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2015--2017: Google moved wide-area (B4) production traffic to TCP variant BBR →  big performance improvement

(bottlenect bandwidth and round-trip propagation time)

magic: BBR does not use packet loss as congestion signal
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Balanced Job Bound for separable networks [Zahorjan et al., 1982]
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real networks: not balanced, not separable not a bound
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Different TCP variants (Tahoe, Reno, CUBIC, BBR, …) have the same R0 and 𝑋∞
but  gR(N)  and  fX(N)  have different curvatures.

How to model?

idea:  introduce 2 parameters for how variants affect X and N
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Many more experiments needed to understand the model’s accuracy.

Some engineering needed to apply the model to TCP congestion control.



General technique for any closed black box

Another example:  video game developer has choice of

hardware:  Nvidia  or  AMD

game engine:  Unity  or  Unreal Engine
how to choose?

choice depends on:

R0 = time to render 1 frame

𝑋∞ = maximum frame rate

using a game prototype (with limited number of objects/scenarios)? 

issue:  how to determine R0 and 𝑋∞

answer:  fit  
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with prototype


