A technique to estimate a system's asymptotic delay and throughput

Y.C. Tay National University of Singapore 2015--2017: Google moved wide-area (B4) production traffic to TCP variant BBR \rightarrow big performance improvement

(bottlenect bandwidth and round-trip propagation time)

Balanced Job Bound for separable networks [Zahorjan et al., 1982]

real networks: not balanced, not separable real not a bound

Different TCP variants (Tahoe, Reno, CUBIC, BBR, ...) have the same R_0 and X_{∞} but $g_R(N)$ and $f_X(N)$ have different curvatures.

How to model?

idea: introduce 2 parameters for how variants affect X and N

$$\frac{1}{X+\alpha} = R_0 \frac{1}{N(1+\beta)} + \frac{1}{X_{\infty}}$$

Many more experiments needed to understand the model's accuracy.

Some engineering needed to apply the model to TCP congestion control.

General technique for any closed black box

Another example: video game developer has choice of

hardware: Nvidia or AMD

game engine: Unity or Unreal Engine

how to choose?

choice depends on:

 R_0 = time to render 1 frame

 X_{∞} = maximum frame rate

issue: how to determine R_0 and X_{∞}

using a game prototype (with limited number of objects/scenarios)?

answer: fit
$$\frac{1}{X} = R_0 \frac{1}{N} + \frac{1}{X_{\infty}}$$
 with prototype