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Abstract—Sampling is a well-known technique to speed up
architectural simulation of long-running workloads while main-
taining accurate performance predictions. A number of sam-
pling techniques have recently been developed that extend well-
known single-threaded techniques to allow sampled simulation
of multi-threaded applications. Unfortunately, prior work is
limited to non-synchronizing applications (e.g., server throughput
workloads); requires the functional simulation of the entire
application using a detailed cache hierarchy which limits the
overall simulation speedup potential; leads to different units of
work across different processor architectures which complicates
performance analysis; or, requires massive machine resources to
achieve reasonable simulation speedups.

In this work, we propose BarrierPoint, a sampling methodol-
ogy to accelerate simulation by leveraging globally synchronizing
barriers in multi-threaded applications. BarrierPoint collects
microarchitecture-independent code and data signatures to de-
termine the most representative inter-barrier regions, called
barrierpoints. BarrierPoint estimates total application execution
time (and other performance metrics of interest) through detailed
simulation of these barrierpoints only, leading to substantial
simulation speedups. Barrierpoints can be simulated in parallel,
use fewer simulation resources, and define fixed units of work
to be used in performance comparisons across processor archi-
tectures. Our evaluation of BarrierPoint using NPB and Parsec
benchmarks reports average simulation speedups of 24.7× (and
up to 866.6×) with an average simulation error of 0.9% and
2.9% at most. On average, BarrierPoint reduces the number of
simulation machine resources needed by 78×.

I. INTRODUCTION

Simulation is the de facto experimental methodology in
architecture research and development. Virtually all research or
development projects involve some form of architectural sim-
ulation. Architectural simulation, unfortunately, is extremely
time-consuming. Depending on the level of detail at which a
target architecture is being simulated, simulation incurs slow-
downs compared to real hardware execution by at least four
orders of magnitude, and in case cycle-accurate simulation
is employed, up to six orders of magnitude. This simulation
speed gap is widening as the target architectures employ more
and more cores, while relying on single-threaded simulators.

Sampling is a widely used technique to dramatically reduce
simulation time by simulating a select number of sampling
units in detail and extrapolating the results for the entire work-
load execution. Sampled simulation is a mature technology
for single-threaded workloads running on individual cores,
and different approaches have been proposed for determining
representative sampling units: random [8], periodic [26], and

through program analysis [20]. Sampled simulation for multi-
threaded workloads on the other hand is much less mature and
substantially more complicated.

The fundamental problem in sampled simulation for multi-
threaded workloads is to make sure all threads are aligned
(i.e., all threads are at the same point in their execution)
at the beginning of each sampling unit as if we were to
simulate the entire execution up until the sampling unit. This
is non-trivial because of how slight timing variations during
the execution may affect per-thread progress either through
synchronization behavior (e.g., locking) or resource sharing
(e.g., shared caches, off-chip bandwidth, interconnection net-
work, etc.). Moreover, making sure the same thread alignment
occurs across microarchitectures is even more problematic.

Some classes of multi-threaded workloads do not pose
this fundamental problem. For example, commercial server
throughput workloads can be accurately sampled by randomly
selecting sampling units [25]. This principle more generally
applies to multi-threaded workloads in which the individual
threads do not synchronize [10]. However, synchronizing
multi-threaded applications are more challenging to sample for
the reason mentioned above. Recent work proposed time-based
sampling for synchronizing multi-threaded workloads [2], [7],
which simulates X units of time in detail every Y units of
time, and estimates per-thread progress in-between sampling
units. The fundamental limitation of time-based sampling is
twofold. It requires functional simulation of the entire program
execution to determine the sampling units, which limits the
amount of speedup that can be achieved through sampling.
In addition, it leads to different sampling units being selected
across different simulated processor architectures, which com-
plicates performance analysis.

Barrier-synchronized multi-threaded applications are an im-
portant subset of synchronizing parallel workloads, especially
in the high-performance scientific computing and data-parallel
workload domains, for which this fundamental problem in
sampling can be overcome by selecting sampling units using
barrier semantics. Barriers denote points of global synchro-
nization in the applications at which all threads are naturally
‘aligned’, i.e., all threads re-start the execution at the same
time once the barrier is reached by all threads. Bryan et
al. [5] leverage this observation to speed up simulation of
barrier-synchronized applications by simulating multiple inter-
barrier regions in parallel on a cluster of simulation ma-
chines. This approach requires massive simulation resources to
achieve substantial simulation latency reductions. Additionally,



because the number of simulations to be performed inevitably
outstrips the supply of available machines, maximizing overall
simulation throughput becomes the overall goal. The only way
to make faster progress is to improve the total simulation
throughput across the entire parameter and benchmark space.
Bryan et al. does not solve this critical issue: it only reduces
latency of an isolated simulation run, but it does not reduce the
number of resources required nor overall simulation through-
put when many simulations need to be run.

In this work, we propose BarrierPoint, a methodology
for sampled simulation of barrier-synchronized multi-threaded
machines that simulates a select number of representative
inter-barrier regions, called barrierpoints, and predicts total
application execution time (and other metrics of interest) from
these barrierpoints. BarrierPoint computes code and memory
access signatures for all inter-barrier regions, clusters regions
based on these signatures, and then selects a single represen-
tative region, called a barrierpoint, per cluster. Barrierpoints
are selected in a microarchitecture-independent way, and can
therefore be used across processor architectures. BarrierPoint
overcomes several major limitations in prior work. (i) It does
not require functional simulation of the entire application as
in time-based sampling; barrierpoints can be simulated in
parallel. (ii) It leads to well-defined and fixed units of work
— unlike time-based sampling — which facilitate comparisons
across microarchitectures. (iii) It requires far less (one to three
orders of magnitude fewer) simulation resources while achiev-
ing similar simulation speedups compared to the approach by
Bryan et al. [5].

Specifically, we make the following contributions in this
paper:

• We propose a methodology for selecting representa-
tive, microarchitecture-independent inter-barrier regions
in barrier-synchronized multi-threaded applications for
sampled simulation. Barrierpoints enable microarchitec-
tures and processor architectures (including different core
counts) to be compared through sampled simulation using
well-defined and fixed units of work.

• We propose a method to extrapolate and estimate total ap-
plication execution time, and other performance metrics
of interest, from this select set of barrierpoints.

• We explore different methods for characterizing inter-
barrier regions and find that signatures that incorporate
both code and data behavior are most accurate at identi-
fying representative barrierpoints.

• We evaluate the BarrierPoint methodology using a set
of NPB and Parsec benchmarks on 8 and 32-core ma-
chines, and report average speedups of 24.7× (maximum
speedup of 866.6×) while maintaining an average error of
0.6% and maximum error of 2.8%. BarrierPoint reduces
the number of simulation machine resources needed by
78× on average, compared to simulating all inter-barrier
regions.

• We propose an easy-to-implement, fast and accurate
cache warmup technique for multi-threaded sampling that
incurs a combined sampling and warmup error of 0.9%
on average and 2.9% at most.
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Fig. 1. Total number of dynamically executed barriers.

II. MOTIVATION AND KEY IDEA

Multi-threaded applications have been developed as a way
to take advantage of the growing numbers of cores available
in current machines. Prior work [2], [7] has shown that,
as in single-threaded workloads, redundancy exists in the
behavior of multi-threaded applications which allows detailed
simulation of only part of the workload to be extrapolated to
accurately predict execution time of the complete application.
However, the only available techniques for accurate sam-
pled simulation of synchronizing multi-threaded applications
required functional simulation of the complete application,
which limits the simulation speedup that can be obtained
through sampling. In contrast, implementations of the popular
SimPoint [20] and SMARTS [26] methodologies for sampled
simulation of single-threaded applications are able to load the
application’s architected state at the start of each sampling
unit from a checkpoint [22], [24]. This makes simulation of
each sampling unit completely independent and potentially
parallelizable, and negates the need for functional simulation
of the complete application.

In synchronizing multi-threaded applications, however, it
is not known a priori at what rate the execution of each
individual thread will progress. Therefore, a checkpoint of
architected state taken at a random time during execution of
the application does not necessarily represent a valid situation
that would occur when executing the same application on a
different microarchitecture. Global synchronization barriers,
on the other hand, represent points in each thread’s instruction
stream that denote a common point in time, and are therefore
safe points at which a checkpoint can be taken. Figure 1 counts
the number of barriers encountered during the execution of
a number of applications in the NPB and Parsec benchmark
suites. As is common for many data-parallel workloads, which
are typically written in a structured manner using fork-join
parallelism or other paradigms that lead to bulk-synchronous
behavior, the absolute number of barriers is large, up to several
1000s in this case. Moreover, the number of barriers present
remains constant even when changing the number of threads.
This suggests that sections of code in between global barriers
can be used as independent units of work.

By simulating an application separated into a number of
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Fig. 2. The BarrierPoint methodology flow diagram.

inter-barrier regions in parallel, it is now possible to speed up
simulation of an entire program. Assuming that a large enough
amount of simulation resources are available, one can reduce
the latency of executing a single application [5].

Taking this one step further, if we are able to classify — and
therefore merge — similar inter-barrier regions into a single
representative region, we could further reduce the number of
computing resources required to obtain these speedups. We
will call these representative regions barrierpoints, akin to
simpoints, their single-threaded, instruction-delineated coun-
terparts following the SimPoint [20] methodology. The final
step that is required is to provide the warmup data for
each barrierpoint. The end result is a complete simulation
methodology that takes advantage of the ability to parallelize
multi-threaded applications at a barrier-by-barrier granularity.
With BarrierPoint, we have developed a methodology that
allows for existing applications, without modification, to be
simulated in parallel, using fewer simulation resources. Using
global instruction count as a proxy for the amount of work in a
simulation, we demonstrate a minimum, harmonic mean, and
maximum speedup of 10.0×, 24.7× and 866.6×, respectively.

III. BARRIERPOINT METHODOLOGY

The BarrierPoint methodology (See Figure 2) provides a
practical flow from a barrier-synchronized application to an
estimation of performance metrics such as execution time or
cache miss rates with a significant reduction in simulation
time. The steps in the methodology include a one-time step
where characteristics that represent inter-barrier regions of the
application are collected, and clustering of the representative
regions into barrierpoints for simulation occurs. These barri-
erpoints, together with the warmup data for each simulation
is used to simulate each barrierpoint in parallel. The final
step is to reconstruct the performance metrics based on the
representative barrierpoint simulation results. In the following
sections, we will provide a detailed overview of each step in
the methodology.

A. Barrier Region Similarity Metrics

Through the use of barriers, we have the ability to compare
the instructions executed inside of inter-barrier regions for
similarity. There are a number of different ways to classify
the similarity between regions.

1) Basic Block Vectors: Traditionally, Basic Block Vectors
(BBVs) [20] from fixed-instruction-length regions have been
used as a way to easily classify or cluster regions of single-
threaded applications. A basic block vector is a vector with an
entry for the dynamic instruction count for each basic block
in an application. During program execution, the number of
instructions executed from each basic block is counted. After
the completion of this region, the basic block vector is saved
and a new vector is started for the following region. These
BBVs form its fingerprint, or summary of the instructions that
have executed during that region. Prior work has shown that
BBVs relate strongly to region performance [14]. Therefore,
by comparing the BBVs across inter-barrier regions, we can
match the different regions to determine performance similar-
ities for each application region.

2) LRU stack distance: LRU stack distance histograms [16]
are another metric that can be used to classify program
behavior. The LRU stack distance is the number of unique
address accesses that occur between two accesses to the same
address. A histogram of these distance numbers represents a
memory history footprint of a particular region of an appli-
cation, and have been previously used to automatically detect
phases in an application [19], as changes in the LRU stack
distance profile is a way to evaluate the changing data reuse
patterns of an application. LRU stack distances can therefore
also be used for region classification. The intuition behind
using LRU stack distances is that dynamic instruction regions,
even though they are executing the same code and have the
same BBV footprint, could experience different cache access
latencies because of micro-architectural state. One example
of this is the well-known cold-start effect, where the first few
iterations of an application exhibit different progress than later,
but BBV-similar, phases. Our goal, therefore, is to improve
the accuracy of BBVs by combining them with LRU stack
distance information when performing BarrierPoint clustering.
To collect LRU stack distance information for the BarrierPoint
methodology, we keep track of the reuse distances for each
region of the application as it runs. The LRU stack distance
data is stored in a power-of-two histogram, where we keep
track of the frequency of each of the LRU stack distance
accesses for each inter-barrier region. We will further refer
to this histogram as the LRU stack distance vector (LDV).

3) Signature Vectors: To make an abstraction of the exact
metric that is used, we define the Signature Vector (SV) as a
representation of a region’s phase behavior. Functionally, the
Signature Vector consists of indices representing application
characteristics, and the value of a vector element is the quantity
or weight of that characteristic. In Section VI, we explore the
clustering obtained by SVs consisting of BBV information
only, LRU stack distance vectors (LDVs) only, and SVs that
contain a combination of both. When both types of metrics
are used, the BBV and LDV are normalized individually and
then concatenated into a single, longer vector.

In addition, we evaluate the use of a weighing function to
the LRU stack distance counters. Conceptually, longer stack
distances will correspond to memory accesses that hit further
away in the memory hierarchy and therefore have a larger
impact on application performance. When comparing two



regions with the aim of clustering them by having similar
performance, we therefore want to give more importance to
long-latency accesses. We will show results for unweighted
distances, and variants where those elements corresponding
to a distance of 2n . . . 2(n+1) − 1 are weighted by 2n/v , for
different values of v.

4) Multi-threaded SVs: Both BBVs and LDVs are initially
collected for each inter-barrier region on a per-thread basis. To
combine these per-thread metrics into a single SV, two options
are possible. One option is to sum the vectors, aggregating data
from different threads into the same vector element. A second
option is to concatenate vectors for each thread into a longer
vector. This second option separates the behavior for each of
the threads.

When threads behave in a homogeneous manner, both
options will be equivalent. But, if threads have different
behavior, a concatenated vector will expose these differences
to the clustering phase which allows the relevant regions to be
separated into different clusters. We therefore choose to use
concatenation for combining SVs of different threads.

B. Region Clustering

To automatically determine the similarity among regions,
we employ clustering. The first step is to normalize the SVs
to allow the clustering phase to ignore each region’s length,
and to cluster regions based on their intrinsic characteristics.
To reduce the computational demands of the clustering pro-
cess, the dimensionality of the SVs is then reduced through
random linear projection into 15 dimensions. In addition to
the normalized SV, the region clustering process will use the
region lengths, in aggregate number of instructions across
cores, to weigh different regions such that more emphasis
can be placed on those regions that represent a large fraction
of total execution time. We then perform weighted k-means
clustering on the randomly projected SVs to determine a
reduced set of representative regions. When within a cluster
multiple regions of similar characteristics but different length
occur, weighing by instruction count will favor longer-running
regions both in determining the cluster center, and in choosing
the representative region.

Signature vector normalization, random projection and k-
means clustering are compatible with the implementation of
SimPoint [13] for variable-length regions. We are therefore
able to leverage the existing SimPoint infrastructure when
implementing BarrierPoint.

C. Detailed Region Execution

After we have defined the representative regions of the ap-
plication, detailed simulation of each barrierpoint will provide
the necessary information required to rebuild the application’s
execution time. Before detailed simulation can be started,
both architected and microarchitectural state must be properly
initialized. As the region starts with a barrier, it is possible
to store the program’s architected state in a checkpoint in
a consistent manner across threads. Alternatively, functional
simulation or direct execution can be used to fast-forward an
application up to the barrier that marks the start of the region.
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Fig. 3. Aggregate application IPC (above), reconstructed IPC (middle) and
the selected barrierpoints (below) for npb-ft using the class A input set on
32-cores. (Non-significant barrierpoints are omitted for clarity.)

With respect to microarchitectural state, care must be taken
to ensure caches are warmed sufficiently before the start of the
detailed simulation. Several warmup options are possible and
are compatible with the BarrierPoint methodology, see Sec-
tion IV for an overview of existing techniques, and the method
used in our evaluation of BarrierPoint. Since barrierpoints are
usually long (in the order of millions of instructions), detailed
core or branch predictor warmup is not normally required.

D. Whole-Program Runtime Reconstruction

As variable-length barrierpoints are used as the basis for
the identification of common regions, we need to add an
additional step to properly map these representatives to each
region to compute overall application execution time. This
step is not required for the original SimPoint methodology as
they are using fixed-length representative regions to determine
application CPI, which in turn, can be used as a proxy for
single-threaded application execution time. In contrast, the
BarrierPoint methodology may cluster inter-barrier regions
of differing lengths. Yet, as the clustering phase guaranteed
that these regions have the same behavior, we can assume
that their performance characteristics (when expressed as per-
instruction metrics, e.g., cycles per instruction (CPI), cache
misses per 1000 instructions (MPKI), etc.) are constant. We
can therefore rebuild the original application by concatenating
scaled (by relative global instruction count) versions of each
barrier’s representative region. We call the sum of scaling
factors from each barrierpoint its multiplier. Put another way,
the sum of the instruction counts from all of the inter-barrier
regions that are represented by the barrierpoint is equal to the
instruction count of the barrierpoint times the multiplier. This
can be written as

∑m
i=1 insncounti = insncountj · multj ,

where m is the number of regions that are represented by the
jth barrierpoint. To calculate a metric of interest, we sum,
over each barrierpoint, the metric weighted by the multiplier,
metricapp =

∑n
j=1 metricj · multj , where metricj and

multj are the metric and multiplier, respectively, for the jth
barrierpoint out of a total of n barrierpoints.



Component Parameters
Processor 1 and 4 sockets, 8 cores per socket
Core 2.66 GHz, 4-way issue, 128-entry ROB
Branch predictor Pentium M (Dothan) [21], 8 cycles penalty
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache 8 MB per 8 cores, 16 way, 30 cycle
Main memory 65 ns access time, 8 GB/s per socket

TABLE I
SIMULATED SYSTEM CHARACTERISTICS.

An example is provided in Figure 3 for npb-ft. The top
graph plots aggregate IPC over time for the original, unsam-
pled application. The bottom graph shows the different phases,
and the result of the clustering step. The representatives for
each region are marked in dark gray. The middle graph shows
IPC as rebuilt by concatenating each region’s representative.
Aside from small differences, the representative is almost
identical to the original.

IV. MICRO-ARCHITECTURAL STATE RECONSTRUCTION

There are a large number of micro-architectural warmup
options available today [3], [9], [11], [22], [24]. Nevertheless,
selecting a warmup strategy that is flexible, non-intrusive to the
simulator and has a high speedup can be difficult. We propose
a middle-ground for multi-threaded simulation cache warmup
that maintains its speed and flexibility, while maintaining
accuracy and being non-intrusive.

The two main micro-architectural warmup strategies are
checkpointing and functional cache replay. Checkpointing
tends to be the fastest warmup strategy as one only needs
to load the amount of data that represents the state of
the machine. But it tends to either be the least flexi-
ble, as naive checkpoints require a state snapshot for each
micro-architecture and application combination, or require
coherency-specific knowledge for accurately rebuilding the
cache state. A more flexible but slower method is to run a
functional simulation while updating microarchitecture state
(e.g., issue memory requests to the cache hierarchy using a
simple core timing model). This has the disadvantage that
the execution time overhead is proportional to the number of
instructions during the warmup period.

Instead of either of these extremes, we extended prior
work [9], [24] that saves and then replays only the most
recent unique address access requests. We first dynamically
instrument an application and run them at near-native speeds
(using a Pintool with only a 20× to 30× slowdown compared
to native execution) to capture the most recently used data on
a per-core basis. Each core keeps track of its most-recently
used cache lines with a total capacity equal to the size of the
shared LLC. Next, each thread replays their most recent access
data in execution order to restore the state of the caches. The
result is a significant reduction in simulated warmup replay
time, as the size of the replayed cache state is on the order
of the total LLC cache size and not based on the number of
dynamically executed instructions up to this point.

Parameter Value
-dim (number of projected dimensions) 15
-maxK (maximum number of clusters) 20
-fixedLength (clusters are not normalized) off
-coveragePct (percent coverage) 1 (100%)

TABLE II
SIMPOINT PARAMETERS. DEFAULT VALUES USED FOR THOSE OPTIONS

NOT SPECIFIED.

V. EXPERIMENTAL SETUP

In this work, we are using a modified version of the Sniper
multi-core simulator [6], version 5.0, updated with a cycle-
level core model. Each processor socket that we model is
an octo-core processor with a three-level cache hierarchy, in
which the L1 and L2 caches are private per core, and the last-
level L3 cache is shared among all cores. Each core is 4-wide
superscalar running at 2.66 GHz. We simulate both single-
socket and four-socket shared-memory machines; we assume
an MSI directory cache coherency protocol. See Table I for
the main characteristics of the simulated machines.

The benchmark suites used in this paper are the NAS
Parallel Benchmarks (NPB) version 3.3 with OpenMP par-
allelization (class A inputs) [12], and the PARSEC 2.1 bench-
mark suite (simlarge inputs) [4]. Of the 10 NAS Parallel
Benchmarks, three were not used. We are unable to run the
npb-dc (data cube) benchmark in our simulator because
it produces a lot of output data that needs to be written
to a hard drive; Sniper is a user-level simulator and does
not model HDDs, for which reason it cannot accurately run
the npb-dc benchmark. The npb-ua (unstructured adaptive
mesh) benchmark generates a very large number of barriers
which makes it difficult to analyze. Our current BarrierPoint
implementation cannot handle that many inter-barrier regions.
There is no fundamental reason to believe that BarrierPoint
cannot be applied to this benchmark, however, it might need
an extension to filter or combine regions before processing by
the BarrierPoint methodology; we leave this for future work.
Finally, npb-ep is an embarrassingly parallel benchmark,
that only contains a single region between barriers. This type
of workload does not apply to the BarrierPoint methodology.
From Parsec, we use the parsec-bodytrack benchmark,
as it is one of the three barrier-synchronized benchmarks
that uses the OpenMP infrastructure. The other two bench-
marks use pthread-based barrier synchronization. The current
BarrierPoint implementation works with OpenMP-parallelized
applications only, however, this is not a fundamental limitation
to the methodology, and it should therefore be applicable for
pthread barrier-synchronized applications as well.

Only the parallel Region of Interest (ROI) of each appli-
cation is included in our timing measurements. We do not
consider the serial fractions of these benchmarks; sampled
simulation of sequential code running on individual cores
has been studied extensively in prior work and is considered
mature.

Other methodological settings are as follows. We use the
passive OpenMP wait policy for thread synchronization, which
specifies that waiting threads do not consume CPU resources.
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All benchmarks were compiled with GCC 4.3 for x86-64
with SSE and SSE2 extensions enabled. BBV and LRU
stack distance profiles of inter-barrier regions are collected
using a custom Pintool [15]. We use the SimPoint clustering
software version 3.2 for identifying representative inter-barrier
regions. Non-default parameters used for SimPoint are listed
in Table II.

VI. RESULTS

A. Barrierpoint selection

We start by evaluating the barrierpoints selection first.
We do this by assuming perfect warmup in order to isolate
the error due to barrierpoint selection. (We will evaluate
the error due to warmup in Section VI-B.) This is done
by running the simulation of the entire benchmark once
and by recording performance metrics on an inter-barrier
region granularity. We determine the barrierpoints as described
before using microarchitecture-independent signatures, and
pick the performance metrics for the barrierpoints from the
full benchmark simulations to reconstruct total application
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Fig. 6. Barrierpoint selection cross-validation. Results for 8 and 32-core
runs are interchangeable, and therefore we can use the same regions as
representative regions.

execution time. Because all of the inter-barrier regions have
a perfectly warmed up microarchitecture state, this approach
thus evaluates barrierpoints selection in isolation. Comparing
the estimated application execution time against the measured
execution time for the full benchmark execution yields a metric
for the accuracy of the barrierpoints selection.

Figure 4 quantifies the error of the BarrierPoint methodol-
ogy assuming perfect warmup for (left graph) estimating total
application execution time, and (right graph) LLC miss rate,
or the number of memory accesses per thousand instructions
(APKI). Accuracy is high for both metrics with an average
absolute error of 0.6% (max error of 2.8%) for predicting
application execution time, and an average absolute error of
0.1% (max error of 0.6%) for predicting the number of mem-
ory accesses per kilo instructions. Without barrierpoint scaling
(where inter-barrier code regions are similar, but instruction
counts differ; see Section III-D for details), the average error
increases significantly from 0.6% to 19.4%. Overall, these
results demonstrate the high accuracy of the barrierpoints
selection strategy as well as the reconstruction mechanism for
estimating total application execution time and performance



num insignificant
barrierpoints,

input num total num significant combined multiplier,
Application size cores barriers barrierpoints and total weight barrierpoint number and multiplier
npb-bt A 8 1001 11 3 / 12.0 / 8.9e-04 3 (1.0) 144 (190.0) 172 (100.0) 407 (46.0) 448 (98.0)

463 (48.0) 521 (200.0) 537 (54.0) 595 (10.0) 980 (189.0)
993 (53.0)

32 1001 11 4 / 13.0 / 9.2e-04 195 (10.0) 196 (100.0) 199 (189.0) 220 (189.0) 327 (46.0)
408 (100.0) 552 (65.0) 733 (100.0) 771 (100.0) 787 (54.0)
802 (35.0)

npb-cg A 8 46 3 7 / 29.1 / 4.4e-04 0 (1.0) 15 (12.0) 21 (2.0)
32 46 3 5 / 28.3 / 5.0e-04 3 (4.0) 6 (7.0) 30 (4.0)

npb-ft A 8 34 9 3 / 7.0 / 1.5e-05 0 (1.0) 1 (1.0) 2 (1.0) 3 (1.0) 11 (3.0)
15 (6.0) 19 (6.0) 26 (3.0) 28 (5.0)

32 34 9 3 / 7.0 / 1.7e-05 0 (1.0) 1 (1.0) 2 (1.0) 3 (1.0) 16 (3.0)
25 (6.0) 28 (5.0) 29 (6.0) 31 (3.0)

npb-is A 8 11 10 1 / 1.0 / 5.9e-07 0 (1.0) 1 (1.0) 2 (1.0) 3 (1.0) 4 (1.0)
5 (1.0) 6 (1.0) 7 (1.0) 8 (1.0) 9 (1.0)

32 11 10 1 / 1.0 / 7.0e-07 0 (1.0) 1 (1.0) 2 (1.0) 3 (1.0) 4 (1.0)
5 (1.0) 6 (1.0) 7 (1.0) 8 (1.0) 9 (1.0)

npb-lu A 8 503 7 1 / 2.0 / 8.8e-05 60 (10.0) 98 (68.0) 122 (53.0) 195 (250.0) 222 (16.0)
282 (56.0) 332 (47.0)

32 503 2 0 / 0.0 / 0.0e+00 11 (250.1) 276 (250.0)
npb-mg A 8 245 8 0 / 0.0 / 0.0e+00 2 (2.0) 52 (4.6) 57 (9.0) 116 (4.6) 123 (4.6)

179 (4.6) 182 (17.6) 230 (4.7)
32 245 10 5 / 112.2 / 9.8e-04 2 (2.0) 50 (4.8) 51 (4.6) 63 (4.0) 112 (4.6)

116 (4.0) 117 (9.0) 179 (4.6) 185 (4.6) 238 (13.0)
npb-sp A 8 3601 16 2 / 2.0 / 3.5e-04 0 (1.0) 159 (400.0) 238 (137.0) 607 (91.0) 1111 (56.0)

1478 (399.0) 1813 (51.0) 1948 (65.0) 1970 (20.0) 1976 (399.9)
2169 (399.0) 2465 (379.9) 2595 (399.9) 2746 (399.9) 3004 (202.0)
3319 (198.0)

32 3601 12 0 / 0.0 / 0.0e+00 502 (400.0) 784 (94.0) 850 (400.0) 955 (200.0) 964 (106.0)
2069 (400.0) 2157 (21.0) 2643 (379.0) 3360 (400.0) 3456 (400.0)
3497 (400.0) 3584 (400.0)

parsec-bodytrack large 8 89 13 1 / 1.0 / 5.4e-04 12 (1.0) 21 (3.0) 25 (7.0) 29 (16.0) 39 (16.0)
40 (5.0) 60 (2.0) 62 (8.0) 72 (9.0) 74 (12.0)
77 (4.0) 80 (4.1) 87 (1.0)

32 89 7 1 / 1.0 / 5.4e-04 6 (16.0) 30 (12.0) 32 (16.0) 39 (16.0) 65 (4.0)
77 (4.0) 86 (19.5)

TABLE III
APPLICATIONS, INPUT SIZES USED, TOTAL NUMBER OF DYNAMICALLY EXECUTED BARRIERS, SIGNIFICANT AND INSIGNIFICANT BARRIERPOINT

INFORMATION AND THE SELECTED BARRIERPOINTS AND THEIR MULTIPLIERS. NOTE THAT BECAUSE OF SCALING A BARRIERPOINT CAN REPRESENT A
FRACTION OF ANOTHER INTER-BARRIER REGION AND THEREFORE MULTIPLIERS DO NOT NECESSARILY SUM TO THE TOTAL NUMBER OF REGIONS.

metrics from a select number of barrierpoints.

1) Similarity and clustering metrics: We now explore the
effect of a number of BarrierPoint parameters on accuracy.
Figure 5 quantifies average error rates for predicting appli-
cation execution time for different similarity methods and
clustering parameters. We evaluate the impact of the maximum
number of barrierpoints selected (maxK) on overall accuracy.
We also consider signature vectors consisting of BBVs only,
LDVs only, and combined BBV-LDVs. In addition, we also
consider weighted LDVs, as previously described in Sec-
tion III-A3, where 1/v is 1/1, 1/2 and 1/5 as indicated in
the figure. There are several interesting observations to be
made here. First, a single barrierpoint yields poor accuracy
but accuracy generally improves with an increasing number
of barrierpoints. This makes intuitive sense as more regions
are being simulated in detail and used to predict overall
performance. It also illustrates the widely varying execution
characteristics of inter-barriers regions in these workloads.
Second, combined signature vectors that characterize both
code and data memory access behavior yield the highest pos-
sible accuracy, especially with larger numbers of barrierpoints.
Weighted LDVs improve accuracy only slightly when used in
combined signature vectors; hence, we consider unweighted
LDVs (1/v = 1) in our default setting. The highest accuracy
is achieved with combined signature vectors and a maxK of 20,

which is the default setting used throughout the paper unless
mentioned otherwise.

2) Barrierpoints: A key feature of the BarrierPoint method-
ology is to provide an easy to use model for sampled
simulation. The output of the methodology is a number of
select, representative barrierpoints used for detailed simulation
along with their multipliers which enables estimating total
application execution time. Table III lists the significant bar-
rierpoints for each of the benchmarks used in this study. The
summary details for insignificant barrierpoints are defined as
barrierpoints with a contribution of less than 0.1%. Across
the benchmarks used, the number of selected barrierpoints is
quite small, ranging between 2 and 16, and two to three orders
of magnitude smaller than the total number of dynamically
executed barriers. Note that because of instruction scaling as
described in Section III-D, inter-barrier regions can be larger
or smaller than similar ones, meaning that the multipliers do
not necessarily sum to the total number of regions.

3) Barrierpoints across architectures: In Figure 6 we
present the core cross-validation results. Here we can see
that results from an 8-core BarrierPoint run produce similar
accuracy numbers compared to the results from the 32-core
BarrierPoint similarity generation. This demonstrates that for
the OpenMP barrier runtime, the unit of work remains the
same across core counts.
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Fig. 7. Percent absolute error for predicting application execution time (left) and absolute DRAM APKI difference (right) across all benchmarks using the
BarrierPoint methodology, with unique warmup.
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Fig. 8. Relative scaling results: estimating 8-core versus 32-core speedup.

Note that the BarrierPoint methodology requires taking a
default thread (or core) count to collect the statistics that serve
as input to the analysis. This is why Table III lists different
barrierpoints for different core counts. However, barrierpoints
can be reliably used across core counts (as long as the number
of executed barriers does not depend on thread count). This
is quantified in Figure 6 which shows accuracy results for
using the barrierpoints determined with 8 threads on a 32-
core system, and, vice versa, barrierpoints determined with 32
threads on an 8-core system. The key conclusion from this
graph is that barrierpoints can be transferred across processor
architectures, and hence form well-defined, fixed units of work
that can be reliably used to compare processor architectures.

B. Warmup

In our evaluation up to this point, we have assumed perfect
state warmup, which is an idealized situation. Typically when
using BarrierPoint, one will need to warm up the microar-
chitectural state prior to detailed simulation of a barrierpoint.
Figure 7 quantifies prediction error for application execution
time (left graph) and the number of memory accesses per
instruction (right graph). In spite of the simplicity of the
proposed warmup technique, we find it to be quite accurate
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Fig. 9. Achieved speedups for each benchmark with the BarrierPoint
methodology. The serial speedup results from back-to-back execution of
barrierpoints and represents the reduction of required simulation resources.
The parallel speedup results from a parallel simulation of barrierpoints and
shows the simulation latency reduction assuming sufficient server resources.

for determining application performance metrics. The exe-
cution time prediction error increases only slightly to 0.9%
on average and 2.9% at most. The error due to incorrect
warming is higher for 32 cores than for 8 cores (compare
Figure 7 to Figure 4 which assumed perfect warmup): this
is due to the larger total cache capacity (32MB versus 8MB)
and performance prediction being more sensitive to accurate
warmup for larger caches.

C. Relative accuracy

Up to this point, we have been concerned with estimating
performance in a single processor architecture design point.
However, architects are often more interested in predicting
relative performance between two design points. Figure 8
quantifies the accuracy of BarrierPoint for predicting the
relative performance difference between two design points,
namely the 8-core versus the 32-core system. BarrierPoint’s
accuracy is very high for relative performance trends. Three
of the benchmarks exhibit superlinear speedups, with npb-cg



as the most notable example, the reason being cache effects
(32MB LLC in the 32-core system versus 8MB in the 8-core
system).

D. Simulation speedup

Figure 9 quantifies the simulation speedups for the Barrier-
Point methodology across different core counts for the NPB
and Parsec benchmark suites. Speedups are defined as the
reduction in aggregate instruction count. The serial speedup
is the reduction in required resources, and can be thought of
as the speedup when running each barrierpoint back-to-back
in serial. The parallel speedup results when all barrierpoints
are run in parallel with sufficient machine resources. Using the
BarrierPoint methodology, our results show a (harmonic) mean
parallel speedup of 24.7× and a maximum parallel speedup of
866.6×. Along with application performance improvements,
we see an average reduction of 78× in the number of machine
resources required for simulation.

VII. RELATED WORK

A. Single-Threaded Sampling

The SimPoint [20] methodology clusters large intervals, on
the order of 100M instructions, using BBVs and machine
learning (cluster analysis) to identify representative chunks of
an application in a microarchitecture-independent way. The
SMARTS [26] methodology and Conte et al. [8] construct
a sample consisting of a large number of sampling units of
a relatively small number of instructions per sampling unit.
These approaches are unable to accurately estimate run-time
of synchronized multi-threaded applications.

B. Multi-Threaded Sampling

Ekman et al. [10] propose matched-pair comparison as a
way to reduce sample size for multi-threaded workloads, but
show that synchronized applications do not see a significant
sample size reduction with their technique.

Wenisch et al. [25] propose Flex Points as a way to
increase simulator performance for multi-threaded commercial
workloads. Van Biesbrouck et al. [23] propose the Co-Phase
Matrix as a reduction technique for multi-program workloads.
Both of these techniques depend on the fact that each thread
is independent. Explicit thread synchronization violates their
assumptions.

Perelman et al. [17] extend the SimPoint methodology
to parallel workloads via instruction-based sampling. Recent
work [2], [7] has shown however that instruction-based sam-
pling is inaccurate for multi-threaded workloads that employ
active or idle waiting due to synchronization. Furthermore,
application IPC is an inappropriate metric for multi-threaded
workloads [1]. BarrierPoint, instead, predicts total application
execution time, and uses both code and data memory signa-
tures to identify representative barrierpoints.

Time-based sampling of multi-threaded applications, pro-
posed both by Ardestani et al. [2] and Carlson et al. [7],
allows for accurate sampled simulation of synchronizing

multi-threaded applications. By extrapolating time during fast-
forwarding phases, and taking care to keep thread interactions
through synchronization and shared memory intact, execution
time can be accurately predicted. These approaches suffer from
two major limitations, which we overcome with BarrierPoint.
First, it requires functional simulation of the entire program
execution and in addition requires the memory hierarchy to
be warmed in between sampling units. In contrast, Barrier-
Point can leverage checkpointing to allow barrierpoints to be
simulated independently and in parallel, and does not require
functional simulation and cache warming of the complete
benchmark execution. Second, time-based sampling can lead
to the creation of different samples across processor archi-
tectures which may complicate performance analysis. Barri-
erPoint overcomes this limitation by proposing well-defined,
fixed units of work in a microarchitecture-independent way.

C. Simulation parallelism

Simulation latency can be improved by exploiting paral-
lelism in the units of work that need to be simulated. For
example, both SimPoint and SMARTS have proposed check-
pointing techniques to simulate each sampling unit indepen-
dently and in parallel [22], [24]. Bryan et al. [5] demonstrates
the potential speedup when executing multiple inter-barrier
regions in parallel, provided that massive simulation resources
are available. Our work takes this work one step further by
reducing the number of inter-barrier regions to be simulated
in detail, which dramatically reduces the number of simulation
machines needed. This improves overall time-to-discovery
while being able to accurately predict total application exe-
cution time from the selected of barrierpoints.

D. Warmup

The cold-start problem is a well-known problem in sampled
simulation. No-State-Loss (NSL) [9] and Live-points [24]
propose the playback of unique addresses in the memory
hierarchy to warm up cache state prior to each sampling
unit, and apply it to single-threaded workloads running on
single-core systems. MRRL [11] uses the distribution of reuse
distances to determine how far to go back prior to the sampling
unit to warm up caches. We extend these methods to support
multi-threaded workloads and multi-core cache hierarchies by
replaying an amount of data equal to the largest last-level
cache visible to each core.

Van Biesbrouck et al. [22] propose a warmup method,
memory hierarchy state (MHS), that uses a snapshot of the
largest cache to be simulated, and reduces the state for the
target simulated cache. This technique requires explicit cache
state reconstruction in the simulator, is limited to single-core
systems, and does not provide a way to reconstruct coherency
state.

Barr et al. [3] propose a method for reconstructing cache
and coherency state in multi-processor systems. They there-
fore propose a data structure, called the Memory Timestamp
Record (MTR), that records the timestamp of the last access
to each cache block before a sampling unit. The MTR allows
the simulator to reconstruct coherency state as well as a cache



hierarchy of arbitrary size and associativity, assuming a lower
bound on cache line size.

Our warmup methodology offers an alternative to MTR
where coherency state and cache hierarchy is reconstructed
without detailed knowledge of the cache hierarchy’s coherence
and multi-level state. The only information needed is the
largest total shared LLC capacity that will be simulated in
any system configuration.

E. Similarity analysis

Perelman et al.’s [17] similarity analysis extends Sher-
wood et al.’s work [20] to multi-threaded workloads. Both
of these works evaluate agglomerated/combined thread views
into fixed-length intervals but disregard its use as they compare
threads to one another during an execution run. On the
other hand we compare the entire multi-threaded application’s
behavior between barriers, not each thread to one another. We
are the first to:

• Show that combined thread views can be used to compare
inter-barrier regions to perform workload reduction.

• Use LRU stack distances (along with BBVs) to more
accurately compare regions.

• Enable the use of variable-length multi-threaded execu-
tion profiles which can occur between barriers. Perelman
et al. [17] assume fixed-length intervals that are not
compatible with variable-length barrierpoints.

Sherwood et al. [20] use BBVs to identify regions of similar
execution behavior, called phases, in long-running single-
threaded applications; Perelman et al. [17] extend this method
to multi-threaded workloads. Shen et al. [18] propose LRU
stack distances [16] to automatically determine phases of a
single-threaded application. In contrast, our methodology uses
program semantics, barriers, to delineate phases, and we find
the combined usage of BBVs and LRU stack distances to
outperform either alone.

Alameldeen et al. [1] suggest that a common unit of work is
required, but does not extend this to multi-threaded workloads,
nor do they address the reduction of simulation requirements.
In contrast, we are the first to provide an automatic work-
load reduction and performance estimation methodology for
barrier-based multi-threaded workloads.

VIII. CONCLUSION

Sampling is a well-known technique to speed up archi-
tectural simulation. Only recently have researchers extended
sampled simulation towards multi-threaded workloads. Some
prior work assumed non-synchronizing multi-threaded work-
loads for which random sampling allows for an accurate
representation of the overall application. Time-based sampling
proposes a solution for synchronizing multi-threaded work-
loads but the main limiting factor for achieving significant
simulation speedups is the requirement for using functional
warming to maintain an accurate micro-architectural state in-
between sampling units. In addition, time-based sampling
leads to different sampling units across different processor
architectures, complicating performance analysis. Prior work

in speeding up the simulation of barrier-synchronized appli-
cations requires massive simulation resources to simulate all
inter-barrier regions in parallel.

To address these limitations, we propose BarrierPoint, a
methodology for the reconstruction of application execution
time using the similarity of multi-threaded benchmarks be-
tween barriers. With BarrierPoint, it is now possible to evaluate
the performance of each selected inter-barrier region indepen-
dently, leading to a higher potential for simulation speedup.
Our proposed methodology automatically identifies a select
number of most representative regions, called barrierpoints,
from which it is possible to estimate total application execution
time. Using a set of barrier-synchronized parallel benchmarks
from the NPB and Parsec benchmark suites, we demonstrate
that high simulation speedups that can be achieved (with a
harmonic mean of 24.7× and up to 866.6×) while using a
limited number of simulation machine resources, and while
being within 0.9% on average and at most 2.9% compared to
detailed simulation. Overall, we reduce the amount of machine
resources needed by an average of 78×.
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