
A technique to estimate a system's
asymptotic delay and throughput

Y.C. Tay
National University of Singapore

2015--2017: Google moved wide-area (B4) production traffic to TCP variant BBR → big performance improvement

(bottlenect bandwidth and round-trip propagation time)

magic: BBR does not use packet loss as congestion signal

data in-flight N

BBR: operate here

Nknee

TCP
throughput X don't go there

TCP
throughput X

round-trip

time R =
𝑁

𝑋

data in-flight N

data in-flight NNknee

R0

X∞

BBR: operate here

slope =
1

𝑋
∞

slope =
1

𝑅
0

TCP
throughput X

round-trip

time R =
𝑁

𝑋

data in-flight N

data in-flight NNknee

R0

X∞

BBR: operate here

slope =
1

𝑋
∞

slope =
1

𝑅
0

"optimal"

minimum R

maximum X

TCP
throughput X

round-trip

time R =
𝑁

𝑋

N

N

R0

X∞

slope =
1

𝑋
∞

slope =
1

𝑅
0

Nknee = R0 X∞

how to estimate?

Nknee

TCP
throughput X

round-trip

time R =
𝑁

𝑋

N

N

R0

X∞

slope =
1

𝑋
∞

slope =
1

𝑅
0

Nknee = R0 X∞

how to estimate?

BBR: uncertainty principle

not visible hereX∞

not visible hereR0

binary search on N to
probe X

Nknee

TCP
throughput X

round-trip

time R =
𝑁

𝑋

N

N

R0

X∞

slope =
1

𝑋
∞

slope =
1

𝑅
0

Nknee = R0 X∞

how to estimate?

BBR: uncertainty principle

not visible hereX∞

not visible hereR0

binary search on N to
probe X

TCP
throughput X

round-trip

time R =
𝑁

𝑋

N

N

R0

X∞

Nknee = R0 X∞

how to estimate?

BBR: uncertainty principle

binary search on N to
probe X

gR(N)

fX(N)

TCP
throughput X

round-trip

time R =
𝑁

𝑋

N

N

R0

X∞

Nknee = R0 X∞

how to estimate?

BBR: uncertainty principle

binary search on N to
probe X

gR(N)

fX(N)

gap (queueing delays)

gap (bottleneck is sometimes idle)

round-trip

time R =
𝑁

𝑋

N

increase R0

Nknee = R0 X∞

how to estimate?

BBR: uncertainty principle

binary search on N to
probe X

gR(N)

data here (N > Nknee)
can be used to estimate R0

no needaffected heregR(N)

TCP
throughput X

N

Nknee = R0 X∞

how to estimate?

BBR: uncertainty principle

binary search on N to
probe X

fX(N)

increase X∞

affected herefX(N)
data here (N < Nknee)
can be used to estimate X∞

no need

round-trip

time R =
𝑁

𝑋

N

increase R0

Nknee = R0 X∞

how to estimate?

BBR: uncertainty principle

binary search on N to
probe X

gR(N)

data here (N > Nknee)
can be used to estimate R0

no need

affected heregR(N)
TCP
throughput X

N

fX(N)

increase X∞

affected herefX(N)
data here (N < Nknee)
can be used to estimate X∞

no need

Balanced Job Bound for separable networks [Zahorjan et al., 1982]

X >
𝑁

𝑅
0
+
𝑁

𝑋
∞

real networks: not balanced, not separable not a bound

idea: use f B(N) =
𝑁

𝑅
0
+
𝑁

𝑋
∞

X
to approximate X

asymptotically correct:

lim
𝑁→0

𝑁

𝑓 (𝑁)
=B

X

lim
𝑁 →0

()R0 +
𝑁

𝑋∞
= R0

lim
𝑁 →∞

𝑓 (𝑁) =B
X

lim
𝑁→∞

𝑁

𝑅0+
𝑁
𝑋∞

= X∞

X =
𝑁

𝑅
0
+
𝑁

𝑋
∞

1

𝑋
= R0

1

𝑁
+

1

𝑋
∞

measure { <N1, X1 >, <N2, X2 >, ... , <Nk, Xk > }

{ <
1

𝑁
1

,
1

𝑋
1

>, <
1

𝑁
2

,
1

𝑋
2

>, ... , <
1

𝑁
𝑘

,
1

𝑋
𝑘

> } R0 , X∞

linear regression

Nknee = R0 X∞

how to estimate?

Nknee

Different TCP variants (Tahoe, Reno, CUBIC, BBR, …) have the same R0 and 𝑋∞
but gR(N) and fX(N) have different curvatures.

How to model?

idea: introduce 2 parameters for how variants affect X and N

1

𝑋+α
= R0

1

𝑁(1+β)
+

1

𝑋
∞

Many more experiments needed to understand the model’s accuracy.

Some engineering needed to apply the model to TCP congestion control.

General technique for any closed black box

Another example: video game developer has choice of

hardware: Nvidia or AMD

game engine: Unity or Unreal Engine
how to choose?

choice depends on:

R0 = time to render 1 frame

𝑋∞ = maximum frame rate

using a game prototype (with limited number of objects/scenarios)?

issue: how to determine R0 and 𝑋∞

answer: fit
1

𝑋
= R0

1

𝑁
+

1

𝑋
∞

with prototype

