.

Hits on Tmem: In a layered cache it is important to have
large number of hits at top level. This comparison is on
the number of hits at Tmem which is the top level cache.
Figure 6(c) shows the comparison of the hits at Tmem which
illustrates that our scheme achieves about 25% more hits at
Tmem than other schemes.

Writes to NVM: In two-level cache hierarchy, our scheme
achieves higher number of hits at Tmem than at NVM. This
results in fewer replacements from Tmem to NVM which
reduces the writes to NVM. In Figure 6(d), our scheme
achieves fewer writes to NVM compared to other traditional
schemes. It saves 40% of writes at VM running Web-proxy
and 28% at VM running Web Server compared to LRU. Our
scheme provides better lifetime to write-limited NVM like
PCM.

VI. RELATED WORK

Transcendent memory was conceived and first implemented
by Magenheimer [11]. Among Tmem’s four possible combi-
nations (private/shared x ephemeral/persistent), private Clean-
cache was the first to appear in releases of Xen and Linux.
We extend Magenheimer’s Transcendent Memory to NVM and
propose a algorithm for managing the two-level cache.

Li et.al. [6] and Wong et.al. [17] have shown that eviction-
based placement is more suitable for buffer cache, since it can
provide a better hit rate. An eviction-based placement puts a
block into the cache when it is evicted from the upper level
cache (the page-cache in the guest OS in our case).

Chen et.al. [6] have showed that an eviction-based lower-
level cache can provide higher hit ratio than access-based
one. They also presented a tracking table based approach that
can detect evictions at reuse time, without modifying client
software. In a virtual machine environment, however, the guest
OS does not usually use a dedicated buffer cache, making it
difficult to precisely detect guest evictions.

LRU [7], [13] is a traditional replacement policy and
widely used in cache management. CLOCK-pro[8] and MQ
[18] are advanced replacement policies that perform better
than LRU and other LRU enhancements like LFU, 2Q, LRU-
K, EELRU, LRFU. Our results have shown Ex-Tmem outper-
forming all these algorithms.

Many cache replacement algorithms have been studied e.g.,
LRU-k [15], in the presence of concurrent workloads. LRU-
k prevents useful buffer pages from being evicted due to
sequential scans running concurrently. Ren et.al., [16] propose
a ’Least Popularly Used’ (LPU) algorithm that tracks disk
blocks by recency of access. The Least Popularly Used queue
is scanned after every 50,000 I/O requests to select reference
blocks based on their popularities. This method incurs large
overhead and makes hypervisor (KVM) complex and would
suffer scalability issues.

VII. CONCLUSION

In this paper, we propose a mechanism to extend tran-
scendent memory (called Ex-Tmem) with NVM so that more
pages can be cached, instead of discarding them. Ex-Tmem
puts clean pages in a two-level memory hierarchy considering
access locality and different features of DRAM and NVM.
With Ex-Tmem, memory-to-memory swapping is enabled and
expensive swap I/O is totally removed. We have implemented
our Ex-Tmem in the Xen hypervisor platform. Experimental
results have shown that Ex-Tmem is efficient in improving
performance and reducing disk I/O. In this virtualization
system, the VMs share the resources DRAM and NVM. It is
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Fig. 6: Performance Evaluation

necessary to ensure performance isolation where one VM does
not adversely affect another VM’s performance. Our future
work is to partition Tmem among VMs and provide a fair
allocation of DRAM and NVM.
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