
Memory Consistency for Parallel Systems:

A Reformulation Without Global Time

Jonathan Z.Y. Hay Y.C. Tay

Department of Computer Science and Department of Mathematics

National University of Singapore

Abstract— Cross-chip latencies now make multi-

core architectures resemble distributed systems. The

design of distributed protocols is notoriously error-

prone, particularly when their analysis is based on

the use of global time. Classical memory consis-

tency models for parallel programming, such as

linearizability, uses such a global ordering. This talk

examines the reformulation, without global time, of

these consistency models.

I. INTRODUCTION

It is now common for a processor chip to

have multiple cores and caches. Furthermore,

current processor speeds are so fast that it takes

many cycles for a signal to travel across a

chip. These make a chip increasingly resemble

a distributed system.

The design and analysis of distributed pro-

tocols is notoriously prone to error. In trying

to understand why this is so [4], we learnt two

lessons.

The first is that many errors originate from

our habit to reason (often subconsciously) us-

ing global time, or some global interleaving

order of all events in the system, i.e. to think

sequentially about a parallel execution.

The theory (definitions and proofs) for dis-

tributed protocols should instead rely only on

partial orderings of the events. This applies to

the theory for parallel processing as well, now

that they behave like a distributed system.

In the case of consistency models for shared

memory, the classical theory starts with a total

order of all events in the system. Two well-

known models are sequential consistency and

linearizability, and the need for global time

distinguishes these two definitions.

II. SEQUENTIAL CONSISTENCY

For notational simplicity, we assume every

process (or thread) executes a totally ordered



sequence of operations, and the process order

≺o
P is the union of these total orders. Following

Steinke and Nutt [3], the only operations are

reads and writes, and each write generates a

unique value.

Let wx
B(v) denote the operation where pro-

cess B writes value v to variable x; similarly,

rxB(v) denotes B reading value v of x. We say

rxC(v) reads from wx
B(v), denoted wx

B(v) 7→

rxC(v) if and only if the value read by C was

written by B. We call ≺o
P ∪ 7→ an operation

history.

A total order <o on the operations is legal if

and only if whenever wx
B(v) <

o rxC(v), there is

no wx
A(u) such that wx

B(v) <
o wx

A(u) <
o rxC(v).

For a partial order ≺o on operations,

SerialView(≺o) denotes a legal total order <o

that preserves ≺o, i.e. ≺o⊆<o.

An operation history is sequentially consis-

tent if and only if ∃SerialView(≺o
P).

Steinke and Nutt used such a formalism

to express several other correctness criteria

— PRAM consistent, processor consistent,

causally consistent, etc. — all without using

global time. Can linearizability be similarly

defined?

Linearizability is fundamentally different

from sequential consistency in that it is a local

property, i.e. the operation history is lineariz-

able if and only if it is linearizable for every

object. Sequential consistency is a weaker cri-

terion that does not have such a property.

Note that ∃SerialView(≺o
P) does not include

the reads from order 7→ defined on objects.

We can further define a data order ≺x
D for

each variable x, as follows: If oxC(u) ≺
o
P rxC(v),

rxC(v) reads from wx
B(v) and u 6= v, then

oxC(u) ≺
x
D wx

B(v).

Let ≺o
D be the transitive closure of ≺o

P ∪ 7→

∪ (
⋃

x ≺x
D). An operation history is data

consistent if and only if ∃SerialView(≺o
D).

Theorem

An operation history is data consistent if and

only if it is sequentially consistent.

In other words, adding 7→ and ≺x
D to ≺o

P

does not give a correctness criterion that is

stronger than sequential consistency.

III. LINEARIZABILITY

Since we assume a process B executes se-

quentially, we can totally order events at B

with some local B-time. An operation oxB(v)

thus spans a B-time interval between two

events: its invocation Inv(oxB(v)) and the re-

sponse Resp(oxB(v)). Current cross-chip laten-

cies make such intervals nontrivial, so opera-

tions are not atomic.

Classically, linearizability is defined by start-

ing with a global total order (using “real

time” [2]) of all events and extracting a partial

order on operations from that total ordering on



events. Can linearizability be defined without

such a total ordering?

Define a causal order ≺e
c on events thus:

For two events fB and f ′

C at processes B and

C, fB ≺e
c f ′

C if and only if fB can causally

affect f ′

C .

For B = C, this means fB happens before

f ′

B in B-time; for B 6= C, this means a signal

sent at B-time for fB can travel across the chip

and reach C at some C-time before f ′

C .

We call this causal order ≺e
c an event his-

tory.

An event history ≺e
c induces an operation

history ≺o where oxB(u) ≺
o o

y
C(v) if and only

if Resp(oxB(u)) ≺
e
c Inv(o

y
C(v)).

For an event history ≺e
c, the process subhis-

tory <e
B is the restriction of that order to events

for process B; this restriction yields a total

order since we assume a process is a sequence

of operations.

Similarly, the object subhistory ≺e
x is the

restriction of that order to events for object x.

The standard definition of linearizability uses

a total order <e
g (instead of ≺e

c) imposed by

global time. Two total orders <e
g and <e′

g are

equivalent, denoted <e
g≡<e′

g , if and only if

<e
B=<e′

B for every process B.

<e
g is sequential if and only if the operation

history that it induces is a total order. A se-

quential <e
g is legal if and only if the operation

history that it induces is legal.

Classically, <e
g is linearizable if and only

if there is some legal sequential <e′
g such that

<e
g≡<e′

g and ≺o⊆≺o′, where ≺o and ≺o′ are

the operation histories induced by <e
g and <e′

g

respectively.

One can prove that <e
g is linearizable if and

only if ≺e
x is linearizable for every object x;

this is the local property mentioned in Section

2.

Golab has proposed two definitions of lin-

earizability that do not use real time [1]. Using

our notation, his definitions can be stated as:

(1) ≺e
c is ∃-linearizable if and only if

there is a total order <e
g such that

≺e
c⊆<e

g and <e
g is linearizable.

(2) ≺e
c is ∀-linearizable if and only if

for every total order <e
g such that

≺e
c⊆<e

g, <e
g is linearizable.

Golab conjectured that the first definition is not

a local property, but the second definition is.

We have found counterexamples to show

that ∃-linearizability is indeed not local, so

it is arguably not the right generalization of

linearizability. We have also proven Golab’s

conjecture for ∀-linearizability:

Theorem

≺e
c is ∀-linearizable if and only if ≺e

x is ∀-

linearizable for every object x.



IV. CONCLUSION

Although ∀-linearizability is a local property,

we think it is also not the right generalization.

Our skepticism is based on the second les-

son that we learnt from distributed computing,

namely: Processes and objects are asymmetric

in their properties, so it makes a difference

whether a definition is in terms of events at

processes or at objects.

The classical definition for linearizability is

in terms of events that model the non-atomicity

of operations, so the events are all local to

processes. However, there are actually four

events associated with each oxB(v): Inv(o
x
B(v))

at B, the event at x for receiving the invocation,

the event at x for sending the response, and

Resp(oxB(v)) at B. Like the interval between

Inv(oxB(v)) and Resp(oxB(v)), the delay be-

tween the receive and send events at x may

also be nontrivial (consider, say, a cache miss).

A proper reformulation of consistency for

shared memory should therefore model events

at both processes and objects, and relate them

through a partial order defined with local times

for all events.

ACKNOWLEDGMENT

We thank Wojciech Golab and Seth Gilbert

for their helpful comments.

REFERENCES

[1] W. Golab. Relativistic linearizability. (Private communi-

cation through Seth Gilbert.), Feb. 2012.

[2] C. Shao, J. L. Welch, E. Pierce, and H. Lee. Multiwriter

consistency conditions for shared memory registers. SIAM

J. Comput., 40(1):28–62, 2011.

[3] R. C. Steinke and G. J. Nutt. A unified theory of shared

memory consistency. J. ACM, 51(5):800–849, Sept. 2004.

[4] Y. C. Tay and W. T. Loke. On deadlocks of exclusive

AND-requests for resources. Distrib. Comput., 9(2):77–

94, Oct. 1995.


