Afterlmage: Leaking Control Flow Data and Tracking Load
Operations via the Hardware Prefetcher

Yun Chen’
School of Computing, National
University of Singapore

Lingfeng Pei
School of Computing, National
University of Singapore

Trevor E. Carlson
School of Computing, National
University of Singapore

Singapore Singapore Singapore
yun.chen@u.nus.edu lfpei@nus.edu.sg tcarlson@comp.nus.edu.sg
ABSTRACT KEYWORDS

Research into processor-based side-channels has seen both a large
number and a large variety of disclosed vulnerabilities that can
leak critical, private data to malicious attackers. While most pre-
vious works require speculative execution and the use of cache
primitives to transmit data, our new approach, called AfterImage,
requires neither, capitalizing on vulnerabilities in Intel’s IP-stride
prefetcher to both expose and transmit victim data. By training this
prefetcher with attacker-known values, and watching for changes
to the prefetcher state when execution returns to the attacker, it is
now possible to monitor and leak critical data from a large num-
ber of common userspace applications and kernel routines with-
out speculation and additional cache accesses. To demonstrate the
novel capabilities of AfterImage, we (1) present proof-of-concept
attacks that leak data across different isolation levels, (2) present
an end-to-end attack that leaks an entire RSA key from a mod-
ern, timing-balanced algorithm, and also (3) show how AfterImage
can significantly improve the effectiveness of other attacks, such
as power side-channel attacks, by using this technique as a high-
precision marker.

In addition to an extensive evaluation of these and other cache-
based attacks, we also present a full reverse-engineering of the
Intel IP-stride prefetcher which was required to enable AfterImage,
and describe how AfterImage can be used as a covert channel.
Finally, we present several mitigation techniques that can be used
to block this side-channel on machines today. Taken together, this
work explores a full set of techniques to utilize the prefetcher to
leak previously protected information between different protection
domains (SGX, kernel and other user spaces) and across many
important applications, including security and non-security-related
workloads.

CCS CONCEPTS

« Security and privacy — Security in hardware; Hardware
reverse engineering; - Computer systems organization —
Architectures.

*These authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9916-6/23/03.

https://doi.org/10.1145/3575693.3575719

side-channel attack, prefetcher, hardware security

ACM Reference Format:

Yun Chen, Lingfeng Pei, and Trevor E. Carlson. 2023. AfterImage: Leak-
ing Control Flow Data and Tracking Load Operations via the Hardware
Prefetcher. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS °23), March 25-29, 2023, Vancouver, BC, Canada. ACM, Vancouver,
Canada, 17 pages. https://doi.org/10.1145/3575693.3575719

1 INTRODUCTION

Modern systems leverage a variety of methods to achieve high
performance, from new instructions to microarchitectural enhance-
ments. Unfortunately, many of the techniques designed to speed
up processors have new microarchitectural side-channel attacks
exposed as the unintended consequence, typically exemplified by
caching [15, 22, 39, 47, 61, 71] and speculative execution [5, 31,
37, 58, 66]. Secret information such as browser activity, user data,
or even encryption keys used by security libraries can be leaked
through these side-channels.

Among the list of modern hardware enhancements, however,
a deep investigation of the vulnerability of an extremely impor-
tant hardware component today - the prefetcher - is still missing.
Prefetchers work by preloading data into the cache before it is re-
quested by the processor to mitigate the effects of extremely long
DRAM load latencies. In the vast majority of current Intel pro-
cessors, an Instruction Pointer-based stride (IP-stride) prefetcher
can be found [16], as it is a small structure that can provide a sig-
nificant performance benefit [3]. This prefetcher learns repetitive
strides between load addresses requested by the same IP. When the
prefetcher obtains sufficient confidence, it will prefetch the next
address into the cache, which is the sum of the current address and
the previously learned stride.

Previously discovered attacks that are related to the IP-stride
prefetcher generally fall into two categories. Some works [12] build
covert channels inside the processor where both the sender and
receiver are controlled by an adversary. By periodically flushing out
history entries of the prefetcher, the adversary can enable covert
communication. Another technique [59] captures a special cache
footprint after software execution and reveals secrets by analyzing
the footprint variations. These works attempt to exploit the IP-
stride prefetcher, however, have been either algorithm-specific or
can only be used as a covert channel; they cannot be used as a
broadly applicable side-channel for a large class of applications.

In this paper, we demonstrate a quick-to-train and highly appli-
cable hardware prefetcher-based side-channel, called AfterImage,


https://doi.org/10.1145/3575693.3575719
https://doi.org/10.1145/3575693.3575719

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

that can be exploited in today’s processors! to extract secret infor-
mation across program and user-kernel boundaries. By using an
attacker-based load instruction that targets a victim load, the at-
tacker can mistrain the prefetcher with specific strides. This allows
the attacker to infer critical information from the victim after it is
run with a simple prefetcher status check.

In this work, we make the following contributions:

e We describe a new hardware prefetcher side-channel, After-
Image, that can track load instructions and is both algorithm-
agnostic and independent of the use of traditional cache
primitives for side-channel attacks.

e We demonstrate how two variants of AfterImage can leak
control flow and branch-based secrets (a) across thread-
s/process, and (b) across the user-kernel boundary, and can
achieve a high attack success rate (from 91% to 99%). In ad-
dition, a covert channel based on a variant of AfterImage
(variant 1) can achieve a transfer rate of 833 bps with an error
rate of less than 6%.

e We provide an end-to-end cache-primitive independent at-
tack against timing-constant RSA [33] and reveal the private
key in only 188 minutes. We further show that using Af-
terlmage can allow an attacker to precisely time when to
perform power attacks against the OpenSSL RSA algorithm,
and demonstrate that this information can improve the util-
ity of the power attack.

e We present an in-depth study of the IP-stride prefetcher used
in modern Intel processors with custom-designed micro-
benchmarks. Many features are revealed for the first time.

e We propose and analyze a lightweight mitigation strategy
for future designs that shows an extremely small (0.7%) slow-
down.

In the rest of this paper, we first provide the attack surface,
threat model, and an overview of AfterImage (Section 2) and then
provide background information in Section 3. We study the IP-
stride prefetcher present in today’s hardware in Section 4. Next,
we present leaking information via AfterImage by our proof-of-
concept variants, timing constant RSA attack, and locating load
timing for improving power attacks in Section 5 and Section 6. The
experimental setup and results are discussed in Section 7. Finally,
we discuss the effectiveness of existing defenses in Section 8, outline
related work in Section 9, and conclude in Section 10.

2 AFTERIMAGE OVERVIEW
2.1 Attack Surface

The attack surface of AfterImage consists of load instructions in
either a user workload or in the kernel. The key targets are branch-
dependent load instructions (an example is shown in Listing 1).
With these instructions as a starting point, we will demonstrate
how AfterImage can leak this secret information across different
levels of isolation.

In the real world, branch instructions are one of the most com-
monly encountered instructions with as many as 17% of dynamic
instructions executed in an application [8][10]. Private data, such as
user input, or secret keys, are often used by branch instructions that

! Afterlmage has been disclosed to Intel, and approved for distribution.

Yun Chen, Lingfeng Pei, and Trevor E. Carlson

if (secret)
// Load on one path req'd
char tempO = array[address];
else
// Optional
char templ = arrayladdress];

o e W o e

Listing 1: Example of branch-dependent load instructions

control the execution of subsequent load instructions, which can
be found in commonly-used applications that include encryption
algorithms and the Linux kernel. For example, bluetooth connection
activity [6] (see Figure 1) and battery properties [4] (see Figure 2)
in the Linux kernel use user data to determine their control flow.

The timing-constant coding style, which has been proposed as
a technique to hide the timing variation for different directions
in a branch in many security libraries [43, 46, 65], can still have
branches affected by AfterImage. For example, the timing-constant
RSA encryption engine [65] (see Figure 3 and Figure 4) performs
memory accesses both on the if and else path. Although they
call the same function with different parameters to balance the
timing, some load instructions will still be generated before the
function call in different directions to prepare the essential infor-
mation (e.g., function/pointer address) required by the function. It
is worth noting that the number of load instructions in different
directions remains constant, indicating that the algorithm stays
timing-constant. Since the IPs of these load instructions are dif-
ferent, Afterlmage can still distinguish the actual control flow and
infer the secret.

Instead of branches, AfterImage also targets the timing informa-
tion of load instructions, which can benefit other types of attacks.
For instance, power analysis normally needs to get the accurate
encryption/decryption time [30, 41] and samples the power con-
sumption on time to extract the key. We will show that AfterImage
can help track certain load operations and assist power attacks.

2.2 Threat Model

We consider that the attacker aims to track the execution of certain
load instructions from a victim process or kernel context to leak
secret information or perform additional attacks. We assume the
victim runs on the same logical core as the attacker to share the
hardware prefetcher. The attacker does not need OS capabilities
obtained when running in an Intel SGX enclave, super-user access,
or even socket communication ability with the victim, but does
have user access to the system.

In the standalone attacking scenarios, the victim contains control-
flow instructions, whose direction is determined by its own secret
data, and at least one load instruction occurs under a branch (inside
an if () or else block, for example).

In another scenario, i.e., the attacker would like to leverage
AfterImage to track timing information of load operations from the
victim, and then launch timing-sensitive attacks. We assume that
the victim code can be disassembled by the attacker.

In both scenarios, we assume that memory pages requested by
the load instructions of the victim should already be cached in the
TLB. This occurs frequently in our test cases (evidenced by a high
success rate) and is of high probability for streaming applications.



Afterlmage: Leaking Control Flow Data and Tracking Load Operations via the Hardware Prefetcher

switch (pkt_type(skb)) {
case HCI_COMMAND_PKT:
hdev->stat.cmd_tx++;
case HCI_ACLDATA_PKT:
hdev->stat.acl_tx++;
case HCI_SCODATA_PKT:
hdev->stat.sco_tx++;

switch (prop) {

case PROP_ONLINE:
val->intval = 1;

case PROP_CAPACITY:

val->intval = value;
case PROP_MODEL_NAME:

val->strval = dev;
case PROP_SCOPE:

val->intval = SUPPLY;
}

L Y PO S
28 couome wn

Figure 1: Vulnerable code pat-
tern in the Bluetooth connec-
tion activity source code [6].

Figure 2: Vulnerable code
pattern in the source code
of battery properties [4].

Address Space Layout Randomization (ASLR) and kernel ASLR
(KASLR) can be enabled to further improve the security of the
system but will not affect AfterImage.

2.3 AfterImage Workflow

There are four main steps needed to leak information via this
prefetcher side-channel.

Prepare: The attacker locates load operations in the victim con-
text to track, and generates a local version of the targeted load
instructions. These loads masquerade as the target 1loads and share
the same hardware entry in the prefetcher. In this work, we present
two techniques to locate the load instructions in the victim. First, if
the binary of the victim is available to the attacker, such as a shared
encryption library, the attacker can use disassembly tools such as
objdump. Second, based on our reverse-engineering results that
will be presented in Section 4, the IP-stride prefetcher is indexed
only with the least significant 8-bits of IP. We further propose an
IP searching technique; the details are discussed in Section 5.2.

Train Prefetcher: The attacker then trains the IP-stride prefetcher
locally by executing a strided address sequence to obtain a sufficient
level of confidence in the prefetcher. Our training is again based on
our reverse-engineering results.

Trigger Prefetcher: When the victim executes the targeted
code region, the prefetcher will be automatically triggered with the
previously trained stride.

Observe Secret: We present two techniques to observe secret
data. First, similar to previously discovered microarchitectural side-
channels, we use traditional cache primitives, including Flush+Re
load [71] and Prime+Probe [47, 50] to expose the strides from the
cache lines (AfterImage-Cache). They provide higher accuracy in
demonstrating the secret leakage, as we will show in Section 5. The
second technique is to check the prefetcher’s status (AfterImage-
PSC), which makes this attack standalone. Based on our reverse-
engineering results, the prefetcher will exhibit different statuses
depending on the victim. We give a detailed example in Section 6.

3 BACKGROUND
3.1 Cache Timing Side-Channel Attacks

Cache side-channel primitives, such as Prime+Probe [47, 50], Flush+
Reload [71], Flush+Flush [22], and Prime+Abort [15] are often used
as the basis for modern hardware attacks today2 [59, 66, 67, 69].

2Cache side-channels cannot leak the control-flow information unless the actually
requested addresses are known to the attacker beforehand.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

for(i=0; i<len(key); i++) if (secret)
{

1 1

2 2

3 if(key[i] & 1) 3 // normal execution
4 e 4 X->s = s;

5 multiply_add(); 5 }

6 clflush(); 6 else

7 else 7 {

8 e 8 // preventing RSA
9 multiply_add(Q); 9 // timing attack
10 clflush(); 10 X->s = -s;

1 } 11 }

Figure 3: Vulnerable code pat-
tern in Montgomery-Ladder
RSA engine [33].

Figure 4: Vulnerable code
pattern in timing-constant
RSA engine [65].

Flush+Reload is one of the most common cache primitives that
takes advantage of shared memory between different processes. The
attacker first flushes the shared memory from cache into DRAM.
After the victim performs its normal execution, the attacker then
reloads the shared memory and observes the timing differences,
when addresses that hit in the cache indicate accesses by the victim.

The Prime+Probe cache side-channel does not require the exis-
tence of shared memory. The attacker primes the cache sets with
its own data, and probes whether these cache sets are still occupied
after the victim program has been scheduled. Prime+Probe is more
general than Flush+Reload but it is less noise-resilient, since any
activity in the system can evict the priming data as well.

Priming the complete LLC cache might not be easy to achieve by
accessing a chunk of data whose size is larger than the LLC3. This is
because most recent microarchitectures divide the LLC into smaller
slices using a hash function to reduce contention and those hash
functions are not often publicly known [29, 61, 68]. The eviction
set, as a formal term of priming data, is a collection of addresses that
map to the same cache set and slice that guarantees its complete
eviction [29, 61, 68]. A minimal eviction set (MES) has a number of
elements equal to the cache associativity. Eviction sets need to be
correctly built to allow Prime+Probe to be performed.

3.2 Prefetchers in Intel Microprocessors

Intel has described four hardware prefetchers in their processor
designs [16]. The data cache unit (DCU) prefetcher, also known as
the next-line prefetcher [60], attempts to automatically prefetch a
single, subsequent cache line. Data prefetch logic (DPL), i.e., the
adjacent prefetcher, regards data as 128-byte aligned blocks. A cache
miss to one of the two cache lines in this block will trigger a prefetch
to the pair line. The Streamer prefetcher records sequential positive
and negative offset streams and prefetches the next or previous
several cache lines based on the system status (e.g., bandwidth,
streaming direction), respectively. Therefore, the operation of these
three hardware prefetchers does not have as much flexibility as the
Instruction Pointer (IP)-based strided prefetcher, i.e. the IP-stride
prefetcher.

The basic structure of the IP-stride prefetcher is shown in Figure
5. This prefetcher keeps track of load instructions with regular
strides from the same IP. Its operation is composed of three steps.

3Although L1 and L2 cache are not indexed with such nonpublic hash functions,
we have empirically discovered that priming L1 or L2 cache does not provide a
distinguishable latency gap. What’s worse, the existence of the line fill buffer between
the L1 and L2 cache can add significant uncertainty to the measured timing.



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

1. Index and Replace. When a load instruction is present, it will
be indexed into an entry with the same IP tag. If no such IP tag
exists, a victim entry will be selected and evicted. 2. Update. If the
difference between the current address and the Last Addr is equal
to the Stride, the Confidence will be increased, otherwise it will be
decreased. However, if the Confidence drops below a threshold, the
Stride value will be updated to a new stride as well. 3. Prefetch. If
the Confidence exceeds a certain threshold, a prefetch request will
be sent to the next address which is the sum of the current access
address and the recorded Stride value.

Processor

Prefetched
| Load request queue
IP Last Addr Stride Conf. : FIFO
IP_ Last Addr Stride Conf. v
Send prefetched

IP-stride prefetcher request to cache

Figure 5: General architecture of the IP-stride prefetcher.

4 REVEALING INTEL’S IP-STRIDE
PREFETCHER

Based on the documentation of Intel’s Sandy Bridge microarchi-
tecture [16], prior works [12, 59, 69] have disclosed some basic
characteristics such as strided prefetching and process sharing
through reverse engineering the IP-stride prefetcher. However, in
this work, we take an additional step to reverse-engineer the major
components of the IP-stride prefetcher in the Haswell and Coffee
Lake microarchitectures. To the best of our knowledge, this is the
first work to reveal the index, update and trigger mechanisms in
detail. We additionally investigate the effects of cross-page address
prefetching, determine the number of entries in the history table,
and reverse engineer the IP-stride prefetcher’s replacement policy.

4.1 Indexing into the IP-stride Prefetcher

Since older generations of Intel processors are indexed with the
least significant 8-bits of the load instruction address, we first aim
to verify whether this is still true in newer processor generations.
Moreover, we would like to investigate whether any other factors
should be taken into account during indexing.

void idx_detect_train(int stride, int train)

1

2 {

3 for(int i = 0; i < train; i++)

4 {

5 IP_1: int temp0 = array[i * stridel;

6 }

7 // Not shouwn: add IP offset using NOPs
8 IP_2:int templ = arrayl[r];

9}

Listing 2: Microbenchmark pseudo-code for detecting the
indexing mechanism of the IP-stride prefetcher.

We use a microbenchmark, similar to that shown in Listing 2,
which first trains the IP-stride prefetcher using IP_1 with a con-
stant multiple cache line-sized stride and then accesses the r-th

Yun Chen, Lingfeng Pei, and Trevor E. Carlson

250

200

150

100

Access Time

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#Matched least significant bits with IP_1

Figure 6: The Coffee Lake IP-stride prefetcher triggering a
result on IP_2 when trained with IP_1. Note that an Access
Time higher than 120 cycles means that the prefetcher has
not been triggered to prefetch the address into cache.

cache line in the array with IP_2. IP_2 is also offset such that the
least significant n-bits match those of IP_1. If the load at IP_2
can activate the prefetcher to prefetch array[r + stride], i.e. map to
the same entry with IP_1, we conclude that the indexing of the
IP-stride prefetcher is dependent on these n-bits of IP.

Figure 6 shows that the IP_2 load can trigger the prefetcher if
its lowest 8-bits are the same as that of IP_1, confirming our un-
derstanding that the IP-stride prefetcher uses the least significant
8-bits to index the entry. Furthermore, this example verifies that
the IP-stride prefetcher lacks a tag field to verify the full IP.

void const_ip_load(int index, voidx array)

1

2 {

3 IP_1: int temp = array[index];

4}

5

6 void policy_cs(int st_1, int st_2, int tr_1, int tr_2)
7

8 char* array = mmap(4096, ...);

9 int i, offset;

10 for(i = 0; i < tr_1; i++)

11 const_ip_load(i * st_1, array);

12 flush(array);

13 for(i = 0; i < tr_2; i++)

14 const_ip_load(offset + i * st_2, array);

15 // test whether the stride now is updated to st_2
16 time(array[i * st_21);

17 // test whether the stride now %is still st_1

18 time(array[offset + (i -1 ) * st_2 + st_11);

19 }

Listing 3: Microbenchmark pseudo-code for detecting the
confidence and stride updating policy of the IP-stride
prefetcher.

4.2 Confidence and Stride Details

According to our basic test, the confidence has two bits and the
threshold is 2. We use the same for loop shown in Listing 2 but dif-
ferent values for the train. After training, we check array[i*stride]
to see if it is cached. The stride has (1+12) bits, with the most
significant bit being used to differentiate between negative and
positive strides, while the other twelve bits reflect the maximum
stride, which cannot be more than 2KiB (1 << 12). It should be
noted that the stride of Intel’s IP-stride prefetcher does not need
to align to a cache line [28]. As a result, the prefetcher requires
up to 13 bits to deliver the stride. However, because we train the
prefetcher using cache-line-sized data offsets in this work, a stride



Afterlmage: Leaking Control Flow Data and Tracking Load Operations via the Hardware Prefetcher

Afterlmage

Prefetch n
A
+ ! x +5
Memory +7 +7 +7 -1 19 u 5 [ +5
sequenee1 L0 {7 Flae {1 17

Training phase 1
with stride =7

Training phase 2
with stride =5

(a) Two training phases with a random offset in between.

Afterlmage
Prefetch E
7 +7 i+7 +5 5

+ i +

7 7 i 5
sxiznocZZ [0}~ 7 . — - e
< e <m——)

Training phase 2
with stride =5

Training phase 1
with stride =7

(b) The second training phase starts immediately after the first.

Figure 7: Experimental results of the IP-stride prefetcher
triggering mechanism on Coffee Lake.

of 7 means that the stride recorded in the IP-stride prefetcher has a
length of 7 X 64 bytes, or 7 cache lines in total.

After determining the prefetcher’s supported confidence and
stride values, we use a microbenchmark (Listing 3) to reverse-
engineer the confidence and stride update policy. The microbench-
mark first trains the IP_1 ¢r_1I times (tr_1 > 2 to guarantee the
confidence is equal or larger than the threshold) with stride st_1,
and then uses a new stride (st_2) to train the prefetcher tr_2 times.
Finally, the results from the microbenchmark run allow us to deter-
mine which stride is currently being used in the prefetcher, with
the results listed in Figure 7.

In our experiment, st_1and st_2 are set as 7 and 5, respectively.
Normally, a stride of st_1 will be triggered even after the first it-
eration of the second loop. This means that regardless of whether
the new stride is identical to the recorded stride, if the confidence
reaches the required threshold, the prefetcher always issues a new
prefetch request. We refer to this behavior as the key component
of AfterImage. This allows for the triggering of the prefetcher to
occur unconditionally, allowing the result to appear in a separate
execution context.

For the second iteration of the second loop, no matter how large
the value of tr_1 is, neither st_1 nor st_2 is triggered. When we get
to the third iteration, the st_2 is finally active. However, we discover
that if we set the of fset directly to the stride of the second phase,
i.e. start the second training earlier, the prefetcher will become fully
trained at the second iteration. These results imply that the stride
will always be updated as current address — last address, and once
the newly computed stride is different from the previous stride,
the confidence will be reset to 1 at the same time. Therefore, for a
load instruction with an IP and a request to current address, the
workflow inside the prefetcher is shown in Algorithm 1.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Algorithm 1: Confidence and stride updating policy and
triggering strategy of the IP-stride prefetcher.

Data: IP, current_address
1 if IP tag existed in the history table then

2 distance = current address — last address
3 if confidence > 2 then
4 Prefetch current address + stride
5 if distance != stride then
6 ‘ stride = distance confidence = 1
7 else
8 if confidence != 3 then
9 ‘ confidence += 1
10 end
1 end
12 else
13 if distance != stride then
14 stride = distance
15 confidence =1
16 else
17 confidence += 1
18 if confidence == 2 then
19 ‘ Prefetch current address + stride
20 end
21 end
22 end
23 else

24 ‘ Create_New_Entry(IP, confidence = 0, stride = 0)
25 end

4.3 Page Boundary Checking

The benchmark shown in Listing 4 first MMAP two memory pools,
named recl_arrayand lock_array. recl_array will be a resource-
saving pool that automatically reclaims used physical page frames.
The lock_array is allocated with MAP_LOCKED, which will always
lock the page frame. We leverage IP_1 and IP_2 to train the prefetch
er with a given stride on one page (e.g., p-th page), and then access
the next offset-th page, and verify whether the target address (i.e.,
recl_/lock_array[p + offset + stride]) is in the cache or not.

Table 1 shows the result of this experiment. The first column is
the virtual address offset between the testing page and the training
page. The second column indicates whether these testing pages have
the same physical address as the training page or not. The last col-
umn represents the testing results, i.e. successfully prefetched or not.
We find that even though the destination address in recl_array
spans several logical page boundaries, the prefetcher does not inval-
idate the entry IP_1 and they are all successfully triggered. If the
physical page frame is crossed, the prefetcher may invalidate the
entry and re-learn the stride and confidence. More specifically, if
the newly accessed page (e.g., (p+1)-th page) misses in the TLB, the
first access for this page will create the page table entry and will
not impact the prefetcher status (e.g., decrease the confidence). The
second memory access on the (p+1)-th page then can directly acti-
vate the prefetcher to prefetch current address + stride. If the page
mapping hits in TLB, the prefetcher will be activated immediately.



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 1: The Coffee Lake IP-stride prefetcher triggering re-
sults on different logic pages and physical page frames.

Virtual Addr Offset Share Physical Page Prefetchable
recl lock recl lock

1 Page 4 X 4 v

2 Page 4 X 4 X

3 Page v X v X

4 Page v X v X

We also notice that the next page of the trained page sometimes can
trigger the prefetcher at the first memory access even if we never
accessed it before. We infer that the next page is special because
of the use of the next-page prefetcher that was introduced in the
Haswell microarchitecture [26].

As a result, the prefetcher uses the page frame to determine
whether the new address crosses the page boundary and processes
the next page separately.

void two_ip_loads(int index, void* arrayl, void* array2)

1

2

3 IP_1: int tempO = arrayl[index];
4 IP_2: int templ = array2[index];
5

6

7

8

}

void page_policy(int offset, int stride)

9 char* recl_array = mmap(n * 4096, ...);

10 char* lock_array = mmap(n * 4096, MAP_LOCKED, ...);
11 // do not cross page

12 for(int i = 0; i < 4; i++)

13 two_ip_loads(i * stride, recl_array, lock_array);
14

15 two_ip_loads(offset, recl_array, lock_array);

16 time(recl_array[offset + stridel);

17 time (lock_array[offset + stridel);

18 }

Listing 4: Microbenchmark pseudo-code for detecting the
page checking strategy of the IP-stride prefetcher.

4.4 Number of Entries

We construct a microbenchmark (See Listing 5) that executes a
loop with a varying number of load instructions. Every load’s

void n_ip_loads(int index, int N, void* array)
{
IP_1: int templ = array[4096 + index];

int tempN = array[4096+N + index];
}

1

2

3

4 P
5 IP_N:
6

7

8 void num_entry(int N, int stride, int offset)
9

10 //contains N pages

11 char* array = mmap(N * 4096, MAP_LOCKED, ...);
12 for(int i = 0; i < 5; i++)

13 n_ip_loads(i * stride, N, array);

14

15 n_ip_loads(offset, N, array);

16 for(int i = 0; i < Nj; i++)

17 time (array[4096*i + offset + stridel);

18 }

Listing 5: Microbenchmark pseudo-code for determining
number of entries of the IP-stride prefetcher.

Yun Chen, Lingfeng Pei, and Trevor E. Carlson

e 30-iNPULS == 26-iNputs

250

200
]
£

= 150
n
o

@ 100
<

50

0

0123456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29
#Inputs
(@

250

200
5

= 150
«n
a

& 100
Q
<

50

0

123456 7 8 91011121314151617181920212223242526272829303132
#inputs

(b)

Figure 8: Reverse-engineering results on Coffee Lake: (a) The
IP-stride prefetcher triggering results for 26 IPs and 30 IPs
to determine the prefetcher’s number of entries. (b) The IP-
stride prefetcher triggering result for 32 IPs, with 8-16th IPs
revisited, to demonstrate the prefetcher’s replacement policy.

least significant 8-bits of its IP are unique, and their data access
patterns are constant. After training each of these IPs on different
page frames (to avoid false positives), we re-access them and test
the access time to page;[of fset + stride] to determine if they can
still activate the prefetcher.

The experimental result is shown in Figure 8a. Specific IPs are
no longer able to trigger the prefetcher. More specifically, if the
number of test IPs is 26, the first two IPs will no longer be able
to activate the prefetcher. If the number of test IPs is 30, the first
six IPs cannot trigger the prefetcher. As a result of the prefetcher’s
restricted size, some IPs get evicted. Thus, the number of prefetcher
entries is the number of IPs that can still activate the prefetcher
after training all of them, which is 24, in our case.

4.5 Prefetcher Replacement Policy

As we only see the least recent IPs being evicted, to determine
whether the prefetcher’s replacement policy is First-In-First-Out
(FIFO) or least recently used (LRU), we update the number of entries
detection microbenchmark by adding a number of jmp instructions.
The number of test IPs is increased to 32 and 32 page frames are
allocated for the training of each IP. The first 24 IPs will be trained
on various page frames to occupy the whole table, and then the
caches will be flushed. Next, the first 8 IPs will be re-trained to
update them to a more recently used position. Following that, we
train another 8 new IPs to evict some entries and flush the cache
once again. Finally, we execute these 32 load instructions again
to read a random cache line L in the corresponding page and see



Afterlmage: Leaking Control Flow Data and Tracking Load Operations via the Hardware Prefetcher

for(int i = 0; i < 3; i ++)
{
IP offsetl
// to match if-path
int tempO = array[i * S1];
IP offset2
// to match else-path
int templ = array[i * S2];

B . ST e,

Listing 6: Gadget used in AfterImage. The use of different
strides (S1 and S2) allows the attacker to differentiate the two
cases.

if the (L + stride)-th cache line is prefetched. The first eight IPs
should have been evicted if the prefetcher uses a FIFO policy. If
not, these IP addresses should still be able to trigger prefetching.
The experimental result is shown in Figure 8b. We observe that the
evicted IPs are between the 9th and 16th position, indicating that the
IP-stride prefetcher is using a form of the LRU replacement strategy.
In addition, because the replacements have always been contiguous,
it follows that it will most likely not use a tree-based pseudo-LRU
(PLRU) replacement policy. Further, as a true LRU implementation
can be expensive to implement in hardware, we suspect that the
hardware is implementing a Bit-PLRU-based replacement policy.

4.6 Interplay with SGX

To test how AfterImage interacts with SGX, we pass a memory
region into SGX and let an in-enclave thread access it with a certain
pattern to see if SGX can trigger the prefetcher and if the prefetched
data will still be validated once the SGX is switched out. To verify
this assumption, We access the prefetched cache line in the un-
trusted zone and measure the access time. The result reveals that
we always get a cache hit for the prefetched cache line, proving our
hypothesis.

5 LEAKING BRANCH SECRET DATA VIA
AFTERIMAGE

In this section, we describe how AfterImage leaks control flow
and secret-dependent branch information from a victim to the
attacker via an Afterlmage-Cache flow. We assume that the victim
has a branch that contains load instructions, whose direction is
determined by its private secret. The attacker aims to leak this
secret across different isolation layers, including threads, processes,
and the user-kernel boundary, each more critical than the previous
one. To demonstrate this, we present two proof-of-concept variants
built on top of different cache primitives to show the effectiveness
and accuracy of AfterImage in the ideal case.

5.1 Variant 1

Observation 1: The IP-stride prefetcher trained by IP1 can
be triggered by IP2, even when a new stride is seen, or across
threads or processes that operate on the same physical core,
as long as the least significant 8-bits of IP2 match those of
IP1.

Based on this observation, we build AfterImage variant 1, pre-
sented in Figure 9, to demonstrate that the control flow of the victim

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

from different threads/processes can be leaked through this side-
channel. In the first case, the attacker is in the same address space
as the victim and can execute a code gadget in a sandboxed manner.
This assumption is also widely exploited in previous attacks [14, 31].
In the second, i.e., cross-processes case, the attacker and the victim
are in separate subprocesses and different address spaces and we
will show that the leakage is still successful.

1 1

_______ (N + S1)-th block

Figure 9: AfterImage-Cache: Mistrain the IP-stride prefetcher
from another thread/process and extract the secret via cache
primitives.

We first design a gadget, shown in Listing 6, that consists of two
load instructions with different IPs. The least significant 8-bits of
IPs of these two load instructions are specially tailored to match
the memory access instructions in the if-path and else-path in the
victim’s code region, respectively, i.e., line 2 and line 4 in Listing 1,
corresponding to the different control flow of the victim.

The first secret extraction technique utilized by AfterImage-
Cache is Flush+Reload. The attacker will first mistrain the prefetcher
by executing the gadget with two constantly strided memory ad-
dress sequences for two load instructions, e.g., stride S1 and S2
(step @ in Figure 9). Therefore, two entries will be pushed into the
IP-stride prefetcher for these two IPs and their confidence counters
for these strides will be saturated. The flush stage happens before
the execution of the victim to prepare the cache status. The shared
pages are flushed out from cache using the c1flush instruction. If
the victim process then executes the secret-dependent branch, as
the lowest 8-bits of secret-dependent memory instructions’ IPs will
be indexed to an entry that is trained by the attacker, the IP-stride
prefetcher will prefetch the cache line from current address + stride
into the cache (step @ in Figure 9). After the victim executes the tar-
geted branch, the attacker can observe the cache by reloading used
pages cache-line-by-cache-line to check for the existence of the
pre-determined strides among the cached lines (step @ in Figure 9)
(S1 exists in the example).

Moreover, to make this attack more general without the need
of shared memory, we further successfully utilize Prime+Probe to
extract secrets in the cross-thread demonstration. The eviction sets
(ESs), which are essentially sets of memory addresses, are com-
puted beforehand because they are machine-determined. Similar to
Flush+Reload, in the prime stage, the attacker accesses the eviction
sets within its local memory space, and in the probe stage, the
attacker traverses the ESs again to check for a high accessing la-
tency, which indicates a victim’s access. However, for cross-process
demonstration, we empirically found that Prime+Probe suffers from



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

void vulnerable_syscalll(void* memory_space)

1

2

3 int num = random();

4 if (num)

5 {

6 char *address = get_address(memory_space);
7 Memory [address] ;

8 ¥

9 return 0;

Listing 7: The customized kernel function.

heavy noise interference from the intensive memory activities dur-
ing context switches, i.e., over half of the MESs are touched by the
system.

5.2 Variant 2

Observation 2: When a process switches between user and
kernel privilege modes, the trained entries of the IP-stride

prefetcher are retained.

The strict isolation between kernel and user mode protects privi-
leged hardware and system status from being exposed to users. Sen-
sitive information in the kernel represents the data that should not
be visible to an arbitrary user, e.g., tokens, passwords, and encryp-
tion keys. This variant demonstrates how the IP-stride prefetcher
can bridge the isolation gap between kernel and user space which
leads to a side-channel that can potentially leak kernel secrets.

To demonstrate the feasibility, we build a kernel function as the
target code pattern as a straightforward example in Listing 7. In this
function, num represents the secret in the kernel and determines
the if branch, in which a load instruction is followed. The syscall
function shares memory with the user via a memory_space param-
eter that allows Flush+Reload to take place. Shared memory is more
common in the kernel than in other processes. For example, the
Linux kernel itself already has privileges to access memory pages
of the user process, such as the copy_from_user() kernel function
[35].

To establish this kernel-user side-channel, we first create and
propose a new microarchitectural component, IP matching?. Since
IPs of system call functions are normally unknown to the user or
hard to determine, we cannot directly deduce the offset in the
gadget. In this case, we designed an IP search method to create
the correctly matched IP as the training object, which has the same
function as the gadget. This IP should have the same least signifi-
cant 8-bits with the load instruction of the syscall function, which
fortunately shrinks the searching space to 256 possibilities. Due to
the hardware capacity limitation, we search for the IP in groups, 24
IPs as a group to fit the size of the IP-stride prefetcher as indicated
in Section 4. One group will be trained simultaneously with the
same stride on different pages. When the correct group gets trained,
the syscall can trigger a strided footprint in the cache if it executes
the load instruction. The target IP will be the intersection of these

4This IP matching method is general when the victim’s IP is difficult to be accessed. It
completely runs as a normal private function without touching any data to which it
is not privileged. Especially for kernel functions, once the system is booted, the IPs
of instructions will not be changed. In addition, as the ASLR or KASLR on Linux has
at least a granularity on one page (assuming a page size of 4KiB), these techniques
will not change the least significant 12 bits of the IPs. Since the IP-stride prefetcher
uses the lowest 8-bits to index its history, ASLR does not impact IP matching.

Yun Chen, Lingfeng Pei, and Trevor E. Carlson

1 void sgx_magic(void *pms)

2

3 e

4 // copy memory from untrusted zone
5 volatile int *_tmp_arr = pms->arr;
6 volatile int *_in_arr;

7 volatile int stride;

8 volatile int secret;

9 if (secret)

10 stride = 3;

11 else

12 stride = 5;

13 for(i = 0; i < 8; i++)

14 {

15 _in_arr = _tmp_arr[i * stride * 64];
16 }

17 .

18}

Listing 8: The example vulnerable code segment for After-
Image SGX side channel

groups. This process can be repeated multiple times until the IP is
found in case of too many not taken branches during the testing.

Attacking. After the target IP is well-trained in the aforemen-
tioned phase, the attacker calls c1flush instruction to flush the
shared data out of cache. Then it calls this syscall and passes the
control right to the kernel. If the branch in the kernel is taken, the
following load instructions will be executed on the same shared
memory space. The IP-stride prefetcher automatically checks its
history table and finds a matched entry with a high confidence
value. Therefore, it will send a prefetch request to the next address,
which is current address + stride. When the syscall service is fin-
ished, the process goes back to the user state. The attacker reloads
the data to see which addresses are cached. If two addresses with
our selected stride are both hits, we can infer that this branch has
been taken by the kernel, and vice versa.

5.3 Covert Channel

With some minor modifications, AfterImage could also be harnessed
as a cross-process covert channel to allow a sender and a spy to
communicate.

We use the stride value as the covert information that is trans-
ferred after each round®. Once the sender finishes training the
prefetcher, the spy then accesses one cache line on the shared page.
The stride (i.e., secret) can be observed by computing the distance
of cache lines that hit the cache.

5.4 Attacking SGX

To enable AfterImage for use as a side channel, to leak the control
flow information from the enclave to the untrusted zone, the enclave
is considered to include the code region shown in Listing 8 in the
PoC. In the enclave, the stride is set based on the secret. In the
untrusted zone, we will detect if the expected prefetched cache
lines are in the cache or not. For example, if we find (5x8)-th cache
line in the cache, we will know that the stride is set to 5 and then
reveal that the secret is 1. The whole workflow is shown in Figure 10.

5Due to hardware limitations, the stride can not exceed 2KiB, and can encode any
5-bits of the secret into a cache line granularity. Although the sender can theoretically
transmit up to 12-bits by training the prefetcher with cache line unaligned stride
values, the spy usually reloads the memory at a cache line granularity and thus cannot
observe the least significant 6-bits of transmitted data.



Afterlmage: Leaking Control Flow Data and Tracking Load Operations via the Hardware Prefetcher

Untrusted Zone Enclave

Copy Data
Char Buffer[4096] Char Buffer_E[4096]

ECALL_MyFunc(*Buffer,

ECALL_MyFunc
LenBuf)

if (secret)
stride = 3;
else
stride = 5;
for (inti=0;i<8;i++){
A = Buffer_E[i * stride *64];

Return Point

Timel = Reload(Buffer[X1])
Time2 = Reload(Buffer[X2])

}

Figure 10: SGX side/covert channel workflow

If we assume that the in-enclave thread is a sender and would
like to transmit a secret from SGX to the untrusted zone, the side
channel can also be used as a covert channel to achieve this target.
More concretely, the in-enclave thread can train the prefetcher
with two alternative strides to represent 1 or 0. The receiver in the
untrusted zone can access the prefetched cache line to determine if
the relevant stride (i.e., X1 or X2 in Figure 10) is triggered or not.

6 ATTACKING REAL WORLD APPLICATIONS

In this section, we present AfterImage-PSC flow with two real world
attacking examples. The AfterImage-PSC is built on our proposed
Prefetcher Status Checking (PSC) method to extract secrets instead
of building a cache side-channel basis, which makes this attack
standalone and different from previous cache primitive dependent
attacks. We first present an end-to-end attacking example against
the timing-constant RSA algorithm, which contains load instruc-
tions in different control flows to balance the observable timing
variation. Next, we show how AfterImage can track load instruc-
tions in the OpenSSL library and leak critical timing information.

6.1 Prefetcher Status Checking

To overcome the limitations of cache primitives (e.g., microarchi-
tectural defenses, longer detection times), we propose a new secret
extraction method that directly exploits the hardware prefetcher’s
features, as detailed in Section 4.2, called the Prefetcher Status
Checking (PSC) methodology. It comes from the fact that, ac-

1 1
i H
i )
Hellke P13 Stridel !
! I
o | !
BN (P22 | Stride2 CEEEEEE

Figure 11: AfterImage-PSC: Mistrain the IP-stride prefetcher
from another thread/process and extract secret via checking
prefetcher status.

cording to our reverse engineering results, after the victim executes
a well-trained IP in the prefetcher (step @ and @ in Figure 11), the
IP’s confidence will be updated immediately, and that IP will no
longer be able to trigger the prefetcher. The attacker can re-execute
the targeted IPs to determine which ones are no longer triggerable

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

A

{ Domain
switch

Domain
switch

<+
\4

:

Attacker Mistrain( )

Time

Figure 12: Overview of attacking timing-constant RSA. After
the attacker mistrains the prefetcher, the victim decrypts
the message and the attacker then can check the prefetcher
status.

and infer the victim’s execution information (step @ in Figure 11).
In this detection method, the attacker only needs to test the la-
tency of a single destination address, which makes it faster than
Flush+Reload or Prime+Probe, and it can bypass detection methods
focused on cache primitives as well.

6.2 Leaking Private Key from Timing-Constant
RSA

The Montgomery-Ladder RSA [33], used in MbedTLS, is a real-
world application that we target with AfterImage-PSC. The IP in the
if path (see Figure 3) is obtained by the disassembly tool objdump.
Next, we construct an attacker thread that repeatedly trains and
triggers the IP-stride prefetcher in his/her own memory region.
The execution flow is shown in Figure 12. The prefetcher is mis-
trained with stride using the same gadget described in Listing 6,
and the IP is manually set to have the same least-significant 8
bits with the target one. After training, the attacker thread calls a
sched_yield() system call to give back control of the CPU and
allow the victim thread to run and decrypt the ciphertext. When
the branch is finished, the attacker follows the AfterImage-PSC
flow to re-execute the load to address addr and measure the timing
of accessing addr + stride to see whether the prefetcher is still
triggered. A cache hit indicates that the victim executed the else
path and the load in the if path is not touched, and vice versa.
In our demonstration, the victim thread also calls sched_yield()
after the branch to allow the detection of the attacker. This method
is often used as a simplified synchronization technique in many
attacks [23, 66] and has been demonstrated to not be a critical
limitation and can be dealt with by a Linux scheduler attack [23].
Other synchronization with the victim may also be feasible such
as simultaneous multithreading (SMT), accurate time-multiplexing,
interrupt, or debug signal [51, 59, 66].

6.3 Tracking Timing of Load Instructions from
OpenSSL

As Afterlmage can track load operations across different contexts,
we can show that this information can be used for other purposes
other than extracting secrets directly, such as assisting other attacks.
For instance, power attacks exploit power variations to extract the
secret. However, due to the noise level, the power analysis normally



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 2: Architecture and system configurations.

i7-4770 i7-9700
Architecture Haswell Coffee Lake
CPU cores 4 8
Last Level Cache 8MB 12MB
Operating System  Ubuntu 18.04  Ubuntu 18.04
ASLR/KASLR Enabled Enabled
DRAM DDR4,2x4G DDR4,2x8G

needs to locate the accurate timing information of AES S-Box oper-
ations, i.e., loading plaintext byte-by-byte and XOR with the secret
key, and then permuting the initial ciphertext via S-Box, or RSA
multiplication-addition operations, i.e., loading private key bit-by-
bit and executing timing-constant branch shown in Figure 3 [41].
In this paper, we target the timing information of key loading
and the multiplication-addition operations at decryption from the
most recent OpenSSL-RSA library (OpenSSL-AES can also be at-
tacked using the same attack flow), which is a commercial-grade
for general-purpose encryption shared library [46].

By calling the sched_yield() more frequently, we can check
the prefetcher status with much finer granularity to properly deter-
mine the time, and thus leak the accurate timing of interested load
operations. To further reduce the time consumed by the attacker,
instead of training the prefetcher before each detection, we solely
mistrain it before the victim runs. In this paper, we train the IP-based
prefetcher with stride N and we always access current_address+N
in the detection phase to guarantee that the prefetcher status will
not be reset by us. As a result, the prefetcher state will change only
if the target load operation is executed.

We summarize all variants and scenarios in Table 3 to give an
overview of AfterImage.

7 EXPERIMENTS
7.1 Experimental Setup

We perform all the experiments on Haswell and Coffee Lake ma-
chines. The architecture details and OS configuration of these two
machines are shown in Table 2.

Except for the IP-stride prefetcher, we found that the other three
hardware prefetchers can introduce false positives into the results
by loading additional cache lines unexpectedly. Fortunately, these
prefetchers do not have the address range reach compared to the
IP-stride prefetcher [69]. The DCU (next-line) prefetcher prefetches
only the next cache line. DPL (adjacent) prefetcher prefetches the
previous or next cache line. And the streamer prefetches the previ-
ous or next several sequential cache lines.

To avoid the impact of the noise introduced by these three
prefetchers, concerning the choice of stride, we use a stride that is
greater than four cache lines. Additionally, the use of uncommon
stride values (e.g., a larger prime number) can provide additional
noise resilience because they can be easily differentiated. In our
experiments, we generally train the prefetcher with stride values
of 7, 11 and 13.

To prepare a Prime+Probe side-channel, we utilize the slice-
selection algorithm found in the Haswell microarchitecture [29]
to generate minimal eviction sets (MESs) to cover multiple cache
sets for building Prime+Probe. For the Flush+Reload, the shared

Yun Chen, Lingfeng Pei, and Trevor E. Carlson

memory is created by using MMAP function with MAP_SHARED
label.

7.2 AfterImage Variants

For AfterImage variant 1, we show results for both if and else
branch, on Prime+Probe and Flush+Reload measurements. For vari-
ant 2, we present Flush+Reload measurement.

Figure 13a shows the experimental results of leaking the if-path
via Prime+Probe after one round of observation. The x-axis repre-
sents the cache set number, i.e. cache line index, in our observing
page (4 KiB page with 64 cache lines), whose distance directly rep-
resents the offset between memory addresses in a cache-line-length
unit. The y-axis shows the time taken, between the probing phase
and priming phase, to access each MES of the cache set. As de-
picted in the figure, most cache sets have not been accessed. The
two cache sets with the highest time delta show a clear stride of 7,
demonstrating that the targeted load on the if-path was executed,
triggering a trained prefetch response of 7 cache lines.

We then call the proposed gadget to train the prefetcher for both
paths and try to consistently leak control flow round-by-round.
From Figure 13b and Figure 13c, we observe clear signals (strides)
after the victim performed the branch. During the first round, we
see that the victim took the else-path. The victim then executed the
if-path in the following cycle. If the branch is security-related, we
then know the secret is b’ 10.

In terms of AfterImage variant 2, we perform the IP search as
described in Section 5.2. When a matched IP is found, we perform
the side-channel workflow, as has been introduced in Section 5.2.
In this example, we set the training stride in the user space to 11.
The detected stride is shown in Figure 14a, which indicates that the
kernel function executed the if-path.

To further evaluate the attack success rate, we perform two
variants with 200 rounds on a set of sample data. We conduct this
evaluation on the platform described in Table 2. The attack success
rate of variant 1 (cross-thread), variant 1 (cross-processes), and
variant 2 are 99%, 97%, and 91%, respectively.

Figure 14b demonstrates an example of using the proposed covert
channel to transmit a 5-bit secret. The attacker trains one entry
in the prefetcher with a stride at b’11110. We can see a stride
at 30 (b’ 11110) from the result, which corresponds to the secret
the attacker wants to transmit. The bandwidth of the proposed
covert channel can achieve 833 bps with an error rate of less than
6%. By training additional entries with varied strides (secrets), the
bandwidth can be further improved. The prefetcher, however, may
be affected by the process context switch since numerous memory
accesses occur here. As a result, the error rate is greater than 25%.
But, the maximum bandwidth will be close to 20 Kbps (i.e., train 24
entries).

To extract the control flow from SGX, in this work, we set stride
in the taken branch is 5 and the non-taken branch is 3, and train the
IP-stride prefetcher 8 times. If the secret is set to 0, we always find
that the Time1 (in Figure 10) is lower than 50 cycles, and Time2 is
higher than 200 cycles, and vice versa. This implies that the attacker
can observe that the IP-stride prefetcher is trained with stride 3,
and know the secret is 0.



Afterlmage: Leaking Control Flow Data and Tracking Load Operations via the Hardware Prefetcher

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 3: A Summary of the AfterImage Variants and Applications. *TC, P+P, F+R, and PSC represent Timing-Constant,
Prime+Probe, Flush+Reload, Prefetcher Status Checking, respectively.

Proof of Concept

Realistic Attack

Vi

V2

Covert Channel TC-RSA OpenSSL-RSA

Cross-thread Cross-processes

Cross user-kernel boundary  Transmit secrets between

Locate timing to

Goal control flow leakage control flow leakage control flow leakage different processes RSA key leakage benefit other attacks
Available Secret P+P, F+R, PSC F+R, PSC F+R, PSC F+R, PSC F+R, PSC F+R, PSC
Extraction Tech.

IP pre-analysis Disassembly Disassembly IP searching Disassembly Disassembly Disassembly
Evaluation P+P in Section 7.2 F+R in Section 7.2 F+R in Section 7.2 F+R in Section 7.2 PSC in Section 7.3~ PSC in Section 7.4
Figure 13a and Figure 13b Figure 13¢ Figure 14a Figure 14b Figure 14c Figure 15

® untouched sets @ secret-related loads @ prefetched sets @ untouched sets

® secret-related loads e prefetched sets

® untouched lines o secret-related loads

noise ~LLC hit threshold ® noise —-LLC hit threshold o prefetched lines ~-LLC hit threshold

600 - 800 300

500 |5, 700
=4 £, (] =4 P ° ° ° o
S 400 | Patn .S 600 Q250 |eg g 0% ® o0 ....." ® g0 ¢ ad ° o
B 300 ® s00 igzuo © a0 o0, 0o O 0 o o0
& 200 & 400 a
> = 300 8 150
GE) 100 g 200 s L] 8 -
£ ° i 100 [—eEE ¢ o | <100 'f,?p'att‘-

-100 0 oo gette o oee ©000400°0000%5005900 00000000,%0%g000000 00 of 50| @ 4 »

200 -100 —else-path

-300 -200 0

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
#Cache Set #Cache Set #Cache Set
(a) (b) (©)

Figure 13: Attack results of AfterImage-Cache variant 1: (a) cross-thread single bit extraction from if-path (b) cross-thread
round-by-round extraction from real execution flow with Prime+Probe. (c) cross-processes round-by-round extraction from

real execution flow with Flush+Reload.

e unaccessedlines e receiver'stestioad e prefetched lines
® untouched lines secret-related loads e prefetched lines o ol LLC hit threshold ® PSC
noise ~=LLC hit threshold ose esho 200
a0 700 180 1’ 1' 1
200 . . 600 . 160 1 °
w3so | @ 0 ® % 0 O.....u. 0, * eee %o 500 E140 [
E 30 [0 0ge® o ° o ° e g T
e ® 0ge® o % o0 0 0% o0 oo o e £ =
) £ 400 ~ 100
g 2 ° 3 80
@ 200 2 300 . g 0
8 8 o0 ° o o 040%%°, | < 60 0 ()
< 150 £ 200 000 o 0% 00 ®00%0e00°00%0 "0 o00%ee 20 0. Y 0
[ ]
100 . 100 20
s0 S o secret=b'11110 ____y®
o if-path [ SR L E L 0
0 10 2 30 W 50 0 0 10 20 30 40 50 60 1 2 3 4 5 6 7 8
#Cache Set #Cache Set #Secret key bit
(@ (b) (©)

Figure 14: (a) Attack result for AfterImage-Cache variant 2 with Flush+Reload. (b) AfterImage-Cache covert channel stride
detection in receiver’s space with Flush+Reload. (c) RSA private key is revealed through AfterImage-PSC. If the private key’s
bit = 1, the targeted load instruction will be executed, the prefetcher status will be updated, and it will no longer be triggered.

7.3 Timing-Constant RSA

Part of the RSA attack result is illustrated in Figure 14c (an 8-bit
secret sequence (b’01010101)). In our experiments, it takes at most
5 iterations (about 10 seconds) to leak one bit, and for the 1024-bit
private exponent, or key, it takes about 188 minutes. Multiple itera-
tions per bit are needed because the success rate of AfterImage-PSC
(82%) is slightly lower than AfterImage-Cache using Flush+Reload.

7.4 Tracking Load Timing from OpenSSL

Figure 15 demonstrates when the key is loaded in the program
and when the decryption proceeds. We can clearly see that the
prefetcher status is changed by the target memory operations. Note
that there are two misses because the prefetcher needs one more

Prefetcher Status Reset Threshold Prefetcher Status Reset Threshold

Memory Latency

Program Running Time

Figure 15: Tracking when the key is loaded in the OpenSSL-
RSA (left) and when the decryption happens in the OpenSSL-
RSA (right) via AfterImage-PSC.



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

@ s
2
2 % 15
= 10
15
25

Number of Plaintexts

T-Value

Number of Plaintexts

(a) (b)

Figure 16: T-test result (a) with accurate timing information
and (b) with randomly picked timing information. The yel-
low line represents the leakage threshold (-4.5).

step to re-train its stride (see Section 4.2 for a more detailed de-
scription of the stride update policy). To further show that the
timing information of memory operations leaked by AfterImage
is critical for power analysis [30, 41]), we performed a t-test [57]
to measure the power leakage in the AES encryption (t-test on
RSA is not supported). The t-test was proposed as a PASS/FAIL
test, which checks if the t-value crosses the predefined threshold
(proposed as 4.5 [57]), i.e., whether data-dependant information
can be potentially exploited. We perform a t-test on the Rocket Chip
processor [2], an open source RISC-V in-order processor, not an x86
processor, as Rocket Chip allows us to collect cycle-accurate power
traces via PrimePower and thus get a more reliable and clearer
t-test result. Figure 16a shows the t-test analysis result with accu-
rate timing information (i.e., the timing of AES S-Box operation
happens). We can see that the leakage is close to -18.8 which by far
outperforms the predefined leakage threshold of -4.5. In contrast,
the timing information is picked randomly, and the t-test result (see
Figure 16b) fluctuates around -2.

8 MITIGATING AFTERIMAGE
8.1 Impact of Existing Defenses

We first discuss the effectiveness of AfterImage in the presence of
state-of-the-art defenses that aim to mitigate microarchitectural
side-channel attacks. Control flow integrity [5, 32, 40] based de-
fenses use protection models that automatically check whether
the runtime control flow is deviating from the control flow graph.
However, only the backend prefetcher is affected by AfterImage,
and this occurs during the non-speculative path of execution. Lever-
aging performance counters, the defender might be able to iden-
tify abnormalities in vulnerable hardware components during run-
time [11, 55, 73]. However, the sampling frequency of the Intel per-
formance monitor [54] may not be enough to capture the prefetcher
training event, since AfterImage requires just two to three iterations
of training at a minimum. Some works [11, 44, 49, 73] have been
proposed to enhance cache to prevent cache primitives by track-
ing abnormal events (e.g., a large number of fetching or LLC/L1D
cache misses) and by prohibiting data or instruction fetching, or
by using randomized cache [52]. However, AfterImage can leak the
secret via PSC, which is cache primitive independent.

8.2 Mitigation Options

A straightforward defense is to disable the IP-stride prefetcher to
prevent possible security risks with high performance overhead.

Yun Chen, Lingfeng Pei, and Trevor E. Carlson

Augmenting the history table with extra tags that include exe-
cution context-specific information such as the process ID prevents
hardware sharing. It requires hardware modification and an in-
creased hardware budget. Redesigning the application by the
developer to avoid secret-dependent branches can also prevent this
issue [27]. Similarly, oblivious execution [53, 72] removes any
control flow and most data dependencies. Nevertheless, the use of
oblivious code faces practical difficulties, as it leads to significant
overhead in many applications [51]. Secure timer can obfuscate
the cache access latency by adding noise [25, 42] to measured tim-
ing. But it is built on a specific kernel and extended ISA that is
often costly to implement. In addition, caching page table entries of
sensitive data in an isolated cache rather than traditional caches
(e.g., CATalyst [38]) can also mitigate AfterImage at the cost of high
hardware overhead [20].

8.3 Proposed Mitigation Evaluation

We propose a privileged clear-ip-prefetcher instruction that
can be used on a context switch to flush all entries in the IP-
stride prefetcher. The performance penalty of this mitigation is
the cost to flush the prefetcher state, plus the penalty for potential
misses due to that flush. This penalty would occur at each domain
switch. We model the upper-bound cost as: (Cjeqr + Cmiss X 3 X
24) /Domain_Switch_Period. C¢jeq, is the number of cycles to clear
the IP-stride prefetcher and Cpss is the latency gap between cache
and DRAM. Since IP-stride prefetchers have 24 entries, we assume
that C.j.qr = 24, one cycle for clearing each entry. The value of
Cmiss is on the magnitude of 300 cycles [24], and the period of
calling a system call in a modern operating system is approximately
100 microseconds [64]. Using these values, we compute the upper-
bound, estimate of the time penalty to be less than 7.3% on a 3GHz
machine.

We then model a Coffee Lake-like processor, and implement the
Intel IP-stride prefetcher on top of ChampSim [7], a cycle-level
simulator for evaluating a number of state-of-the-art prefetcher
designs [13, 48]. We emulate a more frequent prefetcher flushing
(10 microseconds). One billion instructions on the applications from
SPEC CPU2006 and 2017 [62, 63] benchmark traces [13] are then run
on the processor to verify the performance penalty. By comparing
the normalized IPC, we find that the average performance reduction
is only 0.7% for the top 8 prefetching-sensitive applications, and
0.2% across all tested applications.

9 RELATED WORK
9.1 Prefetching Side-Channels

Table 4 summarizes previously published prefetcher/prefetch re-
lated side-channel attacks (SCAs) or covert-channels (CC). The
work of Shin et al. [59] first discovered an information leakage
from IP-stride prefetchers. They observe that, when the victim pro-
gram shows a stable memory access behavior, e.g. table look-ups,
the IP-stride prefetcher can be triggered and leave a special foot-
print in the cache. This attack requires at least 19 CPU hours for
recovering a 568-bit key in the ECDH algorithm [45]. Two software
prefetch side-channels [21, 36] aim to bypass Supervisor Mode Ac-
cess Prevention (SMAP) and KASLR on Intel processors or break



Afterlmage: Leaking Control Flow Data and Tracking Load Operations via the Hardware Prefetcher

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 4: Overview and comparison of prefetching-based attacks. The second and third columns indicate whether the correspond-
ing technique can leak the control flow (CF) of applications and any load instruction timing (LT) information, respectively.
*Algorithm agnostic represents that the technique does not target a specific algorithm.

. Cache Primitives Algorithm Side-channel Target
Technique CF LT Agnostic Type Ainostic Source Vulneribility
Prefetcher SCA [59] X X X Side-channel X Intel HW prefetcher Table look-ups
Augury [67] X X X Side-channel X Apple M1 Data Memory-Dependent Prefetcher ~ ASLR, leaked pointer, etc.
Prefetch attack [21,36] X X X Side-channel X Intel/AMD SW PREFETCH instruction (fine-grained) KASLR, SMAP
Prefetcher CC [12, 56] X X X Covert-channel v Intel HW prefetcher -
AfterImage (This work) v v/ v Side-channel v Intel HW prefetcher Any (branch owned) LOAD

fine-grained KALSR and dump kernel memory layout with Spec-
tre on AMD processors, respectively. They exploit the timing of
prefetch instructions to leak the translation level of the virtual
address and infer the physical mapping. However, the main purpose
of these works is different from AfterImage, where we aim to leak
secret data directly. In addition, one recent work [67] exploits a
different prefetcher, the data memory-dependent prefetcher, in the
Apple M1 processor to perform out-of-bounds read and retrieve
leaked pointers. However, this attack assumes the same memory
space for the attacker and victim, and relies on cache primitives.

9.2 Other Microarchitectural Side-Channels

The branch predictor has been exploited extensively to conduct
speculative execution-based attacks [5, 18,31, 37, 55, 58, 66]. In these
works, the branch predictor can be mistrained by the adversary
to force speculative execution of mispredicted instructions, and
therefore trigger transient attacks. BPU-based attacks can leak
control flow but require a much longer time of training. For example,
Spectre needs 26000 cycles in the mistraining [34], while AfterImage
requires only 3 to 4 iterations of a load loop (1000-2000 cycles in
the presence of page misses). Besides, since the BTB normally uses
20 IP address bits [31], these attacks need several rounds of testing
to bypass ASLR, while AfterImage is not affected by ASLR.

Apart from the cache, BPU and prefetcher, other attacks exploit-
ing different microarchitectural components are gradually discov-
ered, such as line-fill buffer [58, 66], TLB [19, 70], ports [1], and
front-end [14, 55, 70].

9.3 Reverse-Engineering the Hardware
Prefetcher

The IP-stride prefetcher, as implemented in Intel’s Sandy Bridge
microarchitecture, was previously described in an Intel white pa-
per [16]. Haswell, a newer generation microarchitecture, uses en-
hanced data prefetchers [28], but the details of these updates remain
undocumented. Shin et al. [59] disclose the basic strided prefetching
manner but did not provide more information. Cronin et al. [12]
discover that the entry of the IP-stride prefetcher is shared by dif-
ferent processes running on the same core. They did not, however,
provide an in-depth analysis of the IP-stride prefetcher. Our reverse
engineering goes beyond these previous efforts. We designed a
series of micro-benchmarks to validate or discover features of Intel
IP-stride prefetcher. We then disclose the detailed indexing, capac-
ity, learning, triggering, page boundary checking and replacement
mechanisms, most of which have never been disclosed before.

10 CONCLUSION

In this work, we observe that the widely present IP-stride prefetcher
in Intel processors can be intentionally trained and triggered across
domain switching. We leverage this feature to introduce a novel side-
channel attack named AfterImage that can track the load operation
in other threads/processes and kernel context. To accomplish the
attack, we present an in-depth study of the Intel IP-stride prefetcher,
revealing a number of undocumented details. We demonstrate that
AfterImage can leak the victim’s control flow and branch secret
across threads/process spaces, and user-kernel boundary. We show
that AfterImage achieves a success rate of up to 99%, depending on
the variant. The adapted cross-processes covert channel has a low
error rate (<6%). We further apply AfterImage to leak the secret key
in the timing-constant RSA algorithm which takes only 188 minutes
to reveal the private key. We also show that AfterImage can track
load instructions in OpenSSL and this information can significantly
improve the effectiveness of power attacks. AfterImage works on
the non-speculative path, and our methodology is independent of
cache primitives, which are the basis for many hardware attacks.
Finally, we find that the current defenses against speculative or
cache side-channels are insufficient to block AfterImage, and we
propose and evaluate a low overhead solution that prevents IP-
stride prefetcher leakage on hardware platforms today.

11 DATA AVAILABILITY STATEMENT

The data that support the findings of this paper are openly available
in Zenodo at https://doi.org/10.5281/zenodo.7218907 [9], reference
number 7218907.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their detailed
feedback which allowed us to improve this work. This work was
supported by a grant from the National Research Foundation (NRF)
of Singapore (NRF2018NCR-NCR002).


https://doi.org/10.5281/zenodo.7218907

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

A ARTIFACT APPENDIX
A.1 Abstract

AfterImage is a hardware side-channel inside specific Intel proces-
sors. In this artifact, we provide the needed information to repro-
duce the main results presented in the paper. The required hardware
and software configurations are shown in Table 5. We demonstrate
the information leakage through observing load timing.

Table 5: Artifact Requirements

Parameter Value
CPU i7-4770, 17-9700 (SGX Supported)
Compiler GCC 8.4.0, -O0
Software Python3, Make

Operating System  Ubuntu 18.04
Linux Kernel 5.4.0

A.2 Artifact Check-List (Meta-Information)

e Compilation: GCC 8.4.0

¢ Run-time environment: Ubuntu 18.04, Linux kernel 5.4.0, Python3,
make, sudo

Hardware: Intel CPU i7-4770, i7-9700 (Support SGX)

Run-time state: enabled Level-2 ASLR. Sensitive to cache activities.
Execution: 5 cases, each can be finished in seconds. But they may
need multiple rounds.

Metrics: measured load timing and the occurence of specific pattern.
Output: cacheline indexs and corresponding timing value
Experiments: scripts provided.

How much disk space required (approximately)?: 20MB
How much time is needed to prepare workflow (approxi-
mately)?: 1 day

e How much time is needed to complete experiments (approxi-
mately)?: 2 days

Publicly available?: yes

e Code licenses (if publicly available)?: Creative Commons At-
tribution 4.0 International

Archived (provide DOI)?: 10.5281/zenodo.7218907

A.3 Description

How to access: We run our experiments on i7-4770 and i7-9700
processors, and thus recommend using these two machines to
reproduce these results. One can find the code for this PoC at
https://doi.org/10.5281/zenodo.7218907.

A4 AfterImage V1

In this section, we introduce how to run the PoC of AfterImage V1,
which is AfterImage-Prime+Probe in the same memory space. The
compilation command is shown below. The Prime+Probe needs
to build eviction set, which is a time-consuming phase as the LLC
slice hash function is unknown. The slice hash function in Haswell,
however, has already been revealed by other researchers. Thus, the
AfterImage-Prime+Probe can be performed on the i7-4770 using
these details.

To run the code, first, go to the prefetching_attack/prefetch
ing_poc/V1.A directory.

Yun Chen, Lingfeng Pei, and Trevor E. Carlson

After compiling, we can quickly test our attack through the
following command:

$V1.A: make all

$V1.A: sudo ./main

We added admin capabilities to that binary as we are using
/proc/pid/pagemap for virtual address and physical address trans-
lation for building the ESs for the specific machine. In fact, only
Prime+Probe flow here requires sudo for this reason, while Flush+
Reload or PSC does not require. If a segment fault error is re-
ported, we provide two methods to solve it: 1) re-boot the machine
and re-make the binary or 2) increase the size of space pool and
re-make the binary. The reason for this error is that the memory
pool for building the ESs may not be large enough as the OS may
automatically collect some useless pages, causing many pages to
have the same physical address.

The attack result will be printed on the screen. The first column
is the normalized set number, the second column represents the
memory access time (clock cycles) recorded in current_probe of
corresponding set. The last column denotes atv, i.e., average time
variation. We assume that the cache miss happens if the atv is larger
than 120. In the PoC, we set strides in if-path and else-path to
7 and 13, respectively. An example output is in Figure 13 (b).

A.5 AfterImage V1-Cross-Processes

Before testing the PoC of AfterImage-V1-cross-processes, we firstly
gotoprefetching_attack/prefetching_poc/V1.Bdirectory, an
d then enable the ASLR level-2 by running the command on i7-9700:

$V1.B: echo 2 | sudo tee /proc/sys/kernel/rando
mize_va_space

To reproduce the results in Figure 13c and Figure 14b, we run
the following command:

$V1.B: python poc.py

The python script will automatically run the attacker and victim
multiple times and measure one cache line every round (to get
the most accurate results). To get a stable result, we recommend
running the script multiple times (run poc_e2e. py directly).

$V1.B: python poc_e2e.py

A.6 AfterImage V2

To reproduce the result in Figure 14a, we build a simple kernel func-
tion to conduct a straight-forward proof-of-concept to demonstrate
how the prefetcher can leak information between user and kernel
space. Listing 7 includes the customized kernel function. Please
change directory to prefetching_attack/prefetching_poc/V2.


Zenodo (10.5281/zenodo.7218907)

Afterlmage: Leaking Control Flow Data and Tracking Load Operations via the Hardware Prefetcher

To add this function into the kernel, you should firstly check
the available system call number in your system (and the system
call table address)®. We recommend run this experiment on i7-4770
as it is easy to mount the custom kernel by running following
commands:

$V2: sudo python syscall_ins.py
$V2: gcc -o verify -00 test.c

$V2: sudo ./verify

We use sudo as we need to install the new syscall function into
the kernel. In fact, the attack program doesn’t require sudo.

To detect whether the kernel function can trigger the prefetcher
trained in user space, we first test the memory access time of
memory_space[address + stride x CACHE_LINE_SIZE]. If the
prefetcher trained in the user space can be harnessed directly in
the kernel space and the kernel function executed the if-path,
we should observe one or two group getting cache hits (since we
constructed 480 load instructions, some instruction’s lower 8 bits
are repeated).

We then leverage the Flush + Reload to enable a side-channel
aimed at exposing OS secrets (modify the code following the pro-
vided readme, recompile the binary, and run attack).

$V2: gcc -o attack -00 test.c

$V2: ./attack

We train the prefetcher with stride at 11. To ensure that the
prefetcher will not impact the measurement result, when we reload
the page, instead of loading the cache line sequentially, we use
the modern version of the Fisher—Yates shuffle algorithm [17] to
randomize the index sequence in the searching range (i.e., [0,63])
and add mfence to introduce memory barrier (According to the
Intel manual, the memory barrier may prevent prefetching from
taking place).

A.7 AfterImage Timing-Constant RSA

In this experiment, we provide an example to show how to ac-
curately leak one-bit of RSA’s private key in the timing-constant
branch. The experiment is used to generate the result shown in Fig-
ure 14c, which is also an experiment to verify the AfterImage-PSC.

We already aligned the last 8 bits of the attacker’s memory access
instruction (used to train the IP-stride prefetcher) with the memory
access instruction in the taken-branch in the encryption function.
To change the private key’s bit, you can go to victim() and change
the second parameter (0 or 1) in modpow.

You should first go to prefetching_attack/prefetching_poc
/rsa directory. To re-compile the code, you can run:

®In our experimental environment, an available system call number is 333. We use a
system function to directly check the syscall table addresses.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

$rsa: gcc -o st_rsa -00 st_rsa.c
To execute the binary, we can run:

$rsa: sudo ./st_rsa

A.8 AfterImage SGX Side/Covert Channel

As the covert channel is similar to the side channel, we only provide
the PoC of the side channel. The PoC of the covert channel can be im-
plemented by easily removing the branch, and higher accuracy can
be achieved by training the prefetcher multiple times. The experi-
ment is run on the i7-9700. Please first go to the prefetching_attac
k/prefetching_poc/intel_sgx directory. To check, enable SGX:

$intel_sgx/sgx-software-enable: sudo ./sgx_enab
le

If it doesn’t work, you can also enable the SGX via BIOS. To run
PoC:, you should go to intel_sgx/sgxsdk/SampleCode/AfterIma
ge_SGX_POC and update the SGX_SDK in the Makefile to your
sgxsdk root directory. To perform the PoC, you can run:

$intel_sgx/sgxsdk/SampleCode/AfterImage_SGX_POC:
make

$intel_sgx/sgxsdk/SampleCode/AfterImage_SGX_POC:
sudo ./app

In this experiment, we set the secret in Enclave/Enclave_t.c.
If secret is equal to 1, the stride is set to 3, otherwise, the stride is
set to 5. We train the prefetcher 7 times (the minimum is 3 times)
and then measure the access time of expected prefetched cache
lines in the untrusted zone, i.e., the (3*8)-th and (5*8)-th cache lines,
to see which is prefetched by the prefetcher. The result shows that
if the secret is 1, the untrusted zone can successfully detect that
the 24-th cache line is hit in the cache but the 40-th cache line is
not, and vice versa. We used this PoC to successfully extract data
from the SGX enclave. By using this new technique, we can avoid
easier-to-detect and mitigate cache primitives, e.g., Prime+Probe
or Flush+Reload.

REFERENCES

[1] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar
Pereida Garcia, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. In
Symposium on Security and Privacy (S&P). 870-887. https://doi.org/10.1109/SP.
2019.00066

Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-

vitz, et al. 2016. The rocket chip generator. EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4 (2016).

[3] Jean-Loup Baer and Tien-Fu Chen. 1991. An Effective On-Chip Preloading
Scheme to Reduce Data Access Penalty. In Conference on Supercomputing (SC).
176-186. https://doi.org/10.1145/125826.125932

[4] Battery properties management 2021. Battery properties management in Linux
kernel. https://git.kernel.org/pub/scm/bluetooth/bluetooth-next.git/tree/drivers/
hid/hid-input.c#n383.

[5] Atri Bhattacharyya, Andrés Sanchez, Esmaeil M Koruyeh, Nael Abu-Ghazaleh,
Chengyu Song, and Mathias Payer. 2020. SpecROP: Speculative Exploitation of

[2


https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1145/125826.125932
https://git.kernel.org/pub/scm/bluetooth/bluetooth-next.git/tree/drivers/hid/hid-input.c#n383
https://git.kernel.org/pub/scm/bluetooth/bluetooth-next.git/tree/drivers/hid/hid-input.c#n383

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

[11]

[12]

[13

[14]

[15]

[16

[17]

[18

=
o

[20]

[21

[22

[23

[24]

[25

[26]

[27

™
&

[29]

[30]

ROP Chains. In Symposium on Research in Attacks, Intrusions and Defenses (RAID).
1-16.

Bluetooth connection activity management 2021. Bluetooth connection ac-
tivity management in Linux kernel. https://git.kernel.org/pub/scm/bluetooth/
bluetooth-next.git/tree/drivers/hid/hid-input.c#n247.

ChampSim 2020. ChampSim. https://github.com/ChampSim/ChampSim.

Jed Kao-Tung Chang, Chen Liu, Shaoshan Liu, and Jean-Luc Gaudiot. 2011.
Workload characterization of cryptography algorithms for hardware acceler-
ation. In International Conference on Performance Engineering. 381-390. https:
//doi.org/10.1145/1958746.1958800

Yun Chen, Lingfeng Pei, and Trevor E. Carlson. 2022. AfterImage Artifact. https:
//doi.org/10.5281/zenodo.7218907

Razvan T Cheveresan and Stefan Holban. 2009. Workload Characterization an
Essential Step in Computer Systems Performance Analysis-Methodology and
Tools. Advances in Electrical and Computer Engineering 9, 3 (2009), 100-106.
https://doi.org/10.4316/AECE.2009.03018

Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real Time Detection
of Cache-Based Side-Channel Attacks Using Hardware Performance Counters.
Applied Soft Computing (2016), 1162-1174. https://doi.org/10.1016/j.as0c.2016.09.
014

Patrick Cronin and Chengmo Yang. 2019. A Fetching Tale: Covert Communication
with the Hardware Prefetcher. In International Symposium on Hardware Oriented
Security and Trust (HOST). 101-110. https://doi.org/10.1109/HST.2019.8741033
Data Prefetching Championship 2019. 3rd Data Prefetching Championship (DPC).
https://dpc3.compas.cs.stonybrook.edu.

Shuwen Deng, Bowen Huang, and Jakub Szefer. 2022. Leaky Frontends: Security
Vulnerabilities in Processor Frontends. In International Symposium on High-
Performance Computer Architecture (HPCA). 53-66. https://doi.org/10.1109/
HPCAS53966.2022.00013

Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In
USENIX Security Symposium (USENIX Security). 51-67.

Jack Doweck. 2006. White paper inside Intel® Core™ Microarchitecture and
Smart Memory Access. Intel Corporation (2006), 72-87.

Richard Durstenfeld. 1964. Algorithm 235: Random Permutation. Commun. ACM
(1964), 420-422. https://doi.org/10.1145/364520.364540

Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2018. BranchScope: A New Side-Channel Attack on Directional Branch Predictor.
In International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 693-707.  https://doi.org/10.1145/3173162.
3173204

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
leak-aside buffer: Defeating cache side-channel protections with TLB attacks. In
USENIX Security Symposium (USENIX Security). 955-972.

Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.
2017. ASLR on the Line: Practical Cache Attacks on the MMU. In Network and
Distributed System Security Symposium (NDSS). 26-41. https://doi.org/10.14722/
NDSS.2017.23271

Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan
Mangard. 2016. Prefetch side-channel attacks: Bypassing SMAP and kernel
ASLR. In Conference on Computer and Communications Security (CCS). 368-379.
https://doi.org/10.1145/2976749.2978356

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA). 279-299. https:
//doi.org/10.1007/978-3-319-40667-1_14

David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache games—
bringing access-based cache attacks on AES to practice. In Symposium on Security
and Privacy (S&P). 490-505. https://doi.org/10.1109/SP.2011.22

John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. https://doi.org/10.5555/3207796

Wei-Ming Hu. 1991. Reducing timing channels with fuzzy time. In Symposium on
Research in Security and Privacy. 8-20. https://doi.org/10.1109/RISP.1991.130768
Intel. 2018. Inconsistency in TLB miss counters. https://software.intel.com/en-
us/forums/software- tuning- performance-optimization-platform-monitoring/
topic/593830.

Intel. 2019. Guidelines for Mitigating Timing Side Channels Against Cryp-
tographic Implementations. https://software.intel.com/content/www/us/en/
develop/articles/software-security-guidance/secure-coding/mitigate- timing-
side-channel-crypto-implementation.html.

Intel. 2019. Intel® 64 and IA-32 Architectures Optimization Reference Manual.
Intel Corporation (2019).

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. Systematic Reverse
Engineering of Cache Slice Selection in Intel Processors. In Euromicro Conference
on Digital System Design (DSD). 629-636. https://doi.org/10.1109/DSD.2015.56
Demme John, Martin Robert, Waksman Adam, and Sethumadhavan Simha. 2012.
Side-channel vulnerability factor: A metric for measuring information leakage.
In International Symposium on Computer Architecture (ISCA). 106-117. https:

[31

(32

[33

(35]

[36

[37

[38

[39

[40

[41

[42

"~
&

[44

[45

[46

[47

[48

[49

(50

[51

o
5,

Yun Chen, Lingfeng Pei, and Trevor E. Carlson

//doi.org/10.1109/ISCA.2012.6237010

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
Symposium on Security and Privacy (S&P). https://doi.org/10.1109/SP.2019.00002
Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. 2020. SpecCFI: Mitigating spectre attacks
using cfi informed speculation. In Symposium on Security and Privacy (S&P). 39—
53. https://doi.org/10.1109/SP40000.2020.00033

Ladder RSA 2019. Montgomery-Ladder RSA. https://github.com/merinjo/RSA-
Montgomery-Ladder-Implementation.

Congmiao Li and Jean-Luc Gaudiot. 2020. Challenges in Detecting an “Evasive
Spectre”. IEEE Computer Architecture Letters (CAL) (2020), 18-21. https://doi.
org/10.1109/LCA.2020.2976069

Linux kernel 2022. Linux kernel APIL https://www.kernel.org/doc/htmldocs/
kernel-api/API---copy-from-userhtml.

Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. AMD Prefetch Attacks
through Power and Time. In USENIX Security Symposium (USENIX Security).
643-660.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al.
2018. Meltdown: Reading kernel memory from user space. In USENIX Security
Symposium (USENIX Security). 973-990. https://doi.org/10.1145/3357033
Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B. Lee. 2016. CATalyst: Defeating last-level cache side channel attacks
in cloud computing. In Symposium on High Performance Computer Architecture
(HPCA). 406-418. https://doi.org/10.1109/HPCA.2016.7446082

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In Symposium on Security and
Privacy (S&P). 605-622. https://doi.org/10.1109/SP.2015.43

Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing Speculation with
the Principle of Transient Non-Observability. In USENIX Security Symposium
(USENIX Security). 1394-1414.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2008. Power analysis
attacks: Revealing the secrets of smart cards. https://doi.org/0.1007/978-0-387-
38162-6

Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp:
Rethinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In International Symposium on Computer Architecture (ISCA).
118-129. https://doi.org/10.1109/ISCA.2012.6237011

Mbed TLS 2020. Mbed TLS. https://github.com/Mbed-TLS/mbedtls/tree/v2.16.7.
Samira Mirbagher-Ajorpaz, Gilles Pokam, Esmaeil Mohammadian-Koruyeh, Elba
Garza, Nael Abu-Ghazaleh, and Daniel A. Jiménez. 2020. PerSpectron: Detecting
Invariant Footprints of Microarchitectural Attacks with Perceptron. In Symposium
on Microarchitecture (MICRO). 1124-1137. https://doi.org/10.1109/MICRO50266.
2020.00093

National Institute of Standards and Technology 2013. National Institute of
Standards and Technology. 2013. FIPS PUB 186-4 Digital Signature Standard
(DSS). https://csrc.nist.gov/publications/detail/fips/186/4/final.

OpenSSL 2018. OpenSSL, Cryptography and SSL/TLS Toolkit. http://www.
openssl.org.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. In Cryptographers’ track at the RSA conference. 1-20.
https://doi.org/10.1007/11605805_1

Samuel Pakalapati and Biswabandan Panda. 2020. Bouquet of instruction pointers:
Instruction pointer classifier-based spatial hardware prefetching. In International
Symposium on Computer Architecture (ISCA). 118-131. https://doi.org/10.1109/
ISCA45697.2020.00021

Arash Pashrashid, Ali Hajiabadi, and Trevor E Carlson. 2022. Fast, Robust and
Accurate Detection of Cache-based Spectre Attack Phases. In International Confer-
ence on Computer-Aided Design (ICCAD). https://doi.org/10.1145/3508352.3549330
Colin Percival. 2005. Cache missing for fun and profit. In Technical BSD Conference
(BSDCan). 1-13.

Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Capkun. 2021. Frontal
attack: leaking control-flow in SGX via the CPU frontend. USENIX Security
Symposium (USENIX Security), 663-680.

Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache At-
tacks via Encrypted-Address and Remapping. In Symposium on Microarchitecture
(MICRO). 775-787. https://doi.org/10.1109/MICRO.2018.00068

Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital Side-
Channels through Obfuscated Execution. In USENIX Security Symposium (USENIX
Security). 431-446.

James Reinders. 2005. VTune performance analyzer essentials. Intel Press (2005).
Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M
Tullsen, and Ashish Venkat. 2021. I See Dead props: Leaking Secrets via Intel/ AMD
Micro-Op Caches. In International Symposium on Computer Architecture (ISCA).


https://git.kernel.org/pub/scm/bluetooth/bluetooth-next.git/tree/drivers/hid/hid-input.c#n247
https://git.kernel.org/pub/scm/bluetooth/bluetooth-next.git/tree/drivers/hid/hid-input.c#n247
https://github.com/ChampSim/ChampSim
https://doi.org/10.1145/1958746.1958800
https://doi.org/10.1145/1958746.1958800
https://doi.org/10.5281/zenodo.7218907
https://doi.org/10.5281/zenodo.7218907
https://doi.org/10.4316/AECE.2009.03018
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1109/HST.2019.8741033
 https://dpc3.compas.cs.stonybrook.edu
https://doi.org/10.1109/HPCA53966.2022.00013
https://doi.org/10.1109/HPCA53966.2022.00013
https://doi.org/10.1145/364520.364540
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.14722/NDSS.2017.23271
https://doi.org/10.14722/NDSS.2017.23271
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.5555/3207796
https://doi.org/10.1109/RISP.1991.130768
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/593830
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/593830
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/593830
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://doi.org/10.1109/DSD.2015.56
https://doi.org/10.1109/ISCA.2012.6237010
https://doi.org/10.1109/ISCA.2012.6237010
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP40000.2020.00033
https://github.com/merinjo/RSA-Montgomery-Ladder-Implementation
https://github.com/merinjo/RSA-Montgomery-Ladder-Implementation
https://doi.org/10.1109/LCA.2020.2976069
https://doi.org/10.1109/LCA.2020.2976069
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-from-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-from-user.html
https://doi.org/10.1145/3357033
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1109/SP.2015.43
https://doi.org/0.1007/978-0-387-38162-6
https://doi.org/0.1007/978-0-387-38162-6
https://doi.org/10.1109/ISCA.2012.6237011
https://github.com/Mbed-TLS/mbedtls/tree/v2.16.7
https://doi.org/10.1109/MICRO50266.2020.00093
https://doi.org/10.1109/MICRO50266.2020.00093
https://csrc.nist.gov/publications/detail/fips/186/4/final
http://www.openssl.org
http://www.openssl.org
https://doi.org/10.1007/11605805_1
https://doi.org/10.1109/ISCA45697.2020.00021
https://doi.org/10.1109/ISCA45697.2020.00021
https://doi.org/10.1145/3508352.3549330
https://doi.org/10.1109/MICRO.2018.00068

Afterlmage: Leaking Control Flow Data and Tracking Load Operations via the Hardware Prefetcher ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

[56]

[57

[58

[59]

[60]

[61

[62]
[63]
[64

[65]

361-374. https://doi.org/10.1109/ISCA52012.2021.00036

Aditya Rohan, Biswabandan Panda, and Prakhar Agarwal. 2020. Reverse Engi-
neering the Stream Prefetcher for Profit. In European Symposium on Security and
Privacy Workshops (EuroS&PW). 682-687.

Tobias Schneider and Amir Moradi. 2015. Leakage assessment methodology.
In International Workshop on Cryptographic Hardware and Embedded Systems
(CHES). 495-513. https://doi.org/10.1007/978-3-662-48324-4_25

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-privilege-boundary
data sampling. In Conference on Computer and Communications Security (CCS).
753-768. https://doi.org/10.1145/3319535.3354252

Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom
Hur. 2018. Unveiling Hardware-Based Data Prefetcher, a Hidden Source of
Information Leakage. In Conference on Computer and Communications Security
(CCS). 131-145. https://doi.org/10.1145/3243734.3243736

Alan Jay Smith. 1978. Sequential program prefetching in memory hierarchies.
Computer (1978), 7-21. https://doi.org/10.1109/C-M.1978.218016

Wei Song and Peng Liu. 2019. Dynamically Finding Minimal Eviction Sets Can Be
Quicker Than You Think for Side-Channel Attacks against the LLC. In Symposium
on Research in Attacks, Intrusions and Defenses (RAID). 427-442.

SPEC2006 2006. SPEC CPU2006. https://www.spec.org/cpu2006/.

SPEC2017 2017. SPEC CPU2017. https://www.spec.org/cpu2017/.

System Call Frequency 2013. SystemTap Beginners Guide: Tracking Most
Frequently Used System Calls. https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/6/html/systemtap_beginners_guide/topsyssect.
Timing-constant RSA 2021.  Timing-constant RSA.  https://github.com/
ARMmbed/mbedtls/blob/3b9bea0757814c346d0848e9058afa1b499fcc19/library/
bignum.c#L1528.

[66] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. 2021. CacheOut: Leaking data on Intel CPUs via cache evictions. (2021),
339-354. https://doi.org/10.1109/SP40001.2021.00064

[67] Jose Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella, Grant Garrett-

Grossman, Adam Morrison, Chris Fletcher, and David Kohlbrenner. 2022. Augury:

Using data memory-dependent prefetchers to leak data at rest. In Symposium

on Security and Privacy (S&P). 1518-1518. https://doi.org/10.1109/sp46214.2022.

9833570

Pepe Vila, Boris Kopf, and José F. Morales. 2019. Theory and Practice of Finding

Eviction Sets. In Symposium on Security and Privacy (S&P). 39-54. https://doi.

org/10.1109/SP.2019.00042

Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V Krishna-

murthy. 2019. PAPP: Prefetcher-aware prime and probe side-channel attack. In De-

sign Automation Conference (DAC). 1-6. https://doi.org/10.1145/3316781.3317877

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,

Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron on

the dark land: Understanding memory side-channel hazards in SGX. In Conference

on Computer and Communications Security (CCS). 2421-2434. https://doi.org/10.

1145/3133956.3134038

[71] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In USENIX Security Symposium (USENIX
Security). 719-732. https://doi.org/10.5555/2671225.2671271

[72] Jiyong Yu, Lucas Hsiung, Mohamad EI'Hajj, and Christopher W Fletcher. 2019.

Data oblivious ISA extensions for side channel-resistant and high performance

computing. In Network and Distributed System Security Symposium (NDSS). 808—

825. https://doi.org/10.14722/ndss.2019.23061

Tianwei Zhang, Yingian Zhang, and Ruby B Lee. 2016. Cloudradar: A real-time

side-channel attack detection system in clouds. In Symposium on Research in

Attacks, Intrusions, and Defenses (RAID). 118-140. https://doi.org/10.1007/978-3-

319-45719-2_6

(68

=
29,

[70

k=
&

Received 2022-07-07; accepted 2022-09-22


https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3243734.3243736
https://doi.org/10.1109/C-M.1978.218016
https://www.spec.org/cpu2006/
 https://www.spec.org/cpu2017/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/systemtap_beginners_guide/topsyssect
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/systemtap_beginners_guide/topsyssect
https://github.com/ARMmbed/mbedtls/blob/3b9bea0757814c346d0848e9058afa1b499fcc19/library/bignum.c#L1528
https://github.com/ARMmbed/mbedtls/blob/3b9bea0757814c346d0848e9058afa1b499fcc19/library/bignum.c#L1528
https://github.com/ARMmbed/mbedtls/blob/3b9bea0757814c346d0848e9058afa1b499fcc19/library/bignum.c#L1528
https://doi.org/10.1109/SP40001.2021.00064
https://doi.org/10.1109/sp46214.2022.9833570
https://doi.org/10.1109/sp46214.2022.9833570
https://doi.org/10.1109/SP.2019.00042
https://doi.org/10.1109/SP.2019.00042
https://doi.org/10.1145/3316781.3317877
https://doi.org/10.1145/3133956.3134038
https://doi.org/10.1145/3133956.3134038
https://doi.org/10.5555/2671225.2671271
https://doi.org/10.14722/ndss.2019.23061
https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1007/978-3-319-45719-2_6

	Abstract
	1 Introduction
	2 AfterImage Overview
	2.1 Attack Surface
	2.2 Threat Model
	2.3 AfterImage Workflow

	3 Background
	3.1 Cache Timing Side-Channel Attacks
	3.2 Prefetchers in Intel Microprocessors

	4 Revealing Intel's IP-stride Prefetcher
	4.1 Indexing into the IP-stride Prefetcher
	4.2 Confidence and Stride Details
	4.3 Page Boundary Checking
	4.4 Number of Entries
	4.5 Prefetcher Replacement Policy
	4.6 Interplay with SGX

	5 Leaking Branch Secret Data via AfterImage
	5.1 Variant 1
	5.2 Variant 2
	5.3 Covert Channel
	5.4 Attacking SGX

	6 Attacking Real World Applications
	6.1 Prefetcher Status Checking
	6.2 Leaking Private Key from Timing-Constant RSA
	6.3 Tracking Timing of Load Instructions from OpenSSL

	7 Experiments
	7.1 Experimental Setup
	7.2 AfterImage Variants
	7.3 Timing-Constant RSA
	7.4 Tracking Load Timing from OpenSSL

	8 Mitigating AfterImage
	8.1 Impact of Existing Defenses
	8.2 Mitigation Options
	8.3 Proposed Mitigation Evaluation

	9 Related Work
	9.1 Prefetching Side-Channels
	9.2 Other Microarchitectural Side-Channels
	9.3 Reverse-Engineering the Hardware Prefetcher

	10 Conclusion
	11 Data Availability Statement
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 AfterImage V1
	A.5 AfterImage V1-Cross-Processes
	A.6 AfterImage V2
	A.7 AfterImage Timing-Constant RSA
	A.8 AfterImage SGX Side/Covert Channel

	References

