
ONLINE OPTIMIZATION

THROUGH MINING THE OFFLINE OPTIMUM

Jason W.H. Lee Y.C. Tay Anthony K.H. Tung

National University of Singapore

Kent Ridge 117543, REPUBLIC OF SINGAPORE

Abstract

Ports, warehouses and courier services have to decide online how an

arriving task is to be served in order that cost is minimized (or profit maxi-

mized). These operators have a wealth of historical data on task assignments;

can these data be mined for knowledge or rules that can help the decision-

making?

MOO is a novel application of data mining to online optimization. The

idea is to mine (logged) expert decisions or the offline optimum for rules

that can be used for online decisions. It requires little knowledge about the

task distribution and cost structure, and is applicable to a wide range of

problems.

This paper presents a feasibility study of the methodology for the well-

known k-server problem. Experiments with synthetic data show that opti-

mization can be recast as classification of the optimum decisions; the result-

ing heuristic can achieve the optimum for strong request patterns, consis-

tently outperforms other heuristics for weak patterns, and is robust despite

changes in cost model.

Keywords: Online optimization, data mining.

1

1 INTRODUCTION

In online optimization, a stream of tasks arrives at a system for service.

Each task must be served — before the next arrival — at a cost that depends

on the system’s state, which may be changed by the task. The objective is

to minimize the cost of servicing the entire task stream.

The introduction of competitive analysis [25, 18] inspired a large body

of work on online optimization in the last decade [5]. This form of analysis

uses a competitive ratio to compare the online heuristic’s cost to the offline

optimum (obtained with the task stream known in advance). In other words,

the objective of the online decision algorithm is to match the offline optimum,

and this often means imitating the latter.

This objective is the basis of our proposal on a new methodology for

online optimization. Suppose there are patterns in the task arrivals — i.e.

task generation is constrained by a distribution; these patterns and the cost

structure in turn combine to induce patterns in the offline optimum solution,

and the online decision algorithm can exploit these patterns to get close to

the optimum. Hence, the idea is:

Step 1 Take a task stream (the training stream) that was previously gen-

erated by the distribution.

Step 2 Obtain the offline optimum solution (i.e. the sequence of decisions

for servicing the tasks).

Step 3 Transform the optimum solution into a database of records.

Step 4 Apply data mining to this database to extract patterns.

Step 5 Use the patterns to formulate online decision rules for servicing a

task stream (the test stream) generated by the same distribution.

We call this methodology for online optimization MOO, whose essen-

tial feature is mining the offline optimum (Step 4). This feature distinguishes

2

MOO from the vast literature in machine learning and database mining; it

is also different from applying algorithms for online learning to online opti-

mization [4], from using data collected online to make decisions [17, 13], and

from mining database access histories for buffer management [10]. MOO’s

strengths are: (1) It is a methodology that is applicable to a wide range of

problems in online optimization (e.g. taxi assignment [14], packet routing

[2], web caching [27]). (2) It requires minimal knowledge about the task

distribution and cost structure (and the mining in Step 4 makes no effort

to discover them). (3) The sort of information to be mined (classification,

association, clustering, etc.) may vary to suit the context. (4) The technique

for mining (item-set sampling, neural networks, etc.) can be appropriately

chosen.

On the other hand, MOO’s weaknesses are: (1) An optimum solution

for the training stream must be available. This is an issue if no tractable

algorithm is known for generating the optimum. MOO, however, only re-

quires the availability of the optimum and does not assume its tractability;

it thus treats the optimum solution like an oracle. This oracle may, in fact,

be human, in which case the methodology’s objective is to approximate the

expert’s performance (for this, MOO is milking the oracle offline). Inciden-

tally, the oracle may yield the optimum solution without providing informa-

tion about the costs. (2) The task distribution must be stationary [17], so

that the information mined with the training stream remains relevant for the

test stream. (3) MOO may need a significant amount of memory to store

the rules for making online decisions.

To demonstrate MOO, we apply it to the k-server problem. We chose

this problem because it is the prototypical and most intensively studied online

problem [5]. It is also close to a container yard management problem that

the Port of Singapore Authority is interested in.

The decision is cast as a classification problem, and we use Quinlan’s

3

C4.5 to mine the optimum, as well as for online classification. This software

[23] was written for machine learning, but suffices for our purpose since the

data set is not large and both the offline mining and online classification

are fast. However, we envisage that other applications of MOO (e.g. using

techniques other than classification, or approximating an expert through

mining historical data) may require software that are specifically equipped

with data mining technology [1, 16].

We present here an experimental study of how classification can be

used for the k-server problem. The objectives are: to establish the viability

of the methodology; to explore how MOO’s effectiveness is influenced by

the strength of patterns, the cost structure, the stream lengths, etc.; and to

prepare a case for access to commercial data.

As is implicit in that third objective, our experiments use synthetic

data; this is because a systematic exploration of MOO’s effectiveness requires

controlled experiments in which various factors can be tuned individually;

whereas real data are affected by constraints and noise (that affect optimal-

ity), and these get in the way of a feasibility study that tries to build up an

understanding of the methodology. Moreover, gaining access to commercial

data is difficult without first making a case with synthetic data. (As far as

we know, no real data for the k-server problem is available in the research

community.)

The work reported here is significant in the following ways: (1) The ex-

periments on synthetic data show that the methodology is feasible — MOO

fits into the gap between the offline optimum and other online heuristics,

can come close to the optimum for strong patterns, does well for weak pat-

terns, and is robust with respect to the cost structure. (2) It shows that

optimization can be recast as classification. (3) MOO is a novel applica-

tion of a concept in data engineering to a problem in algorithm theory, thus

serving as a bridge between the two: This application poses challenging new

4

problems in the analysis of online optimization (see Section 5.2); conversely,

data mining (being an art — consider Steps 3 to 5) will benefit from the

algorithm community’s insight into what information to look for and how

to do the mining. (For example, the optimum solution for buffer replace-

ment [22] suggests that association rules S → P between a set of pages S

and a page reference P should be annotated by a “distance” d between S

and P mined from the reference stream, and d used for buffer management

[26].) By offering a database perspective on online optimization, MOO has

the potential of facilitating a mutually enriching interaction among database

management, machine learning and algorithm analysis.

We first describe the k-server problem in Section 2. The experimental

setup is presented in Section 3 and the results examined in Section 4. Sec-

tion 5 then concludes with a summary of our observations and poses some

interesting and hard problems for this new application of data mining.

2 THE k-SERVER PROBLEM

The k-server problem is defined on a set of points with a distance

function d. Conceptually, the set may be infinite but, for our experiments, it

consists of n nodes. Unlike most papers on k-servers, we do not require that

d satisfy the triangular inequality, nor that it be symmetric. We also do not

assume that d is known to the online decision algorithm.

There are k servers who are positioned at different nodes. (Some au-

thors allow multiple servers at one node [20].) A task is a request that

specifies a node i, and is served at 0 cost if there is already a server at i,

or by moving a server from some node j to i, at cost d(j, i). (Some authors

allow multiple server movements per task [8].)

A task stream is a sequence of arriving requests T1, . . . , Ts; an online

solution uses only T1, . . . , Tm−1 to determine how Tm is served, while an

5

offline solution uses T1, . . . , Ts to determine how each request is served. A

configuration is a set of k nodes that specifies the location of the servers

before the arrival of a request.

Most algorithms in the literature for the k-server problem are for spe-

cial cases. For example, Fiat et al.’s marking algorithm is for paging, and

Coppersmith et al.’s RWALK is for resistive metric spaces [12, 9]. The work

function algorithm [20] is, in theory, applicable to any k-server problem, but

it is computationally intensive and (as far as we know) implemented only for

special cases. In our experiments, we compare MOO to three algorithms. If

an arriving request is for node i and there is no server at i, these algorithms

respond as follows:

Greedy: Choose a server at node j for which d(j, i) is minimum.

Balance: Let bj = cj + d(j, i) where cj is the cost incurred so far by the

server at node j; choose a server with minimum bj [21].

Harmonic: Let hj = 1/d(j, i) for each node j with a server; choose the

server at j with probability hj/
∑

r hr [24].

Note that, unlike MOO, these three heuristics require knowledge of d.

3 EXPERIMENTAL SETUP

3.1 Classification

In classification, a decision tree is built from a set of cases, where each

case is a tuple of attribute values. Each attribute may be discrete (i.e. its

values come from a finite set) or continuous (i.e. the possible values form

the real line). Each case can be assigned a class, which may also be discrete

(e.g. good, bad) or continuous (e.g. temperature).

Each leaf in the decision tree is a class, and each internal node branches

6

out based on the outcome of a test on an attribute’s value. The tree is built

from cases with known classification, and a test case can then be classified

by traversing the tree from root to leaf, along a path determined by the test

outcomes.

For the k-server problem, the request distribution and distance func-

tion induce patterns in the optimum decisions, and MOO tries to extract

these patterns for use in online assignment. Specifically, we look for patterns

that relate an assignment to the arriving request and the configuration it

sees. Hence, the class specifies which node to move the server from, and

the classification is based on n+ 1 attributes in a case, where one attribute

specifies the arriving request and the other n attributes specify whether a

node has a server; the class and attributes are considered discrete.

(A possible alternative is to name the k servers, have the class specify

the server, and use k attributes to specify the location of the servers. With

this (k + 1)-tuple formulation of a case, however, the classifier considers

“server A at node 1 and server B at node 2” to be different from “server

A at node 2 and server B at node 1”. This differentiation of servers is not

appropriate for the k-server problem, unless the cost model is changed to,

say, let servers charge different costs for movement. It is also not appropriate

to declare the class and attributes as continuous, unless we are considering

nodes on a line with a linear distance function.)

In our application of MOO, Step 2 uses network flow to solve for the

offline optimum [7]; in Step 3, this optimum is scanned to produce a file of

cases, one for each request; Step 4 then uses C4.5 to build a decision tree

with these training cases. For a test stream, this tree is used to classify each

arriving request. This classification may be invalid, in that the tree may

decide to move a server from a node that has no server; in this case, the

server at j with minimum d(j, i) is chosen, i.e. use a greedy strategy. (If d

is unknown, MOO can choose a random server, say.)

7

3.2 Distance function

We choose the distance functions to test MOO’s applicability for differ-

ent neighborhood structures and distance properties. We start with 1, 2, . . . , n

as nodes and d(x, x′) given by |x − x′|, (x − x′)2 and |x − x′|x′ — only

|x − x′| satisfies the triangular inequality, and |x − x′|x′ is not symmetric.

We also consider n nodes on a square grid with integer coordinates, with

d((x, y), (x′, y′)) given by |x− x′|+ |y − y′| and |x− x′|x′ + |y − y′|y′.

3.3 Request generation

The training and test streams are generated with transition matrices

in which an entry pij is the probability that a request is for node j given

that the previous request was for node i. The fraction of nonzero entries is

10–20% for a sparse matrix and 80–90% for a dense matrix. We use these

matrices to generate a stream in two ways:

• A 1-matrix stream is generated with a single matrix. This is similar to

Karlin et al.’s Markov paging, or a random walk on Borodin et al.’s access

graph [19, 6].

• A 2-matrix stream is generated alternately with two matrices: L requests

are generated with one matrix, followed by L requests from the other

matrix; at the switchover, if the last request from one matrix is i, then pij

from the other matrix is used to generate the next request. This gives a

nonhomogeneous Markov chain that is a random walk on two graphs, in

contrast to the simultaneous walks used by Fiat et al. [11, 13]. In this

paper, we arbitrarily fix L to be 10. The purpose of using a 2-matrix

stream is to see how MOO reacts to a mixture of request patterns.

An example of a matrix (Figure A.1) and a stream (Figure A.2) that it

generates are given in the Appendix.

8

4 EXPERIMENTAL RESULTS

There are several variables in our experimental setup: k, n, line/grid,

distance, sparse/dense, pattern mixture, starting configuration and stream

length. The stream length s is the most crucial because the offline optimum

has complexity O(ks2). The time complexity is compounded by the large

memory required to store the network for finding the optimum — we have

only one machine with sufficient main memory.

If we choose s large enough for the optimum and heuristics to all reach

steady state, the time commitment would be overwhelming. Instead, in most

cases, we set s just large enough that conclusions can already be drawn,

despite significant statistical variations for any particular solution. (This is

similar to analysis of variance in statistics, where one can separate the means

of two variables if the variation of each is “smaller” than the separation.)

With the bottleneck of one workstation generating the results, we have

chosen a small number of experiments that cut through the myriad possible

combinations of variables. We concede that the data may be insufficient to

support some of our conclusions, so these should be regarded as tentative

insight rather than authoritative conclusions.

4.1 Nodes on a line

Table 1 presents an experiment with a strong pattern in the stream

of requests coming to 5 servers for 9 nodes on a line, with a d that violates

triangular inequality. After 2000 requests, the fluctuations are small enough

for us to draw some conclusions.

First, the average optimum cost per request is less than 1, and this is

because most requests are for a node that already has a server. Second, the

competitive ratios for a fixed request distribution can be significantly smaller

than the k-server bound [21]; this is similar to previous observations [3, 15].

9

k = 5 servers, n = 9 nodes on a line, distance function (x− x′)2

1-matrix (sparse) stream, training length 2000, test length 2000optimum ompetitive ratio invalidost MOO Greedy Balane Harmoni assignmentS1 402/408/381 1.00/1.01/1.00 1.36/1.75/2.13 2.29/2.31/2.30 5.58/5.22/4.93 0/0/0S2 90/113/104 1.09/3.04/1.30 4.93/4.76/1.62 3.00/1.98/1.92 5.21/5.83/5.40 13/101/2
S1 and S2 are different matrices. A triple x/y/z for row Si gives the results

from three task streams generated with Si. For MOO, the first stream is

used as the training stream, and all three are used as test streams; x is the

result for the training stream used as test stream (this is why we have the

same length for training and test streams).

The underlined numbers are results for one run (i.e. one task stream) of S1.

The competitive ratio is cost incurred by an algorithm for a run divided by

the optimum cost for that run. The last column reports the number of times

the MOO classifier makes an invalid server assignment.

Table 1 For strong patterns, MOO can be close to the optimum.

Third, MOO can achieve the optimum — the sparse matrix induces a strong

pattern in the offline optimum solution, and this pattern is captured in the

decision tree used by MOO.

The starting configuration used in the three runs are the same for S1,

but different for S2. The results for S2 show that the configuration can

have a strong effect — the heuristics’ performance ordering and competitive

ratios both become erratic. In contrast, the ordering for the three runs of

S1 are the same, and the ratios are reasonably stable except for Greedy,

which is sensitive to the stream instance. To factor in the effect of the

starting configuration, this configuration is henceforth changed from run to

run, unless otherwise stated.

Despite the erratic results for S2 and the fact that MOO uses a greedy

strategy whenever the classifier makes an invalid assignment, MOO has a

significantly smaller ratio than Greedy, thus showing the contribution from

data mining. A check shows that the trees are small but unintuitive — an

example is given in the Appendix (Figure A.3) — since they imitate the

10

k = 5 servers, n = 9 nodes on a line, distance function (x− x′)2

1-matrix (dense) stream, training length 2000, test length 2000optimum ompetitive ratio invalidost MOO Greedy Balane Harmoni assignmentD1 715/687/728 1.16/1.21/1.20 1.28/1.27/2.09 1.72/1.85/1.66 4.24/4.40/4.26 1/1/0D2 684/692/732 1.19/1.22/1.18 1.94/1.44/1.29 1.72/1.88/1.87 3.71/4.70/4.37 1/10/0
Table 2 For weak patterns, MOO is best.

offline optimum (which “sees” future requests).

In Table 1, MOO can get close to the optimum because the patterns are

strong. For a dense matrix, the pattern is much weaker. Nonetheless, Table

2 shows that MOO has the smallest ratio, and the invalid assignments are

surprisingly few. Further, the difference in starting configurations between

the training and test streams does not have a big effect on MOO’s results, in

contrast to the results for a strong pattern (recall: the starting configurations

in Table 1 are the same for 1.00/1.01/1.00 and different for 1.09/3.04/1.30).

The number of potential cases for the classifier is n
(

n
k

)

, which is 1134

and comparable to the training length (2000) for Table 2. Even so, the

performance ordering and ratios are reasonably stable, except for Greedy;

when we tested the heuristics again with the runs using the same starting

configuration, fluctuation in Greedy’s ratios narrowed down considerably,

thus indicating that Greedy remains sensitive to the starting configuration

for weak patterns. The decision trees, though bigger than the two for Table

1, remain small: the tree for D1 is 3Kbytes and has only 27 decision nodes.

All heuristics are trivially optimum if k = 1, but the gap between

existing heuristics and the optimum should open up as k increases; to prove

its worth, MOO must fit into this gap.

In Figure 1 (and the following graphs), each data point is the average

of 6 runs. It shows that, for a 2-matrix stream and distance |x − x′|, the

gap between Greedy and optimum opens up at k = 5 for n = 9, and MOO

does fit into the gap. At k = 5 for |x− x′|, the difference between MOO and

11

5 6 7 8

1

2

3

4
ratio

k

GM

B

H

M
G

B

H

M

G

B

H

M
G
B

H

6 9 16 25

1

2

3

4
ratio

n

M

B

M

G

B

H

M
G

B

M
G

B

HH

n = 9 nodes, distance |x− x′| k = 5 servers, distance |x− x′|x′

2-matrix (sparse-dense) stream 2-matrix (dense-dense) stream

stream length 2000 stream length varies with n

H is for Harmonic, B for Balance, at n = 6, H is 9.6 and G is 10.6

G for Greedy, M for MOO

Figure 1 MOO fits into the gap Figure 2 MOO stays close to

between Greedy and optimum. optimum for all n.

5 6 7 8

1

2

3

4

ratio

k

M
G

B

H

G

B

H

M

G

B

H

M

GB

H

M

9 16 25

1

2

3

4

ratio

n

M

G

B

M

G
B

H

M

BG

H

H

n = 9, distance |x− x′|+ |y − y′| k = 5, distance |x− x′|x′ + |y − y′|y′

same stream and starting same stream and starting

configuration as Figure 1 configuration as Figure 2

Figure 3 For a grid, MOO still Figure 4 For a grid, MOO still

fits in the gap. stays close to optimum.

12

Greedy is negligible (if we consider the average ratio over 6 runs; Greedy’s

ratio is smaller in some runs and MOO’s smaller in others). In contrast,

Tables 1 and 2 show that MOO’s ratios are noticeably smaller than Greedy’s

at k = 5 for (x − x′)2, which penalizes large movements. The gaps among

the heuristics open further at k = 5 and n = 9 for |x− x′|x′ in Figure 2.

The alternation between strong and weak patterns does not affect

MOO’s ability to outperform the other heuristics in Figure 1, and Figure

2 shows this remains so for alternating between two weak patterns. In fact,

unlike Harmonic and Balance, MOO stays close to the optimum as n scales

up, thus demonstrating again its ability to learn from the optimum solution.

For an asymmetrical and punitive |x− x′|x′, the “right” server place-

ment is important to being close to optimum for small n, so Greedy’s sim-

plistic strategy does poorly there. For large n, even the optimum has its

servers spread out, and the violation of the triangular inequality favors in-

cremental server movements, thus making it possible for Greedy to get close

to the optimum.

4.2 Nodes on a grid

Intuitively, a heuristic should incur lower costs if nodes have more

neighbors within a given distance, but its ratio can increase because the

optimum may make better use of the neighbors in reducing its cost.

Figure 3 shows the results of repeating the runs for Figure 1 — same

starting configurations and request streams — on a grid (instead of a line).

Harmonic does perform better, but the effect on the ratios for Balance and

Greedy is mixed. A check (of the detailed data) shows that, contrary to our

intuition, their costs are sometimes higher for the grid. It appears that the

increase in the number of neighbors also leads Balance and Greedy to make

short-sighted moves that raise costs eventually. In any case, MOO remains

13

in the gap between Greedy and optimum when k increases.

Similar results hold when n is varied. Comparing Figures 2 and 4,

we see that the ratios for a grid are noticeably smaller for Harmonic but

larger for Greedy. A check shows that costs are lower (often by an order of

magnitude), so all solutions benefit from having more neighbors when d is

|x− x′|x′ + |y − y′|y′. However, the spreading-out effect that allows Greedy

to get close to the optimum in Figure 2 is less for a grid, so Greedy is further

from the optimum in Figure 4. Again, we see the gap among the heuristics

opening up at k = 5 and n = 9 when d changes from |x − x′| + |y − y′| to

|x− x′|x′ + |y − y′|y′.

MOO, on the other hand, stays close to optimum, like in Figure 2.

The detailed data show that there are at most 2 invalid assignments (that

are resolved greedily) at n = 9 and less than 12% such assignments at n =

25; hence, MOO relies mostly on the decision tree, which has successfully

captured the optimum solution even though the requests are a mixture of

two weak patterns.

5 CONCLUSION

5.1 Summary

We now summarize our observations:

• MOO fits into the gap between the offline optimum and other online

heuristics (Figures 1–4). For a strong pattern, MOO can be close to

optimum, but may lose to other heuristics because of sensitivity to the

starting configuration (Table 1). MOO does well even if the requests have

a weak pattern (Table 2) or alternate between patterns (Figures 1–4).

• MOO outperforms the other heuristics even if the distances are asymmet-

ric (Figures 2 and 4) or violate the triangular inequality (Tables 1 and

14

2). Increasing the number of neighbors can increase costs, but MOO’s

ratios remain stable (Figures 1 and 3, 2 and 4).

• MOO stays close to the optimum as n varies (Figures 2 and 4).

• The classifier can get an effective decision tree even for relatively short

stream lengths, the trees are small and the mining (Step 4) is fast (sub-

second).

5.2 Challenging issues

MOO poses some challenging problems for this new application of data

mining:

• How to analyze the competitive ratios produced with data mining?

• For the k-server problem, why does MOO perform well for weak patterns

and short training streams? (For the buffer replacement problem, mining

can produce good results even if the requests are a mixture of 100 patterns

[26].)

• What sort of data mining would be appropriate for web caching, video-

on-demand, etc.?

Acknowledgment

Many thanks to C.P. Teo for his help with network flow and Hongjun Lu for

his comments.

15

6 REFERENCES

[1] R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning and T. Bollinger,

The Quest data mining system, Proc. ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, Portland, Oregon (Aug. 1996),

244–249.

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts, On-line load bal-

ancing with applications to machine scheduling and virtual circuit rout-

ing, Proc. ACM Symp. on Theory of Computing, San Diego, California

(May 1993), 623–630.

[3] R. Bachrach and R. El-Yaniv, Online list accessing algorithms and their

applications: recent empirical evidence, Proc. ACM-SIAM Symp. on

Discrete Algorithms, New Orleans, Louisiana (Jan. 97), 53–62.

[4] A. Blum and C. Burch, On-line learning and the metrical task system

problem, Proc. Annual Workshop on Computational Learning Theory,

Nashville, Tennessee (July 1997), 45–53.

[5] A. Borodin and R. El-Yaniv, Online Computation and Competitive

Analysis, Cambridge University Press, Cambridge, United Kingdom (1998).

[6] A. Borodin, S. Irani, P. Raghavan and B. Schieber, Competitive paging

with locality of reference, Proc. ACM Symp. on Theory of Computing,

New Orleans, Louisiana (May 1991), 249–259.

[7] M. Chrobak, H. Karloff, T. Payne and S. Vishwanathan, New results on

server problems, SIAM J. Disc. Math. 4, 2(May 1991), 172–181.

[8] M. Chrobak and L.L. Larmore, An optimal on-line algorithm for k-

servers on trees, SIAM J. Computing 20, 1(1991), 144–148.

[9] D. Coppersmith, P. Doyle, P. Raghavan and M. Snir, Random walks on

weighted graphs and applications to on-line algorithms, J. Assoc. Com-

puting Machinery 40, 3 (July 1993), 421–453.

16

[10] L. Feng, H. Lu, Y.C. Tay and K.H. Tung, Buffer management in dis-

tributed database systems: A data mining approach, Proc. Conf. on

Extending Database Technology, Valencia, Spain (Apr. 1998), 246–260.

[11] A. Fiat and A.R. Karlin, Randomized and multipointer paging with lo-

cality of reference, Proc. ACM Symp. on Theory of Computing, Las

Vegas, Nevada (May 1995), 626–634.

[12] A. Fiat, R.M. Karp, M. Luby, L.A. McGoech, D.D. Sleator and N.E.

Young, Competitive paging algorithms, J. Algorithms 12, 4(Dec. 1991),

685–699.

[13] A. Fiat and M. Mendel, Truly online paging with locality of reference,

Proc. IEEE Annual Symp. on Foundations of Computer Science, Miami

Beach, Florida (Oct. 1997), 326–335.

[14] A. Fiat, Y. Rabani and Y. Ravid, Competitive k-server algorithms, Proc.

IEEE Annual Symp. on Foundations of Computer Science, St. Louis,

Missouri (Oct. 1990), 454–463.

[15] A. Fiat and Z. Rosen, Experimental studies of access graph based heuris-

tics: beating the LRU standard?, Proc. ACM-SIAM Symp. on Discrete

Algorithms, New Orleans, Louisiana (Jan. 1997), 63–72.

[16] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu,

A. Rajan, N. Stefanovic, B. Xia and O.R. Zaiane, DBMiner: A system

for mining knowledge in large relational databases, Proc. ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, Portland, Oregon

(Aug. 1996), 250–255.

[17] A.R. Karlin, M.S. Manasse, L.A. McGeoch and S. Owicki, Competitive

randomized algorithms for non-uniform problems, Proc. ACM-SIAM

Symp. on Discrete Algorithms, San Francisco, California (Jan. 1990),

301–309.

[18] A.R. Karlin, M.S. Manasse, L. Rudolph and D.D. Sleator, Competitive

17

snoopy caching, Algorithmica 3, 1(1988), 79–119.

[19] A.R. Karlin, S.J. Phillips and P. Raghavan, Markov paging, Proc. IEEE

Annual Symp. on Foundations of Computer Science, Pittsburgh, Penn-

sylvania (Oct. 1992), 208–217.

[20] E. Koutsoupias and C. Papadimitriou, On the k-server conjecture, Proc.

ACM Symp. on Theory of Computing, Montreal, Canada (May 1994),

507–511.

[21] M.S. Manasse, L.A. McGeoch and D.D. Sleator, Competitive algorithms

for on-line problems, Proc. ACM Symp. on Theory of Computing,

Chicago, Illinois (May 1988), 322–333.

[22] L.A. McGeoch and D.D. Sleator, A strongly competitive randomized pag-

ing algorithm, Algorithmica 6, 6(1991), 816–825.

[23] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufman,

San Mateo, California (1993).

[24] P. Raghavan and M. Snir, Memory versus randomization in on-line algo-

rithms, Proc. Int. Colloquium on Automata, Languages and Program-

ming, Stresa, Italy (July 1989), 687–703.

[25] D.D. Sleator and R.E. Tarjan, Amortized efficiency of list update and

paging rules, Commun. Assoc. Computing Machinery 28, 2(Feb. 1985),

202–208.

[26] K.H. Tung, Y.C. Tay and H. Lu, BROOM: Buffer replacement using

online optimization by mining, Proc. Int. Conf. on Information and

Knowledge Management, Bethesda, Maryland (Nov. 1998), 185–192.

[27] N. Young, On-line file caching, Proc. ACM-SIAM Symp. on Discrete

Algorithms, San Francisco, California (Jan. 1998), 82–86.

18

7 APPENDIX0BBBBBBBBBBBB�
0 1 2 3 4 5 6 7 80 0:00 0:45 0:00 0:55 0:00 0:00 0:00 0:00 0:001 0:00 0:00 0:00 0:58 0:00 0:00 0:00 0:00 0:422 0:31 0:69 0:00 0:00 0:00 0:00 0:00 0:00 0:003 0:00 0:00 0:00 0:00 0:00 1:00 0:00 0:00 0:004 1:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:005 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:02 0:986 1:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:007 0:00 0:00 0:35 0:00 0:62 0:03 0:00 0:00 0:008 0:00 0:47 0:00 0:00 0:00 0:00 0:53 0:00 0:00

1CCCCCCCCCCCCAFigure A.1 Sparse matrix S1 of Table 1.1 8 6 0 1 3 5 8 6 0 3 5 8 1 3 5 8 6 0 1 3 5 8 1 3 5 7 2 1 3 5 8 1 3 5 8 6 0 1 8 6 0 1 8 1 3 5 8 1 3 5 8 1Figure A.2 S1 generates a strong pattern.Request from = 2: 3Request from = 4: 5Request from = 7: 8Request from = 0:j Node 0 status = 0: 1 // this tree has depth 1 onlyj Node 0 status = 1: 0 // weaker patterns indue deeper treesRequest from = 1:j Node 0 status = 0: 1j Node 0 status = 1: 0 // how to read C4.5's deision tree:Request from = 3: // if the request is for node 3j Node 2 status = 0: 3 // then (a) if no server is at 2, then use server at 3j Node 2 status = 1: 2 // (b) else move the server from 2Request from = 5: // note: the tree is used only if no serverj Node 5 status = 0: 4 // is at the requested nodej Node 5 status = 1: 5 // so (a) is an invalid assignmentRequest from = 6: // and (b) will not put two servers at 3j Node 6 status = 0: 5j Node 6 status = 1: 6Request from = 8: // this tree always assigns a server from a neighboring nodej Node 8 status = 0: 7 // in agreement with d in Table 1j Node 8 status = 1: 8 // whih favors inremental movementsNote that C4.5 (appropriately) selets the request to be the root. However, the rest of the tree isunintuitive, sine the tree is mined from an o�ine optimum that \sees" future requests.Figure A.3 Deision tree from an optimum solution for a sequene generated with S1.
19

