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Abstract—High-performance, multi-core processors are the key
to accelerating workloads in several application domains. To
continue to scale performance at the limit of Moore’s Law and
Dennard scaling, software and hardware designers have turned
to dynamic solutions that adapt to the needs of applications in
a transparent, automatic way. For example, modern hardware
improves its performance and power efficiency by changing the
hardware configuration, like the frequency and voltage of cores,
according to a number of parameters such as the technology
used, the workload running, etc. With this level of dynamism, it
is essential to simulate next-generation multi-core processors in
a way that can both respond to system changes and accurately
determine system performance metrics. Currently, no sampled
simulation platform can achieve these goals of dynamic, fast,
and accurate simulation of multi-threaded workloads.

In this work, we propose a solution that allows for fast,
accurate simulation in the presence of both hardware and soft-
ware dynamism. To accomplish this goal, we present Pac-Sim, a
novel sampled simulation methodology for fast, accurate sampled
simulation that requires no upfront analysis of the workload.
With our proposed methodology, it is now possible to simulate
long-running dynamically scheduled multi-threaded programs
with significant simulation speedups even in the presence of
dynamic hardware events. We evaluate Pac-Sim using the multi-
threaded SPEC CPU2017, NPB, and PARSEC benchmarks with
both static and dynamic thread scheduling. The experimental
results show that Pac-Sim achieves a very low sampling error
of 1.63% and 3.81% on average for statically and dynamically
scheduled benchmarks, respectively. Pac-Sim also demonstrates
significant simulation speedups as high as 523.5× (210.3× on
average) for the train input set of SPEC CPU2017.

I. INTRODUCTION

Computer architecture research heavily relies on simulations
for design space exploration. However, microarchitectural sim-
ulation can become extremely time-consuming, particularly
as the complexity of modern architectures has increased over
time. This is especially true in the post-Dennard era, where
architectures are rapidly evolving to incorporate complex
dynamic optimization techniques at both the hardware and
software levels to improve system performance gains at run-
time. Hardware-based dynamic techniques such as dynamic
cache reconfiguration [4], [51], [52], DVFS [33], [42], [45],
TurboBoost [19] and power management [11] techniques
trigger optimizations based on dynamically identified hardware

†Changxi Liu and Alen Sabu contributed equally to this work.

states (such as core frequency, cache reuse distance, etc.) to
improve both energy-efficiency and overall performance of the
system. Similarly, runtime information at the software level
can be used to dynamically optimize code execution, to further
enhance the system performance. Some of the recent efforts on
software-based optimization focus on dynamically scheduling
tasks among threads [27], [29] to ensure efficient resource
utilization and employing just-in-time (JIT) compilation tech-
niques [22], [46], [67], [70] that generate high-performance
instructions to optimize program execution online. However,
since these techniques utilize dynamic system state informa-
tion in order to deploy optimizations at runtime, the execution
behavior of an application (and, therefore, its performance)
may vary vastly across multiple executions. Such variability
can make it extremely difficult to determine the performance
of a given workload using existing simulation methodologies.

Conventionally, sampled simulation has served as a reli-
able and efficient technique to accelerate the performance
estimation of multi-threaded workloads. In order to achieve
these results, most prior works relied on either (i) profile-
driven sampling [17], [60], [64] or (ii) statistical sampling [43],
[69]. Profile-driven sampled simulation methodologies such
as SimPoint [64], BarrierPoint [17], and LoopPoint [60] split
the execution of an application into a series of repeatable
regions and cluster them based on their execution features. A
representative element from each cluster is then analyzed or
simulated in order to extrapolate the performance of the entire
application. However, these methodologies incur a significant
cost in terms of the preprocessing effort that is needed to
identify representative regions. These costs include the time
required to profile and cluster the execution features of all
application regions, along with the storage required. While
it has been previously argued that these costs are a one-time
investment and will be amortized over multiple runs, this argu-
ment does not necessarily hold for systems that optimize code
execution dynamically. In such cases, the program execution
paths followed by an application may vary considerably due to
changes of hardware and software parameters that are being
optimized. Therefore, the profiling information collected for
one specific run would not necessarily extend to the program
execution paths followed in the subsequent runs.

On the other hand, sampled simulation methodologies such
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as SMARTS [69] and PCantorSim [43] rely on statistical
sampling techniques to speed up simulation-based perfor-
mance measurements while meeting a given error bound.
Unlike profile-driven sampling, these methodologies require
minimal preprocessing and do not rely on the reproducibil-
ity of program execution paths. They are thus applicable
to dynamically optimized systems. However, the simulation
speedups achieved using these techniques are considerably
lower than the profile-driven counterparts, and adjusting set-
tings to achieve higher performance could lead to high errors.

For the above-mentioned reasons, it becomes challenging
to sample and simulate generic multithreaded applications for
dynamic hardware and software using existing methodologies.
Architects need a simulation methodology that can dynami-
cally adapt to changes in the system at runtime while accu-
rately estimating the application’s performance without relying
on the reproducibility of its execution. To this end, we propose
Pac-Sim, a novel sampled simulation methodology that can,
at runtime, efficiently analyze and sample the application to
select the representative regions to be simulated in detail. The
result is a methodology that enables both fast and accurate
performance evaluation without the need for up-front analysis.
We accomplish this by making use of an intelligent online1

predictor and classifier that quickly and accurately decides
whether the upcoming region needs to be simulated in detail.

In short, we make the following contributions:
i. We propose Pac-Sim, a methodology that goes beyond

prior sampled simulation techniques to be the first to
allow for dynamic hardware and software support. The
methodology requires no upfront analysis and relies on an
online predictor for sampling decisions enabling the fast
analysis of co-designed workloads. We will open-source
the simulation framework for Pac-Sim upon acceptance.

ii. We experimentally demonstrate that Pac-Sim consistently
improves performance in terms of speedup and accuracy
over prior works that use offline profiling. We also
quantify the performance benefits obtained by Pac-Sim,
showing that they outweigh its online analysis overheads.

iii. We provide an extensive evaluation of Pac-Sim using
standard benchmarks to compare against prior works
and demonstrate best-in-class accuracy (average error
of 1.63%). For the SPEC CPU2017 benchmarks (train
inputs) running eight threads, we show a maximum serial
speedup of 123.32× (26.09× on average) and a maximum
parallel speedup of 523.5× (210.3× on average).

iv. Finally, we showcase several case studies demonstrating
that Pac-Sim is applicable to a number of research
scenarios, including (but not limited to) the investigation
of optimization techniques such as dynamically scheduled
software, and improving research into dynamic hardware
and hardware-software co-design.

The rest of the paper is organized as follows. In Section II,
we discuss the relevant background and the challenges in-

1We use the terms “online” and “offline” to distinguish between events that
occur during and prior to the simulation of an application, respectively.

volved in the simulation of dynamic applications on modern
architectures. Section III presents the Pac-Sim methodology
in detail. We then describe the experimental infrastructure
in Section IV, followed by an extensive evaluation of Pac-
Sim in Section V along with case studies to demonstrate
the applicability of the proposed methodology. Finally, we
conclude the paper in Section VII.

II. SIMULATING MODERN ARCHITECTURES

In this section, we provide the necessary background of
sampled simulation. We also discuss the challenges in sim-
ulating modern workloads and how the existing sampling
methodologies are insufficient to address them.

Sampling Single-threaded Workloads. Sampling and
workload reduction techniques are extensively utilized in
computer architecture research for the purpose of program
characterization and to reduce simulation time. Sampling
methodologies allow for the evaluation of a subset of the
workload (a representative sample) in detail that can be used to
reconstruct the performance of the whole workload accurately.
These methodologies split the workload into different regions
(or slices) based on predetermined conditions in order to iden-
tify a representative sample. Prior works that explored CPU
workload sampling, like SimPoint [64] and SMARTS [69],
tend to utilize fixed instruction counts to determine regions.
However, instruction count-based techniques could lead to
inconsistent and, therefore, invalid regions [2], [3], [16]. Some
previous works [48], [71] proposed software phase markers
that identify procedure and loop boundaries that correlate with
phase changes to mark region boundaries instead of using
fixed-sized regions. On the other hand, statistical sampling
methods, including SimFlex [68], were proposed for multi-
processor throughput workloads and use instruction count for
statistical sampling, but these works do not appear to be
generally extensible to synchronizing multi-threaded work-
loads [16]. In the presence of synchronizing threads, the
application performance tends to vary more frequently, and
the statistical confidences assuming Gaussian performance
distribution, as shown in SMARTS or SimFlex, may not be
applicable there [21].

Sampling Multi-threaded Workloads. Time-based sam-
pling methodologies [5], [16] are the first to address the prob-
lem of sampling synchronizing multi-threaded applications.
These methodologies, however, are slow, and as a result, they
are not practical for handling realistic workloads. On the other
hand, methodologies like BarrierPoint [17], TaskPoint [38],
and LoopPoint [60] select specific program constructs, such as
barrier synchronization primitives, task instances, and loops,
respectively, to identify periodic behavior. This enables the
utilization of representative-sized regions for simulation, re-
gardless of the program’s length.

Feature Vectors. Profiling captures feature vectors up-
front to characterize the execution behavior of an applica-
tion across regions. Previous works have introduced several
microarchitecture-independent feature vectors, of which basic
block vectors (BBVs) [59], [64] are the most widely used for

2



60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
-s.

1

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1
0

100

200

300

400

W
al

l T
im

e 
(h

r)
BBV Clustering Checkpoint

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
-s.

1

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

102

103

104

105

St
or

ag
e 

(M
B

)

Fig. 1: The figure shows the resource utilization of a recent
multi-threaded sampled simulation technique, LoopPoint, for
the SPEC CPU2017 benchmarks with the ref inputs running
eight OpenMP threads. The graph on the left shows the time
required to generate the profiling data (with checkpoints stored
as pinballs [56]), whereas the graph on the right shows the
amount of storage required.

performance characterization. Lau et al. [47] showed a strong
correlation between BBVs and region performance. Apart
from BBVs, Shen et al. [63] introduced LRU stack distance
vectors (LDVs) [50] to summarize program behavior for
different regions. BarrierPoint [17] combines BBVs and LDVs
into a signature vector (SV) in an attempt to represent more
accurate features of multi-threaded applications. Furthermore,
Cotson [6] and Dynamic sampling [36] record statistics such
as the number of instructions executed, memory accesses,
exceptions, bytes read or written, etc., in order to plot the
feature of a given region. Unfortunately, none of these offline
techniques are capable of representing runtime optimizations
adopted by applications.

Overheads. Figure 1 illustrates the overhead of profiling
data for LoopPoint (the evaluation was performed using the
LoopPoint tools [49]) methodology, indicating that profile-
driven methodologies incur significant overheads. When it is
required to emulate an architecture (for example, simulating
ARM or RISC-V binaries on x86) during profiling, it is
necessary to resort to functional simulation to gather feature
vectors, which can be a time-consuming process. For instance,
Sandberg et al. [62] demonstrated that it took up to a month
to generate profile data for SPEC CPU2006 benchmarks using
simulators like gem5. In addition, profiling for asymmetric
hardware, such as the big.LITTLE cores is challenging as the
operating frequency (and other dynamic hardware settings)
of each core is unknown at the time of profiling. Handling
and storing simulation checkpoints can be a daunting task.
For example, x86 checkpoints like ELFies [57] require a
significant amount of storage space. These checkpoints are
usually specific to the simulator being used, and they are often
tied to a particular software version or hardware configuration.

Hardware and Software Dynamism. Researchers have
introduced several dynamic optimization techniques in hard-
ware and software to achieve higher performance and reduce
power consumption. Techniques such as dynamic voltage and
frequency scaling (DVFS) and cache reconfiguration have

been developed to adjust the hardware state in response
to executed instructions and active processes. Software op-
timization techniques [22], [46], [67], [70] generate high-
performance instructions at runtime. Additionally, dynamic
scheduling techniques [29] have been developed for multi-
threaded applications. In such cases, profile-driven sampling
methodologies result in different performances for each exe-
cution. Methodologies such as trace-based simulations [14] or
deterministic replay platforms [58] can guarantee consistent
performance across multiple executions but demand exten-
sive profiling and large storage resources. Dynamic hardware
events, such as changes in core frequency, cache size, etc., are
unknown during profiling. These events are performance or
power-dependent and are usually hard to predict. Sherwood
et al. [65] utilize a Markov Predictor to predict the phase
behavior at runtime. Kihm et al. [44] propose switching to the
detailed simulation mode whenever the BBV variance exceeds
a specified threshold. But these methods work only for single-
threaded applications as the phase behavior of synchronizing
multi-threaded applications varies frequently due to the inter-
action of threads.

Requirements for Fast and Accurate Simulation. Sam-
pled simulation without upfront analysis is promising under
these dynamic software and hardware constraints. Therefore,
it is imperative to leverage the best aspects of SimPoint-like
and SMARTS-like methodologies to achieve optimal simu-
lation efficiency and accuracy. In this work, we incorporate
application analysis to guide sampled simulations, similar to
SimPoint-like methodologies but without the need for up-
front pre-processing, as seen in SMARTS-like methodologies.
Instead, we make intelligent simulation decisions through
online learning. Moreover, the proposed methodology can
accommodate hardware state changes, software features, and
other factors that affect simulation results. It is essential to
implement efficient and lightweight online profiling, cluster-
ing, and warmup techniques for optimal performance. There-
fore, to quickly estimate the performance of multithreaded
applications running on next-generation dynamic hardware and
software, a sampled simulation methodology is needed that can
dynamically adapt to changes in the system at runtime while
accurately determining relevant performance metrics.

III. THE PAC-SIM METHODOLOGY

In this section, we describe our proposal for an end-to-
end sampled simulation methodology, Pac-Sim (depicted in
Figure 2), that supports both dynamic hardware and software
without requiring up-front workload analysis. Pac-Sim con-
sists of five main stages: Marker Detection, Region Profiling,
Clustering, Prediction, and Simulation, which are all carried
out online. We have carefully designed each of these stages
to minimize the runtime overhead of the methodology while
maintaining the sampling accuracy. An important advantage
of an online sampled simulation methodology like Pac-Sim
is its ability to accurately determine the execution profile
of an application without relying on the reproducibility of a
program’s execution paths. This characteristic allows Pac-Sim
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Fig. 2: Figure depicts the workflow of Pac-Sim. Consider a
multi-threaded workload with regions till Ri are identified (as
shown above). First, Pac-Sim monitors the application code
structure to determine an appropriate region marker Mi+1,
which marks both the end of the region Ri and the start of
the region Ri+1. Next, the feature vector and simulation results
for Ri are collected, and a prediction mechanism determines
the simulation mode for region Ri+1. Finally, region Ri+1 will
be simulated, either in detail or in fast-forward mode.

to accurately analyze and evaluate dynamic multi-threaded
applications, accounting for any performance variability that
may occur at runtime.

Pac-Sim operates by making use of the program structure
and runtime hardware state to identify the regions and their
boundaries online. Each of these region boundaries or markers
defines the ending of the current region and the beginning of
the next region (Section III-A). Once a marker is identified,
Pac-Sim collects the profiling data and simulation results of
the current region (Section III-B) and clusters it with the
previously identified regions to determine its cluster ID (Sec-
tion III-C). This cluster ID is added to the program execution
history, which is then used by the Predictor (Section III-D)
along with the current marker and hardware state to predict
whether the next region needs to be simulated in detailed mode
or fast-forward mode.

While we only demonstrate the effectiveness of Pac-Sim in
estimating the performance of synchronizing multi-threaded
workloads in this work, our methodology has the potential
to support a variety of modern workload classes, such as
cloud and mobile applications, and could also be implemented
for full system simulations. However, in such cases, various
factors must be taken into consideration, such as kernel
and driver performance, which can significantly impact the
overall efficiency of the workloads. In this work, we focus
on user-space workloads, and enabling support for the above-
mentioned use cases is out-of-scope in this context which we
leave for future work.

A. Online Region Detection

Previous research [17], [48], [60] has shown that certain
program constructs, such as barriers or loops, can be utilized to
characterize the phase behavior of multi-threaded applications
by splitting them into a series of individually analyzable
regions. Since barriers represent the global synchronization

points within a program execution, all threads align at these
points, making them natural boundaries for application re-
gions. However, relying solely on barriers to split an applica-
tion may not be ideal, especially in the presence of large inter-
barrier regions, as this can lead to low simulation speedups
as representatives can still be too large to complete detailed
simulation in a reasonable amount of time. In contrast, loops
offer a finer level of granularity, allowing for greater control
over the size of regions. Typically, multi-threaded applications
consist of both loops and barriers in varying proportions.
The online Marker Detector combines both of these program
constructs to effectively split multi-threaded applications into
regions with sizes that are well-suited for clustering while
also avoiding aliasing [18]. The Marker Detector uses the
following approach in order to identify the barrier- and loop-
based markers online:

Barriers. Typically, a multi-threaded region begins with a
fork call, which spawns additional worker threads and ends
with a join call, which terminates the current thread and
synchronizes with other threads. A new region is triggered
at events of thread creation and termination, as regions with
different active threads have different performances. For multi-
threaded programs that use the OpenMP library, special func-
tion names are generated depending on the compiler used.
We utilize this information in the online Marker Detector to
quickly and efficiently detect barriers without much overhead.

Loops. Both loop and conditional statements use conditional
branch instructions, with the target address usually given as an
offset from the instruction pointer. The key difference between
the two statements is that the offset of the branch instructions
in a loop statement is usually negative, whereas that in a
conditional statement is positive. While there are exceptions,
it is generally sufficient to select conditional branches with
negative offsets as markers for loops. We also make sure to
disregard spinloops from our analysis.

As an application executes, the Marker Detector identifies
markers online, splitting the application into multiple regions.
While doing so, it also monitors the region sizes to ensure
they fall approximately within the bounds of δmin and δmax

instructions. A minimum number of instructions, δmin, is
necessary to capture the frequent variations in the multi-
threaded program behavior and accurately cluster the obtained
regions. Whenever the Marker Detector chooses barrier-based
markers as region boundaries, the size of the region can be as
small as δmin instructions but no larger than δmax instructions.
Otherwise, the Marker Detector chooses the first loop-based
marker it encounters beyond δmax instructions as the next
region boundary. For loop-bounded regions, it is necessary to
keep region sizes large enough to avoid aliasing [16]. In our
experiments with fixed region sizes of 10 million, 20 million,
50 million, and 100 million instructions, the SPEC CPU2017
benchmarks showed average error rates of 6.9%, 3.3%, 1.8%,
and 1.8%, respectively. We set the lower bound δmin to be
20 million to ensure sampling accuracy and the upper bound
δmax to be 50 million for better performance.

Hardware State. The Marker Detector also monitors the
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hardware state of the simulated system. If it detects changes,
the current region is ended at the next marker so that each
region has a consistent hardware state. Once a marker is
detected, the program counter (PC) and the hardware state of
the simulated system are collected and stored corresponding to
the marker. The collected hardware state includes the system
parameters, like processor frequency, cache size/configuration,
power management techniques, etc., that can be configured
during runtime.

B. Online Region Profiling

Conventionally, BBVs have been used to characterize the
execution behavior of code regions, as they have been shown to
exhibit a strong correlation with the region’s performance [47].
BBVs record the execution counts of each basic block (i.e.,
code blocks with single entry and exit points) within a given
code region. The number of dimensions for a BBV depends
on the number of basic blocks executed, which could range
anywhere from thousands to even millions for very large ap-
plications. This presents a major challenge for online analysis
of BBVs as the time and effort required for this stage would
significantly increase as the vector dimensionality increases.
SimPoint [64] uses random linear projection [23] to overcome
this problem. However, this method is not suitable for our
online algorithm as the matrix-vector multiplication operations
involved could introduce significant runtime overheads.

To overcome these issues, we propose a fast online BBV
generation technique (illustrated in Figure 3). Rather than
creating a fixed-size BBV for each region, we use an online
projection technique to generate fixed-size vectors BBV ′

i for
each basic block BBi, where the elements of BBV ′

i are
computed by multiplying the instruction count of a basic block
with the hash results of its program counter (PC) value. We
use the hash function drand48(), which generates pseudo-
random numbers for an integer value input. The initial four
dimensions of the online BBV are determined using the
hash values utilizing inputs PC, PC+1, PC+2, and PC+3,
respectively. The values of the subsequent four dimensions are
generated using the output of the preceding four dimensions as
inputs to the hash function. We experimentally determined that
using 16 dimensions adequately captures the representation of
a region using the online BBV. The resultant BBV ′

i vectors are
then accumulated to obtain the per-thread BBV (BBV ′

online)
for the given region, which can be represented as:

BBV ′
online =

∑
i

BBV ′
i =

∑
i

(BBVi ·Mproj),

where the values of the elements in Mproj are generated using
hash functions as mentioned above. This BBV ′

online for a
region is analogous to the BBV utilized in SimPoint, which
is obtained through random linear projection. The projected
down BBV used in SimPoint, BBV ′

offline, is obtained from
the dot product of the actual BBV of the region and projection
matrix Mproj :

BBV ′
offline = BBV ·Mproj =

∑
i

(BBVi ·Mproj).

●●●

hash1 (PC)× #insn

hashd-1(PC)× #insn

hashd (PC) × #insn

⊕

Basic Block BBi

subl t1, 0x2, t1
cmple t1, 0x3, t2
beq t2, 0x1200

BBVi

●●●

BBV

PC,
#insn

d = Dimension of BBV

Fig. 3: The figure shows the workflow of online BBV
generation. Whenever a basic block BBi is encountered, a
corresponding execution fingerprint BBVi is generated using
hash functions applied to the program counter of BBi and
the number of instructions it contains. hash1 to hashd are
d distinct hash functions, where d is the dimension of the
BBV. The BBV for each region is obtained by accumulating
all BBVis that belong to the region.

We then normalize these per-thread BBVs and concatenate
them into a single global-BBV vector to represent the software
feature of a given multi-threaded code region. This eliminates
the need to perform computationally intensive dimensionality
reduction techniques online and allows Pac-Sim to quickly
determine the BBVs without much overhead.

C. Determining Region Similarity

Pac-Sim employs an online clustering mechanism to group
regions with similar execution behavior based on the feature
vectors collected for each region in the online profiling stage.
The clustering, which is done at the end of simulating each
region, is required for the learning process of the Predictor.
Prior works, like SimPoint [64], cluster feature vectors using
the k-means algorithm [37]. However, k-means uses an iter-
ative refinement technique that is computationally intensive,
and therefore, it would not be practical to use this algorithm
for determining region similarity online.

In order to reduce this computational load and enable real-
time clustering, we devise an alternative technique for clus-
tering feature vectors (i.e., global-BBVs) in Pac-Sim. In our
technique, we maintain two separate queues: (i) detailed queue
and (ii) fast-forward queue. The detailed queue includes the
BBVs corresponding to the regions that have been simulated
in detail, while the fast-forward queue includes those corre-
sponding to the regions that have been fast-forwarded. When
a new BBV is recorded, it is first compared with the BBVs in
the detailed queue. If its distance from any of these BBVs is
less than the specified threshold θ, then we return the cluster
ID of the closest region. If there is no region whose distance
is less than θ, we repeat the same procedure with the regions
in fast-forward queue. If we still don’t find similar regions, we
assign a new cluster ID for the current region and insert it into
the BBV queue corresponding to its simulation mode. In our
experiments, we set θ = 0.05 to ensure a reasonable simulation
accuracy while maintaining high speedups. To further improve
the efficiency of our clustering technique, we incorporate the
triangle inequality optimization [32] into our algorithm, which
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Fig. 4: The predictor utilizes the trie [12] data structure to
quickly predict the cluster ID of the next region by searching
for a similar history with the same region start marker Mi.
In this example, the cluster ID of the next region is predicted
to be 2 since the prior region with the cluster ID of 2 has
the same start marker M2 and the longest matching sequence
(2 → 3 → 3). Plot (b) shows the accuracy of the predictor for
different benchmark suites.

can skip redundant BBV distance calculations. We consider
Euclidean distance for all BBV distance calculations.

D. Prediction Mechanism

Pac-Sim employs a Predictor – an online prediction mech-
anism that leverages region markers, execution history, and
hardware state to predict the phase behavior of the next region
in an application and decide its simulation mode at runtime.

Region Markers. The Marker Detector identifies PC-based
region markers that act as the boundaries of the regions. In
certain cases, using region markers to classify regions is effec-
tive for applications where the same part of the code displays
similar phase behavior, as in the case of 619.lbm_s.1 and
644.nab_s.1 using train inputs.

Execution History. When executing the same part of the
source code, differences in memory access patterns, branching,
etc., can result in varying phase behavior at runtime. We,
therefore, make use of execution history, which is a sequence
of the cluster IDs of prior regions, to predict these differences
in the phase behavior among applications.

Hardware State. Pac-Sim takes into account the state of
the simulated system, such as core frequency, while executing
each region. Predictor predicts the next region to be detailed
mode if there are no prior similar regions with the same
hardware state. The Predictor decides the cluster ID of the
next region by choosing the cluster ID of the previous region
with the same region marker and has the longest matching
sequence. For the regions that do not have a previous region
with the same start marker or the same history, Pac-Sim
enables detailed execution for that region. Then it decides
the simulation mode of the next region by checking whether
prior regions with cluster ID and the current hardware state are
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Fig. 5: The graph shows the regions identified using Pac-Sim
for the NPB benchmark ft, grouped together with the respec-
tive cluster they belong to. The shaded portion represents the
regions that are simulated in detail.

simulated in detailed mode. This history is learned online and
is updated every time Pac-Sim finishes simulating a region.

To accelerate this stage for large application lengths, we
further optimize our clustering algorithm to reduce its average
search time complexity from O(n2) to O(n). This is achieved
by maintaining the execution history in a trie [12] data
structure, with a maximum depth of 16, which allows for more
efficient search and insert operations. In Pac-Sim, we utilize
the trie data structure to maintain the execution history of the
application being simulated and quickly predict the cluster ID
of the next region based on this information.

Figure 4a illustrates the usage of tries to predict the cluster
ID of the next region by considering the example of a
hypothetical execution sequence. Insert: The cluster ID of the
current region is inserted into the trie. In Figure 4a, when
the online clustering of the fifth region is finished, we insert
the current cluster ID 2 for both branches corresponding to
the three histories: 3, 3 → 3, and 2 → 3 → 3. Search:
Once Insert of the current region is completed, the cluster
ID of the next region is predicted by searching the trie for
a matching cluster ID sequence. The search operation ends
when the sequence matches one of the leaf node paths. Note
that two regions having the same marker do not necessarily
mean that the regions belong to the same cluster.

Figure 4b shows the average accuracies of the online
predictor for the benchmarks of SPEC CPU2017 and NPB are
94% and 85%, respectively, ensuring the sampling accuracy
and performance of Pac-Sim. The accuracy of the predictor
is determined by comparing the predicted cluster ID prior
to simulating the region with the actual cluster ID obtained
through clustering after simulation. Figure 5 shows the results
of the Predictor in clustering different regions identified by
Pac-Sim simulating the ft benchmark from the NPB bench-
mark suite using eight threads. We observe that the majority
of regions from each cluster are simulated in detail (shaded
portions). This is in accordance with the learning phase of our
algorithm where Pac-Sim works to establish a comprehensive
understanding of the phase behavior of the application.

E. Simulation by Application Reconstruction

Previously proposed multi-threaded sampling methodolo-
gies [17], [60] rely fully on offline analysis to determine the
regions that need to be simulated in detail. Pac-Sim assumes
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Fig. 6: The workflow of Pac-Sim when the representative re-
gions are simulated in parallel. Pac-Sim starts in the emulation
mode, collecting feature vectors and MTR [8] warmup data
online, and then predicts the simulation mode of the next
region. For regions predicted for detailed mode, Pac-Sim forks
new processes to perform warmup and detailed simulation.

no prior knowledge about the nature of the workload that it is
about to simulate. Instead, it (a) samples regions online during
the simulation and (b) uses the detailed simulation results of
previous regions to estimate the performance of the current
fast-forwarded region by applying the four different methods
described below successively until convergence is reached.

i. Use the detailed performance metrics of a region that
belongs to the same cluster and has the same start marker
as the current region.

ii. Use the detailed performance metrics of a region that
belongs to the same cluster.

iii. Use the performance of a region with the closest BBV
(θ = 1) and the same number of active threads.

iv. Use the average performance of the regions that have the
same number of active threads.

We extrapolate the runtime Tr of a fast-forwarded region
r using the region r′ by Tr = Tr′

insnr

insnr′
, where Tr′ is the

runtime of the previous region r′ identified above, and insnr

and insnr′ are the maximum instruction counts among all
threads for the regions r and r′, respectively.

Runtime Hardware Events. Pac-Sim takes into account the
state of the simulated system while estimating the performance
of the fast-forwarded region. As runtime hardware events can
happen at any time, we do not guarantee the regions that are
divided by those events to be large enough. In such cases, we
estimate the performance of these regions using the closest
previous region with the same hardware state, as these regions
are too small to be clustered. Moreover, the impact of these
regions on the overall application performance is typically
negligible as the regions are too short.

F. Sampled Simulation in Parallel

Pac-Sim is primarily targeted for runtime varying scenarios
using live sampling. However, for statically scheduled multi-
threaded applications, Pac-Sim can support sampled simula-
tion in parallel, similar to checkpoint-based mechanisms, to
further speed up the sampled simulation. The workflow of
Pac-Sim for parallel simulation is shown in Figure 6. Previous
methods, like LiveSim [41] and LoopPoint [60], require offline
analysis and store checkpoints for sampled simulation. A huge
amount of storage is required for these methods, as mentioned

in Section II. Pac-Sim starts in emulation mode, collecting
feature vectors and warmup data online, and then predicts the
simulation mode of the next region. For regions predicted for
detailed mode, Pac-Sim forks new processes, which run in
parallel, to perform warmup and detailed simulation. Pac-Sim
reconstructs the performance of the entire application once the
whole application is emulated and the simulation of all regions
is completed.

G. Microarchitectural Warmup

One of the major challenges of sampled simulation is
to build up the accurate microarchitectural state prior to
the detailed simulation of each region. Choosing the right
warmup technique that can directly build this state is cru-
cial in order to achieve the highest speedup. Methodologies
like SMARTS [69] and time-based sampling techniques [5],
[16] keep functional warming enabled for the entire sampled
simulation leading to large slowdowns. We find that the statis-
tical warmup techniques [8], [40], [54], [66] can reconstruct
the accurate microarchitectural state of a simulated system
online. We select MTR [8] to be used with Pac-Sim as it
can rapidly collect memory reference patterns during fast-
forward mode and reconstruct the cache state before switching
to detailed mode. Caches are larger structures compared to
branch predictors or prefetchers, and hence we limit the simu-
lation infrastructure to explicit cache warming, as the smaller
structures, like prefetchers, are warmed quickly. Moreover, we
maintain larger regions (minimum region sizes of 20 million
instructions) to achieve good warm-up performance for other
microarchitectural structures. It is also possible to increase
the amount of warmup needed for different structures, and
there are different ways to solve this problem, but warmup
is a challenge that is workload-specific. The exploration of
additional warmup scenarios is outside the scope of this work.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used
to evaluate Pac-Sim. We begin by providing the details of
the simulation framework used in our experiments. We then
describe the different workloads that are used to evaluate the
performance of our methodology.

A. Simulation Tools

In this work, we use a modified version of the Sniper
multi-core simulator [15] (version 7.4), which is updated to
support loop-based and barrier-based region specifications in
order to evaluate Pac-Sim. Sniper is a many-core simulator
using high-level abstract models and is widely used for ar-
chitectural evaluation and design space exploration. Note that
our methodology does not utilize any features specific to the
Sniper simulator. Therefore, porting the methodology to other
simulators, such as gem5 [10] or ZSim [61], should be rela-
tively straightforward. To demonstrate that Pac-Sim is indeed
a microarchitecture-independent methodology, we experimen-
tally evaluate it by running simulations upon two different
processor configurations that mimic the performance/behavior
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of Intel’s Gainestown and Skylake2 [28] microarchitectures
using Sniper. The configuration details for each of these
models are listed in Table I.

TABLE I: The configuration parameters we used for
Gainestown and Skylake microarchitectures on Sniper.

Component Gainestown Parameters Skylake Parameters

Processor 1, 8 cores 1, 8 cores
Core 2.66 GHz, 128-entry ROB 2.66 / 3.7 GHz, 224-entry ROB
L1-I / L1-D 32KB, 4 / 8 way, LRU 32KB, 8 / 8 way, LRU
L2 cache 256KB, 8 way, LRU 1MB, 16 way, LRU
L3 cache 8MB (shared), 16 way, LRU 22MB (shared), 12 way, LRU

In order to speed up the simulation, Pac-Sim intelligently
switches among the three simulation modes supported by
Sniper, namely, fast-forward mode, cache-only mode, and
detailed simulation mode. The fast-forward mode is used to
reach a particular point in an application during simulation
without enabling the performance models. The cache-only
mode performs the functional warming of the caches, whereas
the detailed simulation mode is the default simulation mode
that enables the timing model for performance estimation.
For Pac-Sim, we capitalize on this split execution and timing
model architecture to fast-forward in the front-end of the
simulator so that the simulation wall time is further minimized.

Every time Pac-Sim switches from fast-forward to de-
tailed simulation mode; the cache state is reconstructed at
the beginning of the region using the memory time-stamp
record (MTR) [8] technique. We implement MTR in Sniper to
collect the cache line information accessed by each Load and
Store instruction during simulation, ordered in LRU fashion
per set, and then inject the requests into the cache in the correct
order to rebuild the appropriate cache state.

B. Benchmarks Used

To demonstrate the wide applicability of Pac-Sim, we exper-
imentally evaluate the methodology using multiple benchmark
suites such as (i) the SPEC CPU2017 benchmark suite [13],
(ii) the NAS Parallel Benchmarks (NPB) [7] version 3.4.2,
and (iii) the PARSEC [9] version 3.0 benchmark suite. Note
that these are multi-threaded benchmarks that synchronize
frequently and share memory.

We configure these benchmarks to use two different multi-
threaded programming models, namely OpenMP [55] and
OmpSs [29]. OpenMP [55] provides a set of compiler di-
rectives, library routines, and environment variables that help
developers to parallelize their code. On the other hand,
OmpSs [29] extends OpenMP, and it is able to dynamically
manage and schedule tasks to maximize multi-threaded appli-
cation performance. We set up the multi-threaded benchmarks
to use passive thread wait policy, meaning that the threads
will sleep while waiting for other threads at a synchronization
point.

2Note that Gainestown is the latest microarchitecture available on Sniper
simulator that has been validated against hardware. We made modifications
to the back-end of Sniper to support the contention model and instruction
latencies for Skylake architecture.
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Fig. 7: A comparison of the absolute runtime prediction error
for LoopPoint and Pac-Sim for 8-threaded SPEC CPU2017
benchmarks using train inputs. Pac-Sim achieves similar levels
of accuracy compared to LoopPoint.

SPEC CPU2017 is a collection of benchmarks used for
performance evaluation in computer architecture research.
In our experiments, we use the speed version of multi-
threaded SPEC CPU2017 benchmarks that are parallelized
with OpenMP. The benchmarks are compiled using GCC 6.4.0
and GFortran with the -O3 compiler flag for x86-64 architec-
ture. We configure these benchmarks to run with eight threads
and evaluate them using the train input set. NAS Parallel
Benchmarks (NPB) [7] is another set of benchmarks widely
used to evaluate the performance of highly parallel systems
in computer architecture. The reference implementations of
these benchmarks are available in the two most commonly
used programming models, i.e., MPI and OpenMP. In our
experiments, we use the OpenMP-based implementation with
input class A and generate the binaries using icc compiler
(with -O2 flag) as part of the Intel oneAPI (version 2022.0.2)
toolkit. We also present experimental evaluations of Pac-Sim
using PARSEC, which is another standard benchmark suite
consisting of computationally intensive applications designed
to facilitate the study of multi-core systems with shared mem-
ory. PARSEC implementations are available in both OpenMP
and OmpSs [20] versions. In our experiments, we use both
these versions with the simlarge input set.

V. EVALUATION

In this section, we first present a comprehensive evaluation
of Pac-Sim, comparing its efficacy with the current state-of-
the-art. Additionally, we provide experimental evidence show-
ing that Pac-Sim is indeed a hardware-independent method-
ology. Finally, we present case studies that demonstrate the
applicability and effectiveness of Pac-Sim in estimating work-
load performance in dynamic, multi-threaded hardware and
software environments. Note that, throughout this paper, the
term runtime refers to the simulated runtime of the application,
whereas the term wall-time refers to the actual time taken by
the simulator to finish the run.
Evaluation metrics. In order to evaluate the effectiveness
of any simulation methodology, it is crucial to quantitatively
measure its performance in terms of two critical metrics:
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Fig. 8: The parallel and serial speedups of Pac-Sim are compared with that of LoopPoint for 8-threaded SPEC CPU2017
benchmarks using train inputs. For speedup calculations, the simulation walltime corresponding to Pac-Sim includes both
online analysis and simulation time, whereas, for LoopPoint, we consider only the checkpoint simulation time, excluding the
time required for offline profiling and checkpoint generation.
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Fig. 9: The accuracy and serial speedup achieved for Pac-Sim methodology when simulated using Gainestown and Skylake
architectures for NPB benchmarks with class A inputs running eight threads and one thread.

accuracy and speedup. In our experiments, we define these
metrics in the following manner:

Accuracy: We assess the accuracy of our proposed method-
ology by comparing the simulation runtime obtained from the
full simulation and the sampled simulation in terms of absolute
runtime prediction error ∆time, which is defined as

∆time =
|Tfull − Tsample|

Tfull
,

where Tfull represents the simulation runtime obtained from
the full run, and Tsample represents the simulation runtime
extrapolated from the sampled simulation. It is important to
note that in our evaluation, we use the runtime (execution
time as inferred from simulation) of the application as the
performance metric to measure the accuracy of sampling. This
is because time-per-program is the gold-standard performance
measure, and IPC is not a valid performance metric for multi-
threaded applications [3].

Speedup: In our experiments, we calculate the speedup by
taking the ratio of the wall-clock time for the full simulation
to that of the sampled simulation and the average speedup
by computing the geometric mean of the speedups across all
benchmarks. Serial speedup is defined as the speedup achieved
when all representative regions are simulated sequentially,

while parallel speedup is obtained when the representative
regions are simulated in parallel, assuming infinite resources.

A. Comparison with the State-of-the-Art

In this section, we evaluate the performance of Pac-Sim
in comparison to the state-of-the-art profile-driven sampled
simulation methodology, LoopPoint [60]. While several other
profile-driven methodologies exist, LoopPoint provides the
benefit of being applicable across a variety of application and
synchronization types. It has also been shown to outperform
other multithreaded sampled simulation methodologies (such
as BarrierPoint) in terms of speedup and accuracy, thus serving
as a strong baseline for our evaluations. We now report the re-
sults of our simulation experiments evaluating and comparing
the performance of these two methodologies using the SPEC
CPU2017 benchmarks.

Accuracy. Figure 7 shows a comparison of absolute runtime
prediction errors for Pac-Sim and LoopPoint obtained for the
8-threaded SPEC CPU2017 benchmarks using train inputs.
Our analysis reveals that, in most cases, Pac-Sim performs
comparably with LoopPoint in predicting the runtime of the
applications, with the individual errors differing by no more
than 2 to 3%. The relatively higher errors for some appli-
cations, such as 619.lbm_s.1 is because Pac-Sim relies

9



60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

ge
om

ean

105

106

107

108

W
al

lti
m

e 
(s

)

1 day

1 week
1 month

1 year

Detailed Sim Pac-Sim Pac-Sim (parallel)

Fig. 10: A comparison of the estimated walltime for fully de-
tailed simulation and sampled simulation using the serial and
parallel versions of Pac-Sim for 8-threaded SPEC CPU2017
benchmarks using ref inputs. The estimated walltime includes
the time required for online analysis, warmup, and simulation.

on online extrapolation to estimate application performance
using the limited profile data that is available from regions
that have already been simulated. Whereas methodologies like
LoopPoint rely on offline profiling and therefore utilize the
information about the whole application.

Speedup. Figure 8 shows the speedup comparison of Pac-
Sim and LoopPoint for the SPEC CPU2017 benchmarks using
train inputs running eight threads. Figure 8a shows the parallel
speedup for which Pac-Sim outperforms LoopPoint in most
cases (7 out of 12 benchmarks). The primary reason for this is
that Pac-Sim uses smaller regions as compared to LoopPoint.
Although Pac-Sim requires emulation of the entire application,
the online analysis overhead is minimized, and therefore, the
average parallel speedup for SPEC CPU2017 benchmarks
(train inputs) using Pac-Sim is 210.3×, which is larger than
that obtained for LoopPoint (150.97×).

Figure 8b shows the serial speedup, and we observe Pac-
Sim outperforms LoopPoint in most cases, attaining a max-
imum serial speedup of 123.32×. While the online analysis
can introduce some runtime overheads, the performance ad-
vantages of Pac-Sim seem to outweigh these overheads in
most cases. However, there are some cases where LoopPoint
performs better than Pac-Sim, such as for 627.cam4_s.1
and 628.pop2_s.1 benchmarks in Figure 8b. This is mainly
because Pac-Sim uses a small clustering threshold (0.05) for
the online clustering in order to maintain high accuracy.

Efficacy in Evaluating Realistic Workloads. The full
detailed simulation of SPEC CPU2017 benchmarks with ref-
erence inputs takes an extremely long time – about a year
on average using multi-core simulators like Sniper. Instead,
we estimate their simulation walltime by considering the in-
struction count of the benchmark using reference inputs along
with the average simulation rate of the benchmark using train
inputs. The walltime of Pac-Sim includes the time required for
online analysis and emulation of the entire workload along
with the time for detailed simulation of the representative
regions. Figure 10 shows that Pac-Sim takes less than a week,
on average, to run the entire application sequentially, while the
parallel version of Pac-Sim takes about 1.8 days on average. In

0 20 40 60 80 100
Time Spent (%)

PARSEC.simlarge
NPB.A

SPEC.train

Detail Fast-forward Warmup Analysis

Fig. 11: The graph shows the percentage of time that Pac-
Sim spends at each phase during the sampled simulation
of each benchmark suite (average across all benchmarks).
The Analysis part includes online marker detection, region
profiling, clustering, and prediction.

experiments where the microarchitecture structures like cache
size are adjusted or when the application itself undergoes
instruction-level modifications, it is necessary to regenerate
the checkpoints. In such cases, Pac-Sim is more appropriate
as LoopPoint takes 6.2 days on average (shown in Figure 1)
to complete its preprocessing before simulation.

Microarchitecture-agnostic sampling. In addition to
achieving high accuracy and speedups, Pac-Sim also pro-
vides the advantage of being a microarchitecture-independent
methodology. We experimentally demonstrate this by evaluat-
ing our methodology with two different processor configura-
tions, namely the Gainestown and Skylake microarchitectures,
for the NPB benchmarks that run using one thread and
eight threads. The accuracy and speedup numbers obtained
in our experiments are plotted in Figure 9a and Figure 9b,
respectively. From Figure 9a, we can observe that the absolute
runtime errors estimated by Pac-Sim for all NPB applications
are quite low (all under 8%) and are similar for both these
processor configurations (differing by 5% at most). Moreover,
the speedups obtained for both configurations are similar for
most benchmarks, as observed in Figure 9b. Hence, the choice
of a target microarchitecture for evaluation does not affect the
efficacy of Pac-Sim.

Wall-time Distribution. We show the time spent by Pac-
Sim in different stages of sampled simulation. Figure 11 shows
the average time spent in the online analysis stage for NPB
(class A inputs) and SPEC CPU2017 (train inputs) benchmarks
is 7.88% and 11.20%, respectively. This is the result of the
optimizations described in Section III, which are applied to the
analysis part. Moreover, Pac-Sim spends 8.25% and 16.00% of
the execution time on warmup for NPB and SPEC CPU2017
benchmarks, respectively. This is because Pac-Sim needs to
reconstruct the memory access patterns at the beginning of
the detailed simulation of a region. Note that Pac-Sim brings
down the time spent in profiling/analysis of the benchmarks
significantly as compared to prior profile-driven methodologies
for sampled simulation.

B. Case Studies

We showcase the versatility of Pac-Sim through several
compelling case studies. Firstly, we demonstrate that our
methodology remains agnostic to dynamic thread scheduling
decisions made during runtime, highlighting its robustness
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and adaptability. Next, we provide examples of how Pac-
Sim operates seamlessly in the presence of various runtime
hardware events, further cementing its reliability. Finally,
we exhibit the applicability of the proposed methodology in
hardware-software co-design studies, showcasing its potential
to facilitate more efficient and effective design processes.

1) Dynamically Scheduled Software
With the advent of multi-core and many-core processors,

efficient parallel execution of dynamically scheduled multi-
threaded applications has become crucial to the performance
of modern computing systems. However, the non-determinism
resulting from the execution of such applications on multi-
core platforms often leads to notable performance variability
across multiple runs. At the software level, such variability
could arise from dynamic scheduling of system jobs, thread
migrations, load balancing optimizations, or contention on
shared resources at runtime.

TABLE II: Table shows the IPC of freqmine benchmark
from the PARSEC benchmark suite using simlarge input for
threads 0, . . . , 7. Pac-Sim shows the details of dynamically
scheduled software whose IPC and thread mapping differ
across two runs.

Thread ID 0 1 2 3 4 5 6 7 Aggr.

IPCrun1 0.15 0.09 1.75 0.43 0.07 0.07 0.10 0.09 2.75
IPCrun2 0.15 0.09 1.76 0.07 0.44 0.07 0.09 0.10 2.76

Table II illustrates the thread-level differences in terms of
IPC for two runs of the OpenMP-parallelized freqmine
application from the PARSEC benchmark suite. There are vari-
ations in the per-thread IPCs between the two runs, particularly
for thread IDs 3 and 4. To investigate the impact of these
variations on conventionally used sampling techniques, we
conducted two profiling runs of freqmine using LoopPoint.
The experimental result revealed that 14% of the regions were
clustered differently for the second run as compared to the first.
This presents a challenge for sampled simulation, which relies
on profiling data from a prior execution to guide simulation in
subsequent runs, as dynamic applications have variant profiling
data across different executions. To overcome these issues,
Pac-Sim profiles and clusters the regions online and simulates
them in the same run, thereby accounting for any performance
variability that may occur at runtime.

To demonstrate the effectiveness of Pac-Sim in this re-
gard, we now present an experimental study of dynamically
scheduled multi-threaded versions of PARSEC with simlarge
inputs and NPB with class A inputs. While the per-thread
behavior varies for dynamically scheduled applications, the
global execution time and global IPC remain consistent across
multiple runs. In Table II, we observe that while there are
some variations in per-thread behavior, the aggregate IPCs
across the two runs remain nearly unchanged. Figure 12
demonstrates the average runtime prediction errors of Pac-Sim
simulating dynamically scheduled multi-threaded applications.
We run the benchmarks multiple times in full detailed mode
and using Pac-Sim. The errors are calculated by comparing
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Fig. 12: Figure shows the average error rates (from five
different runs) and error bars in predicting the runtime of
dynamically scheduled benchmarks. We use PARSEC bench-
marks with the simlarge input using OmpSs and OpenMP, and
NPB benchmarks with class A inputs using OpenMP runtime.

the runtime obtained using Pac-Sim with the average runtime
obtained from the full detailed simulations. The results show
that Pac-Sim achieves a very low error in predicting the run-
time of dynamically scheduled software (3.81% on average).
The benchmark, freqmine, which shows the largest IPC
variation maintains an average error of 11.43%. Moreover,
Pac-Sim demonstrates speedups of up to 43.96× (6.29× on
average) for all dynamically scheduled benchmarks.

2) Dynamic Hardware Events
Dynamic event-based hardware optimizations help improve

performance gains and energy efficiency in modern archi-
tectures. DVFS [33], [42], [45] is one of the most widely
employed dynamic hardware event-based optimization tech-
niques. It monitors core frequencies and load variations in or-
der to match the system power consumption with the required
level of performance by triggering voltage and frequency
optimizations at runtime. These optimizations may lead to a
diverse range of dynamic hardware states (i.e., core frequency,
power configurations) over a given run, consequently resulting
in a significant degree of performance variability for a given
workload across different executions.

Pac-Sim deals with this performance variability by moni-
toring the simulated hardware events at runtime. While prior
sampled simulation methodologies only support dynamic hard-
ware events triggered at region boundaries to ensure that the
hardware state remains constant for a given region, Pac-Sim
supports hardware events at any time during the application
execution. Each time an event occurs, Pac-Sim triggers a new
region to ensure hardware state consistency within that region.
The predictor then speculates the cluster ID of the next region
and checks the execution history to determine whether similar
regions (i.e., regions with the same cluster ID and hardware
state) were previously encountered. If a similar region has been
previously simulated in detail, the region is fast-forwarded;
otherwise, a detailed simulation mode is triggered.

We now present an experimental study demonstrating the
effectiveness of Pac-Sim in handling the variability caused
by dynamic hardware events by specifically considering the
case of DVFS-optimized workloads. In our experiments, we
evaluate the performance of the benchmarks by comparing
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Fig. 13: The aggregate giga (billion) instructions per sec-
ond (GIPS) of the full run (a), reconstructed GIPS using
Pac-Sim (b), and the varying CPU frequency for all CPUs
(c) 644.nab_s.1 benchmark with train inputs running 8
threads. The shaded regions in (b) represent the regions
simulated in detail. The figures share the same x-axis.

the results of Pac-Sim with the baseline while changing the
frequency at predetermined intervals; however, just like in
actual DVFS-optimized executions, the information on the
frequency changes is not available to the simulator a priori. In
order to evaluate the performance of Pac-Sim, we consider a
DVFS scenario in which the processor frequency f switches
among a fixed range of values, i.e., f ∈ {1.33 GHz, 2.00 GHz,
2.66 GHz} as shown in Figure 13c.

For this scenario, we measure the aggregate giga/billion
instructions per second (GIPS) values obtained from both the
full detailed simulation and Pac-Sim over the entire execution.
The findings of our experiment are presented in Figure 13.
We observe that the GIPS values obtained from both the
full simulation (Figure 13a) and Pac-Sim (Figure 13b) exhibit
a great deal of similarity, indicating Pac-Sim’s effectiveness
in estimating the performance of a dynamically optimized
workload with a high level of accuracy. Furthermore, our
findings reveal that Pac-Sim simulates only a small fraction
of the entire application in detail (depicted by shaded regions
in Figure 13b). Notably, most of the detailed simulation
occurs either at points of change in the phase behavior of the
application or hardware states. This demonstrates that Pac-Sim
can use this information to identify a minimal representative
subset for applications using online analysis.

3) Hardware-Software Co-design
Hardware-software co-design is an emerging field of study

that optimizes the system performance by concurrently de-
signing the compiler and hardware components of a system
to exploit the synergy between the two. Prior works [35],
[39], [72] have investigated several directions in this context.
To identify the most effective strategies, hardware-software
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Fig. 14: The figure shows the absolute difference in perfor-
mance (in terms of runtime) for NPB benchmarks using class
A inputs and 8 threads with (w/) and without (w/o) SSE2
simulated in detailed mode and with Pac-Sim.

co-design research relies on fast and accurate architectural
simulation methodologies to explore the design space effi-
ciently. However, among existing methodologies, the profile-
driven methodologies [17], [64] incur significant profiling
and preprocessing costs, as shown in Figure 1, whereas the
statistical sampling methodologies [43], [69] (which don’t rely
on preprocessing) have low speedups.

Pac-Sim addresses these issues by sampling and analyzing
the regions online. Thus, it incurs no additional profiling cost
if new compilers are used or new applications are generated,
enabling fast and efficient exploration of hardware-software
co-design space. To demonstrate the effectiveness of Pac-Sim
in this regard, we now present a performance evaluation study
of the NPB benchmarks under different compiler optimization
techniques. We study the impact of SIMD (Single Instruction,
Multiple Data) optimizations on the generated binaries using
both Pac-Sim and full detailed simulations. SIMD-enabled
processors are equipped with special-purpose registers that
can simultaneously load multiple machine words and perform
operations on them in parallel in order to improve processor
performance. For instance, the Streaming SIMD Extensions 2
(SSE2) instruction set uses 128-bit XMM registers to process
packed data elements at once.

In our experiments, we measure the performance improve-
ment (in terms of runtime) obtained by enabling SSE2 and
compare it against the baseline. The results of our simula-
tions are graphed in Figure 14. We observe that the average
difference in the performance improvements obtained from
full detailed mode and Pac-Sim is 3.65%. Specifically, Pac-
Sim reveals the performance effects of SIMD instructions. For
example, some benchmarks achieve a significant speedup over
the baseline as these applications meet the icc vectorization
criteria [26]. ft calculates a 3D fast Fourier transform, and
its innermost loop consists of multiply-add statements with
contiguous memory accesses and no data dependency. On the
other hand, is, which uses the quick sort algorithm, is hard to
vectorize. The SIMD overheads resulting from register transfer
costs exacerbate the overall application performance.

VI. RELATED WORK

We have discussed the most relevant previous works in Sec-
tion II. Sampled simulation has been an active research area
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for several decades, and several techniques were proposed [5],
[6], [16], [17], [38], [41], [60], [62], [64], [68], [69] in this
direction for different workload classes primarily for the re-
duction of simulation time and resources. In order to simulate
the identified sample correctly, it is important to reconstruct
the microarchitectural state of the system using techniques
like statistical warming [8], [30], [40], [53], checkpoint-based
warming [54], [66], or by enabling functional simulation. An-
alytical modeling is yet another solution to evaluate a complex
workload quickly. Prior works proposed analytical models to
derive the performance of processors [24], [34], cache miss
rates [31], branch miss rates [25], DVFS performance [1], etc.
However, analytical performance modeling can be limited in
supporting new designs, requiring new models for each.

VII. CONCLUSION

This work proposes a novel sampled simulation methodol-
ogy and infrastructure called Pac-Sim. The work focuses on
what is needed to simulate dynamic software that responds
to workload- and run-time-specific execution conditions. Pac-
Sim is the first, to the best of our knowledge, to propose a
sampling solution that simulates these dynamic conditions in
both a fast (up to 523.5× speedup, 210.3× on average) and
accurate way (average errors of 1.63% and 3.81% for statically
and dynamically scheduled benchmarks, respectively).
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M. Valero, “Parsecss: Evaluating the impact of task parallelism in the
parsec benchmark suite,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 12, no. 4, pp. 1–22, 2015.

[21] T. Chen, Y. Chen, Q. Guo, O. Temam, Y. Wu, and W. Hu, “Statistical
performance comparisons of computers,” in IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2012, pp.
1–12.

[22] W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies, “Mojo: A
dynamic optimization system,” in 3rd ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-3), 2000, pp. 81–90.

[23] S. Dasgupta, “Experiments with random projection,” in Proceedings of
the Sixteenth Conference on Uncertainty in Artificial Intelligence, 2000,
pp. 143–151.

[24] S. De Pestel, S. Van den Steen, S. Akram, and L. Eeckhout, “RPPM:
Rapid performance prediction of multithreaded workloads on multicore
processors,” in International Symposium on Performance Analysis of
Systems and Software (ISPASS), Mar. 2019, pp. 257–267.

[25] S. De Pestel, S. Eyerman, and L. Eeckhout, “Micro-architecture inde-
pendent branch behavior characterization,” in 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2015, pp. 135–144.

[26] M. Deilmann et al., “A guide to vectorization with Intel C++ compilers,”
Intel Corporation, pp. 20–21, 2012.

[27] A. Diavastos and P. Trancoso, “Switches: A lightweight runtime for
dataflow execution of tasks on many-cores,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 14, no. 3, pp. 1–23,
2017.

[28] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
Intel Core: New microarchitecture code-named Skylake,” IEEE Micro,
vol. 37, no. 2, pp. 52–62, 2017.
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Sampled simulation of task-based programs,” in International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), Apr.
2016, pp. 296–306.

[39] A. Hajiabadi, A. Diavastos, and T. E. Carlson, “NOREBA: A compiler-
informed non-speculative iut-of-order commit processor,” in Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2021, p.
182–193.

[40] J. W. Haskins and K. Skadron, “Memory reference reuse latency:
Accelerated warmup for sampled microarchitecture simulation,” in IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2003, pp. 195–203.

[41] S. Hassani, G. Southern, and J. Renau, “LiveSim: Going live with
microarchitecture simulation,” in International Symposium on High
Performance Computer Architecture (HPCA), Mar. 2016, pp. 606–617.

[42] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An
analysis of efficient multi-core global power management policies: Max-
imizing performance for a given power budget,” in 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2006, pp. 347–358.

[43] C. Jiang, Z. Yu, H. Jin, C. Xu, L. Eeckhout, W. Heirman, T. E. Carlson,
and X. Liao, “PCantorSim: Accelerating parallel architecture simulation
through fractal-based sampling,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 10, no. 4, Dec. 2013.

[44] J. L. Kihm, S. D. Strom, and D. A. Connors, “Phase-guided small-
sample simulation,” in 2007 IEEE International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS), 2007, pp. 84–93.

[45] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core dvfs using on-chip switching regulators,” in 2008
IEEE 14th International Symposium on High Performance Computer
Architecture (HPCA), 2008, pp. 123–134.

[46] N. Kulkarni, F. Qi, and C. Delimitrou, “Pliant: Leveraging approxima-
tion to improve datacenter resource efficiency,” in 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2019, pp. 159–171.

[47] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder, “The
strong correlation between code signatures and performance,” in IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2005.

[48] J. Lau, E. Perelman, and B. Calder, “Selecting software phase markers
with code structure analysis,” in International Symposium on Code
Generation and Optimization (CGO), Mar. 2006, pp. 135–146.

[49] “LoopPoint tools,” https://github.com/nus-comparch/looppoint.
[50] R. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation

techniques for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2,
pp. 78–117, 1970.

[51] S. Mittal, Y. Cao, and Z. Zhang, “Master: A multicore cache energy-
saving technique using dynamic cache reconfiguration,” IEEE Transac-
tions on very large scale integration (VLSI) systems, vol. 22, no. 8, pp.
1653–1665, 2013.

[52] S. Mittal, Z. Zhang, and J. S. Vetter, “Flexiway: A cache energy saving
technique using fine-grained cache reconfiguration,” in 2013 IEEE 31st
International Conference on Computer Design (ICCD), 2013, pp. 100–
107.

[54] N. Nikoleris, A. Sandberg, E. Hagersten, and T. E. Carlson, “CoolSim:
Statistical techniques to replace cache warming with efficient, virtualized
profiling,” in 2016 International Conference on Embedded Computer

[53] N. Nikoleris, L. Eeckhout, E. Hagersten, and T. E. Carlson, “Directed
statistical warming through time traveling,” in International Symposium
on Microarchitecture (MICRO), Oct. 2019, pp. 1037–1049.
Systems: Architectures, Modeling and Simulation (SAMOS), 2016, pp.
106–115.

[55] “OpenMP 3.1 API C/C++ Syntax Quick Reference Card,” https://www.
openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf.

[56] H. Patil and T. E. Carlson, “Pinballs: portable and shareable user-level
checkpoints for reproducible analysis and simulation,” in Workshop on
Reproducible Research Methodologies (REPRODUCE), Feb. 2014.

[57] H. Patil, A. Isaev, W. Heirman, A. Sabu, A. Hajiabadi, and T. E. Carl-
son, “ELFies: Executable region checkpoints for performance analysis
and simulation,” in International Symposium on Code Generation and
Optimization (CGO), Feb./Mar. 2021, pp. 126–136.

[58] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “PinPlay:
A framework for deterministic replay and reproducible analysis of
parallel programs,” in International Symposium on Code Generation and
Optimization (CGO), Apr. 2010, pp. 2–11.

[59] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and
C. Dulong, “Detecting phases in parallel applications on shared memory
architectures,” in International Parallel Distributed Processing Sympo-
sium (IPDPS), Apr. 2006.

[60] A. Sabu, H. Patil, W. Heirman, and T. E. Carlson, “LoopPoint:
Checkpoint-driven sampled simulation for multi-threaded applications,”
in International Symposium on High Performance Computer Architec-
ture (HPCA), 2022.

[61] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in International Symposium
on Computer Architecture (ISCA), Jun. 2013, pp. 475–486.

[62] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and
D. Black-Schaffer, “Full Speed Ahead: Detailed architectural simula-
tion at near-native speed,” in 2015 IEEE International Symposium on
Workload Characterization (IISWC), 2015, pp. 183–192.

[63] X. Shen, Y. Zhong, and C. Ding, “Locality phase prediction,” in Pro-
ceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2004,
p. 165–176.

[64] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automat-
ically characterizing large scale program behavior,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Oct. 2002, pp. 45–57.

[65] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” in
Proceedings of the 30th Annual International Symposium on Computer
Architecture (ISCA), 2003, p. 336–349.

[66] M. Van Biesbrouck, B. Calder, and L. Eeckhout, “Efficient sampling
startup for simpoint,” IEEE Micro, vol. 26, no. 4, pp. 32–42, 2006.

[67] M. J. Voss and R. Eigemann, “High-level adaptive program optimization
with adapt,” in Proceedings of the Eighth ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming (PPoPP), 2001,
pp. 93–102.

[68] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “SimFlex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, 2006.

[69] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in International Symposium on Computer Architecture (ISCA),
Jun. 2003, pp. 84–97.

[70] X. You, C. Liu, H. Yang, P. Wang, Z. Luan, and D. Qian, “Vectorizing
SpMV by exploiting dynamic regular patterns,” in Proceedings of the
51st International Conference on Parallel Processing (ICPP), 2022, pp.
1–12.

[71] C. Yount, H. Patil, and M. S. Islam, “Graph-matching-based simulation-
region selection for multiple binaries,” in International Symposium on
Performance Analysis of Systems and Software (ISPASS), Mar. 2015, pp.
52–61.

[72] J. Zeng, H. Kim, J. Lee, and C. Jung, “Turnpike: Lightweight soft error
resilience for in-order cores,” in 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2021, p. 654–666.

14

https://github.com/nus-comparch/looppoint
https://www.openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf
https://www.openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf

	Introduction
	Simulating Modern Architectures
	The Pac-Sim Methodology
	Online Region Detection
	Online Region Profiling
	Determining Region Similarity
	Prediction Mechanism
	Simulation by Application Reconstruction
	Sampled Simulation in Parallel
	Microarchitectural Warmup

	Experimental Setup
	Simulation Tools
	Benchmarks Used

	Evaluation
	Comparison with the State-of-the-Art
	Case Studies
	Dynamically Scheduled Software
	Dynamic Hardware Events
	Hardware-Software Co-design


	Related Work
	Conclusion
	References

