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ABSTRACT
Improving the speed of computer architecture evaluation is of para-
mount importance to shorten the time-to-market when developing
new platforms. Sampling is a widely used methodology to speed
up workload analysis and performance evaluation by extrapolating
from a set of representative detailed regions. Installing an accu-
rate cache state for each detailed region is critical to achieving
high accuracy. Prior work requires either huge amounts of stor-
age (checkpoint-based warming), an excessive number of memory
accesses to warm up the cache (functional warming), or the collec-
tion of a large number of reuse distances (randomized statistical
warming) to accurately predict cache warm-up effects.

This work proposes DeLorean, a novel statistical warming and
sampling methodology that builds upon two key contributions:
directed statistical warming and time traveling. Instead of collecting a
large number of randomly selected reuse distances as in randomized
statistical warming, directed statistical warming collects a select
number of key reuse distances, i.e., the most recent reuse distance
for each unique memory location referenced in the detailed region.
Time traveling leverages virtualized fast-forwarding to quickly
‘look into the future’ — to determine the key cachelines — and
then ‘go back in time’ — to collect the reuse distances for those
key cachelines at near-native hardware speed through virtualized
directed profiling.

Directed statistical warming reduces the number of warm-up ref-
erences by 30× compared to randomized statistical warming. Time
traveling translates this reduction into a 5.7× simulation speedup.
In addition to improving simulation speed, DeLorean reduces the
prediction error from around 9% to around 3% on average. We fur-
ther demonstrate how to amortize warm-up cost across multiple
parallel simulations in design space exploration studies. Implement-
ing DeLorean in gem5 enables detailed cycle-accurate simulation
at a speed of 126MIPS.

CCS CONCEPTS
• Computing methodologies → Modeling and simulation; •
Hardware → Analysis and design of emerging devices and
systems; • Computer systems organization → Serial architec-
tures.
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1 INTRODUCTION
Computer architects use a variety of tools andmethodologies to ana-
lyze workloads and evaluate new design enhancements. Instrumen-
tation and profiling using tools such as Pin [18] and Valgrind [21]
are useful to analyze a workload’s characteristics, e.g., generate
working set curves to visualize cachemiss rate as a function of cache
size. Cycle-accurate architecture simulation, e.g., gem5 [8], models
cycle-by-cycle execution behavior to predict a workload’s perfor-
mance on a particular microprocessor configuration. Although
these tools and methodologies have proven their merit, they all
suffer from limited speed. Analyzing even a few minutes of real
hardware execution leads to days, if not weeks, of experimentation
time.

Improving the speed of computer architecture evaluation is criti-
cally important. Shortening the design cycle provides a competitive
time-to-market advantage in the computer industry. Moreover, a
fast evaluation methodology allows for a more thorough explo-
ration of the design space with more workloads, which leads to
an improved design. A commonly used technique to speed up ar-
chitecture evaluation is to sample the workload, i.e., evaluate (a)
small region(s) of the execution in detail and then extrapolate to the
entire execution [28, 34]. A major challenge in sampled evaluation
however is to quickly and accurately warm up the microarchitec-
ture state for each detailed region, which is particularly challenging
for the largest structures in the processor, i.e., caches. Although
sampling is not a new methodology, fast and accurate cache warm-
ing is still an unsolved problem, especially in light of emerging very
large DRAM caches.

Although important advances have been made in the past, there
are still major limitations. Checkpointed Warming (CW) takes a
checkpoint of the microarchitecture state prior to each region [32,
33]. Unfortunately, checkpoints require huge amounts of disk space,
and are not reusable across software changes (i.e., compiler updates,
changing compiler options, dynamically generated code through
Just-in-Time optimization, etc.) nor hardware changes — although
there exist solutions to make checkpoints transferable across cache
structures [1, 32, 33]. Functional Warming (FW) on the other hand
does not incur any storage overhead and is transferable across
both hardware and software changes [26, 34]. Functional warming

https://doi.org/10.1145/3352460.3358264
https://doi.org/10.1145/3352460.3358264


MICRO-52, October 12–16, 2019, Columbus, OH, USA Nikos Nikoleris, Lieven Eeckhout, Erik Hagersten, and Trevor E. Carlson

Warm-up Interval D

(a) Functional warming.

(b) Randomized statistical warming.

(c) Directed statistical warming.

Figure 1: Three approaches to warm up a cache for the de-
tailed region D: (a) functional warming, (b) randomized sta-
tistical warming, and (c) directed statistical warming.

warms up the microarchitecture state by simulating the microar-
chitecture structures in the warm-up interval prior to each detailed
region, without doing any actual performance measurements, see
Figure 1(a). Unfortunately, functional warming is slow because it
simulates the cache for every memory access within the warm-up
interval prior to the detailed region [9, 13]. More recently, Random-
ized Statistical Warming (RSW) [23] takes a random set of memory
accesses in the warm-up interval for which it computes reuse dis-
tances (i.e., number of memory references between two references
to the same memory location), see Figure 1(b). Statistical mod-
els [11] transform reuse distances into stack distances (i.e., number
of unique memory references between two references to the same
memory location) to then predict miss rates for a range of cache
configurations. RSW is substantially faster than FW because fewer
memory references need to be profiled [23]. Nevertheless, RSW re-
quires a large number of randomly selected reuse distances, most of
which are useless and only a few of which are critical to accurately
predict a detailed region’s cache behavior.

This paper proposes DeLorean, which builds upon two major
contributions: (i) directed statistical warming and (ii) time traveling.
Directed Statistical Warming (DSW) makes the observation that to
obtain an accurate picture of the cache state prior to a detailed
region, we only need a few select reuse distances, in contrast to
RSW. More specifically, we only need the most recent reuse for
each unique memory location referenced in the detailed region, i.e.,
we do not need to collect reuse distances that fall entirely within
the warm-up interval, see Figure 1(c). DSW dramatically reduces
the number of reuse distances that need to be collected, thereby
reducing total work spent during warm-up compared to RSW.

DSW is not a panacea though: to direct reuse distance collection,
we need to know which memory locations to compute the reuse
distance for, i.e., these are the ones referenced in the detailed region.
The problem now is that we only get to know these key memory

locations once we have evaluated the detailed region, which appears
after the warm-up interval. This is where Time Traveling (TT) comes
in. TT first quickly advances to the next detailed region to collect so-
called key cachelines, which are all the unique cachelines referenced
in the region. TT then goes back in time to collect the last reuse
distance for each key cacheline as needed for DSW. This is done
in an iterative way, using multiple rollbacks if needed, to obtain
high simulation speed while collecting reuse distances for all key
cachelines. TT is implemented through a combination of virtualized
execution (to quickly fast-forward to the next detailed region to
determine the key cachelines) and virtualized directed profiling
(to sample the key reuse distances at near-native hardware speed).
The name ‘DeLorean’ is chosen after the time-travel vehicle in
the ‘Back to the Future’ feature films to represent going back and
forth in time. DeLorean is implemented in the gem5 detailed cycle-
level processor simulator using the Linux Kernel Virtual Machine
(KVM) to fast-forward between detailed regions and sample reuse
distances at near-native hardware speed.

DeLorean is widely applicable to speed up architecture evalua-
tion. We experimentally demonstrate the speed and accuracy of De-
Lorean for collecting working set curves and speeding up sampled
simulation, using the SPEC CPU benchmarks and the gem5 simula-
tion infrastructure. DSW reduces the number of warm-up samples
(number of collected reuse distances) by 30× and 100,000× com-
pared to RSW and FW, respectively. TT translates this reduction in
a simulation speedup of 5.7× compared to RSW and 96× compared
to FW. Moreover, because DSW builds upon a microarchitecture-
independent characteristic, namely reuse distance, warming over-
head can be amortized across multiple parallel simulations during
design space exploration studies, further increasing simulation
speed advances over traditional simulation-based approaches. In
addition to substantially improving simulation speed, DeLorean
also improves accuracy: prediction error is reduced from around
9% for RSW to around 3% across different cache sizes. Ultimately,
DeLorean enables detailed cycle-accurate gem5 simulations at a
speed of 126MIPS. We make the source code and scripts of our
simulation framework publicly available.

2 BACKGROUND
Before describing DeLorean in detail, we first provide critical back-
ground information.

2.1 Sampling
Sampling is a widely used technique to speed up workload analysis
and computer architecture performance evaluation by considering
a select number of representative detailed regions that are eval-
uated in detail to then extrapolate from [34]. The key challenge
in sampling is to get (i) the correct architecture state and (ii) an
accurate microarchitecture state at the beginning of each detailed
region. Common techniques to obtain the correct architecture state
are functional fast-forwarding, checkpointing and virtualized fast-
forwarding. Functional fast-forwarding [34] leverages functional
simulation to get to the next representative region, which is slow.
Checkpointing [32, 33] takes a snapshot of the architecture state
for each region, which is fast but does not allow for changes to the
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software. Virtualized Fast-Forwarding (VFF) [26] leverages hard-
ware virtualization to quickly get to the next region, while enabling
software changes. Time Traveling (TT), as proposed in DeLorean,
builds upon virtualized fast-forwarding.

Obtaining the microarchitecture state at the beginning of each
region is an accuracy/speed/overhead trade-off. As mentioned in
the introduction, checkpointed warming (CW) [32, 33] is fast, re-
quires huge storage overhead, and does not allow for software
changes. Functional warming (FW) [26, 34] does not incur any stor-
age overhead, allows for software changes, but is slow. Randomized
statistical warming (RSW) [22, 23] shares all the benefits of FW
but is faster because many fewer memory references need to be
analyzed in the warm-up interval prior to each detailed region.
In this work, we make the observation that collecting that many
warm-up references under RSW is wasteful, which provides an
opportunity to reduce warm-up by an order of magnitude through
directed statistical warming (DSW).

2.2 Statistical Cache Modeling
Statistical warming — both RSW and DSW — builds upon statistical
cache modeling. By leveraging a workload characteristic that is
independent of the underlying microarchitecture and cache hierar-
chy, statistical cache models estimate cache miss rates for any size
caches from a single workload profile. The workload characteristic
that underpins statistical cache modeling is stack distance, which is
defined as the number of unique references (cachelines) between
two accesses to the same cacheline [20]. Stack distance allows for
accurate modeling of fully-associative, LRU caches [15]: a stack
distance larger than the size of the cache leads to a miss; if not, it is
a hit.

Unfortunately, obtaining the exact stack distance distribution
is a costly operation because one needs to inspect every memory
access between the two consecutive accesses to the same cache-
line. Eklov and Hagersten [11] provide a solution by showing that
stack distance can be accurately estimated using its corresponding
reuse distance, which is defined as the number of memory accesses
(not necessarily unique accesses) between two accesses to the same
cacheline. Computing reuse distance is much faster than comput-
ing stack distance because one only needs to count the number
of memory accesses between two accesses to the same memory
location, and does not need to process their addresses to determine
the unique accesses. Moreover, prior work has shown that the reuse
distance distribution can be accurately approximated by tracking
a subset of randomly selected reuse distances and memory loca-
tions [5]. Finally, statistical cache modeling has been generalized
and demonstrated for various cache replacement policies, as well
as for multiprogrammed and multi-threaded workloads, as we will
elaborate on in Section 4.

2.3 Randomized Statistical Warming
Recent work proposed randomized statistical warming (RSW) to
tackle the warm-up problem in sampled evaluation [23]. Instead
of warming up the cache by effectively populating the cache with
simulated accesses and evictions as in functional warming, ran-
domized statistical warming predicts whether a memory access in
the detailed region would have been a hit or a miss if the cache

would have been perfectly warmed up prior to the detailed region.
To this end, RSW computes an (approximate) reuse distance distri-
bution during the warm-up interval, which then serves as input to
a statistical cache model to predict hits and misses.

RSW tracks randomly selected memory locations and computes
their reuses during the warm-up interval prior to a detailed region.
Prior work [5, 23] uses watchpoints to do so during native execution:
hardware performance counters are used to count the number of
memory accesses between a (randomly selected) reuse. A reuse is
detected by setting a watchpoint using the operating system’s page
protection mechanism; a memory location touched by the workload
is randomly selected, and a watchpoint is set on that same address
to compute its reuse distance. Execution between watchpoints runs
at native speed, and watchpoints stop the execution when there is
an access to the protected page. Note that a stop on a watchpoint
does not necessarily imply a reuse. Any access to the protected
page incurs a watchpoint stop, which could be a false positive. In
case a reuse is detected (i.e., true positive), its distance is computed
and the watchpoint is removed.

Computing an (approximate) reuse distance distribution is much
faster than simulating (and effectively warming up) a cache. Prior
work reports that RSW improves detailed simulation speed by 17×
compared to functional warming [23]. In this work, though, we find
there is substantial room for improvement. To accurately predict
hits and misses for specific memory accesses in the detailed region,
RSW needs to collect a large number of reuse distances, hoping that
a sufficient number of reuse distances will have been collected for all
the load PCs that occur in the detailed region. The statistical model
that underpins RSW uses reuse distance distributions per load PC
and thus needs a sufficiently large number of reuse distances per PC
for an accurate prediction. Because the detailed region is relatively
small compared to the much larger warm-up interval, the likelihood
of sampling a reuse distance in the warm-up interval for a particular
load PC in the detailed region is not that high. Hence, RSW needs
to collect a large number of reuse distances, many of which turn
out to be useless because they are collected for load PCs that do not
occur in the detailed region. This inefficiency incurs a non-trivial
warm-up cost.

3 DELOREAN
To lower the warm-up cost compared to RSW, a directed approach
is needed. Ideally, we would like to reduce the number of reuse
distances that we need to track in the warm-up interval (to achieve
high speed), while, at the same time, capturing the exact reuse infor-
mation for every memory access in the detailed region (to maintain
high accuracy). This is effectively what DeLorean accomplishes.
DeLorean is a novel statistical warming and sampling methodol-
ogy that builds on two major contributions: (i) directed statistical
sampling and (ii) time traveling. We now discuss these in detail.

3.1 Directed Statistical Warming
Directed statistical warming (DSW) reduces the overhead of sta-
tistical warming by directing reuse distance collection to a set of
so-called key cachelines. The key reuse distances and their vicin-
ity distributions are then used to predict warm-up effects using
statistical cache models.
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Warmup Interval D

Figure 2: A key cacheline is accessed in the detailed region D.
Its key reuse distance is the last reuse in the warmup inter-
val (shown as a solid arc). The reuse distances in the vicinity
are shown as dashed arcs.

3.1.1 Key Reuses and their Vicinity. DSW first identifies the small
set of cachelines (key cachelines) that are accessed during the de-
tailed region, and for each key cacheline, DSW records the reuse
distance since it was last accessed before the detailed region. More
specifically, DSW determines the first access to each unique cache-
line in the detailed region and then measures its ‘backward’ reuse
distance, i.e., the nearest previous access to the same cacheline in
the warm-up interval. We refer to these reuses as key reuse distances.
This is illustrated in Figure 2.

In addition to the key reuse distances, we also compute the vicin-
ity reuse distance distribution, or the distribution of reuse distances
in the vicinity of the key reuse distances, see Figure 2. The vicinity
is defined as the interval surrounding the key reuse distance — any
reuse that completely falls within or crosses the key reuse distance
is part of the vicinity. The vicinity reuse distribution is approxi-
mated by taking randomly selected reuse distance samples. Note
one key difference with how RSW collects reuse distance samples.
As mentioned in the previous section, RSW needs to collect a large
number of reuse distances to cover a sufficient number of reuse
distances for the load PCs in the detailed region. The vicinity reuse
distribution on the other hand needs an order of magnitude fewer
reuse distance samples because its sole purpose is to estimate the
average behavior of the accesses close to the key reuse distances,
and not to estimate the per-PC reuse distances of the key cachelines.
The vicinity distribution is used to predict whether the key reuse
distances will lead to a hit or a miss in the detailed region, as we will
describe next. The order of magnitude reduction in reuse distance
samples needed under DSW leads to a substantial speedup during
warmup.

DSW has two key advantages over RSW: (i) the exact reuse
distances for all memory accesses at the detailed region are known
(high accuracy), and (ii) much fewer reuse distances need to be
collected by focusing on the key reuse distances and their vicinity
(high speed).

3.1.2 Statistical Warming. We use the key reuse distances and
their vicinity distributions to statistically ‘warm’ the caches prior
to a detailed region. DSW does not actually warm up the cache by
emulating the cache’s operation through accesses and evictions.
Instead, DSW predicts whether a specific memory access in the
detailed region is a hit or a miss based on the distribution of the
key reuse distances and their vicinities.

Statistical cache warming builds upon the key concept of the
warming miss, which is a request in the detailed region that misses
due to lack of warming. While cold, capacity and conflict misses cor-
respond to real workload behavior, warming misses are a sampling
artifact. The insight behind statistical warming is to determine the

Lukewarm
cache hit

yes
miss

no

no

stack dist>size?

no

set full?

Lookup?

memory request

conflict?

hit

conflict miss

yes
conflict miss

yes capacity miss

hitfetch block

StatStack

MRI
+

Assoc. model

stride
+

Figure 3: Statistical warming. The lukewarm cache determines
accesses with short reuses as cache and MSHR hits. Then, the limited-
associativity model determines conflict misses and the statistical cache
model determines capacity misses. All other accesses that appear to
be misses are due to insufficient warming and are treated as hits.

warming misses and handle them as cache hits. We now describe
how we determine warming misses, see also Figure 3.
LukewarmCache andMSHRHits: It is common in sampled sim-
ulation to warm up the microarchitecture state (processor pipeline,
predictors, prefetchers, caches) through a detailed warm-up using
a small number of instructions (e.g., 30,000) prior to the detailed
region [34]. With this small amount of warming, only a small part
of the cache state is warm, which we refer to as the lukewarm cache.
A hit in the lukewarm cache in the detailed region would definitely
have been a hit in the cache if it were perfectly warmed up. Our
experiments show that for the SPEC CPU2006 benchmarks, the
hit rate for a detailed region of 10,000 instructions and a 64 KiB
lukewarm D-cache ranges between 27.5% and 100% with an average
of 93.5%.

A number of memory accesses miss in the lukewarm cache
when there is already an outstanding miss for the same cacheline.
These accesses are typically handled asMiss Status Holding Register
(MSHR) hits [3]. DSW models MSHR hits as a cache hit (in case of
cache simulation) or a delayed hit (in case of processor simulation).
Our experiments show that between 46.1% and 100% of the requests
(96.7% on average) are hits or delayed hits in a lukewarm 64KiB
D-cache with 8 MSHRs.
Conflict Misses: If a referenced set in the lukewarm cache is full
in the detailed region, the access certainly is a conflict miss. Hence,
the access is modeled as a miss.

For some (outlier) benchmarks, we note that some load PCs
exhibit a dominant large stride, which results in uneven usage of
the cache sets. For example, a 512-byte stride will only touch upon
one eighth of the cache sets assuming an 64-byte cacheline. In
other words, dominant large strides limit the effective usage of the
cache, which ultimately leads to conflict misses. We leverage the
previously proposed limited-associativity model [23] to determine
such conflict misses.
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Figure 4: Time Traveling. Scout leverages VFF to quickly advance
to identify key cachelines in the next detailed region. Then, the Ex-
plorers go back in time and collect the key reuse distances and the
respective vicinity reuse distributions. Finally, the Analyst uses DSW
to evaluate the detailed region.

CapacityMisses:DSWuses the key reuse distances and their vicin-
ity distributions to determine capacity misses. We first convert the
key reuse distances and their vicinity reuse distance distributions
into stack distances and stack distance distributions, respectively,
using the well-established statistical model [11] as previously de-
scribed in Section 2.2. If the stack distance of the memory access is
larger than the total number of cachelines in the cache, the memory
access is classified and modeled as a capacity miss.
Warming Misses: All remaining memory accesses are warming
misses. They miss in the lukewarm cache and MSHRs, and are
not predicted to be conflict nor capacity misses. Instead, they are
an artifact for insufficient cache warming. DSW models warming
misses as cache hits.

3.2 Time Traveling
DSW reduces the number of reuse distances to collect by an order of
magnitude compared to RSW, as we will quantify in the evaluation
section. One key implicit assumption underlying DSW though is
that we need future knowledge, i.e., we need to know the key
cachelines in the detailed region to know which reuse distances
to collect in the warm-up interval. This is a non-trivial problem
to solve in a single evaluation run while maintaining (very) high
evaluation speed.

Time traveling (TT) solves exactly this problem by usingmultiple
passes, as illustrated in Figure 4. We utilize a Scout pass, multiple
Explorer passes, and finally an Analyst pass. Each of the passes is a
separate instance (process) of the same evaluation. TT performs all
passes for each detailed region and it does so in a pipelined fashion,
i.e., it first performs Scout, then Explorer-1 through Explorer-N ,
and finally Analyst. However, the evaluation of subsequent detailed
regions is parallelized over time. As soon as a pass finishes its
current detailed region, it moves on to the next detailed region. For
example, when Scout is done with detailed regionm, it moves on

to regionm + 1, while Explorer-1 processes regionm, etc. This way
we can pipeline the evaluation process as long as we have enough
cores to run the different passes concurrently. OS pipes are used to
synchronize and communicate between passes. We now describe
the different passes.
Scout: The Scout identifies the key cachelines in the detailed region.
It uses virtualized fast-forwarding (VFF) at near-native speed to
advance the execution to the next detailed region, at which point it
switches to functional simulation to record the set of key cachelines.
These are the unique cachelines accessed within the detailed region.
Interestingly, the number of key cachelines is rather small: for SPEC
CPU2006 and a detailed region of 10,000 instructions, we find that
the number of key cachelines varies between 1 and 2,907, with an
average of 151.
Explorers: The Explorers collect the key reuse distances and their
vicinity distributions. For each key cacheline recorded by the Scout,
the Explorers determine its last access prior to the detailed region.
To do this, the Explorers set watchpoints on the key cachelines —
a technique which we call directed profiling (DP). As the number
of key cachelines for a detailed region is relatively small, it may
appear that the task of measuring reuse distances is fairly trivial.
However, we need to find the last access to the cacheline before the
detailed region. This implies that we keep DP active for the entire
warm-up interval. A naive implementation that effectively keeps
DP active for the entire warm-up interval is too slow.

Instead, we usemultiple Explorers, as shown in Figure 4. Explorer-
1 fast-forwards using VFF and switches to DP 5M instructions
before the detailed region. As soon as it reaches the end of the
warm-up interval, it determines which key reuse distances have
been computed. The remaining key cachelines have a reuse distance
that is larger than 5M instructions — these key cachelines (if any)
are then passed on to Explorer-2.

Explorer-2 switches to DP 50M instructions before the detailed
region. Its task is to find the reuses for the key cachelines that were
outside the reach of Explorer-1. The subset of undiscovered reuses is
not only significantly smaller than the original set of key cachelines,
it also tends to contain cachelines with lower temporal locality. As a
result, watchpoints for these key cachelines do not trigger as often,
hence overhead is lower. Key cachelines that had reuses outside of
the reach of Explorer-2 (if any) are fed to Explorer-3 which triggers
DP 100M instructions before the detailed region. This iterative
process is stopped as soon as the whole set of key cachelines has
been covered. We find that a small number of Explorers is typically
enough — our implementation considers at most four Explorers —
and for many benchmarks and detailed regions, we find that only
a few Explorers are needed, as we will quantify in the evaluation
section.

The vicinity reuse distances are recorded as previously described
in Section 2.3, i.e., a sparse set of randomly chosen memory accesses
are selected and their next (forward) reuse distance is recorded us-
ing watchpoints. Once a reuse within the vicinity has been recorded,
the corresponding watchpoint is removed and its reuse distance is
recorded.
Analyst: Finally, Explorer-N feeds the obtained key reuse distances
and vicinity distributions to the Analyst. This final evaluation pass
uses DSW to predict the impact of warming on the detailed region.
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The evaluation in the detailed region could be functional cache
simulation (e.g., to determine the number of hits and misses) or
detailed cycle-accurate processor simulation (e.g., to determine an
application’s IPC on a particular microarchitecture configuration).

3.3 Implementation Details
Time Traveling enables DeLorean to collect all the key reuse dis-
tances and the vicinity distributions while limiting the number
of watchpoints that need to be triggered. By doing so, DeLorean
maintains high accuracy while improving evaluation speed by an
order of magnitude compared to the state-of-the-art.
gem5 andKVM:We implement DeLorean using KVM [16] and the
gem5 cycle-accurate full-system simulation infrastructure [8]. De-
Lorean switches and exchanges full-system state between KVM and
gem5 at the boundaries of each detailed region. For example, at the
end of a warm-up interval, KVM transfers the entire system state to
gem5 after which gem5 takes over to conduct cycle-accurate simu-
lation of the detailed region; similarly, the state is transferred back
from gem5 to KVM at the end the detailed region. As DeLorean uses
full-system simulation, to align the location of the detailed regions
across the different passes, we count the number of dynamically
executed user-space instructions [33].
Explorers: We develop multiple instances of gem5: Scout, Explor-
ers and Analyst. We use 4 Explorers to profile 5M, 50M, 100M and
1 B instructions before each detailed region. The actual implemen-
tation of directed profiling (DP) varies across the different Explorers.
Explorer-1 profiles a relatively short interval of 5M instructions
for the full set of key cachelines. We use functional simulation to
implement DP in Explorer-1 using gem5’s so-called ‘atomic’ CPU
model. For the other Explorers, we use virtualized directed pro-
filing (VDP) which sets watchpoints by leveraging the operating
system’s page protection mechanism, as previously explained in
Section 2.3. This is implemented in KVM [16]. VDP advances be-
tween watchpoints at near-native speed. A watchpoint stops the
native execution when there is an access to a protected page, at
which point the reuse distance is computed if the watchpoint is a
true positive (i.e., a reuse). To minimize the overhead from false
positives, and to achieve overall high evaluation speed with TT, we
limit VDP to Explorer-2 through 4, and use functional simulation
for Explorer-1.

In addition to collecting key reuse distances, all Explorers also
collect ‘vicinity’ reuse distances. These reuses are randomly col-
lected with a sample rate of 1 over 100 k memory instructions — we
quantify the impact of the sample rate on accuracy and evaluation
speed in the results section. The same sample rate is used by all
Explorers.
RSWversusDSW: There is a subtle but important difference when
implementing RSW and DSW using watchpoints and VDP. As pre-
viously discussed in Section 2.3, RSW sets watchpoints at random
memory locations. Once a reuse is detected, the watchpoint is re-
moved. RSW however needs to collect many reuses per load PC to
accurately predict warming misses for the particular load PCs in
the detailed regions.

In DSW on the other hand, watchpoints for the key reuse dis-
tances are not set at random memory locations1. Instead, watch-
points are set at specific memory locations, namely the key cache-
lines. For each key cacheline, DSW needs to collect the nearest
previous reuse in the warm-up interval, i.e., the key reuse distance.
This implies that the watchpoints need to be on during the entire
warm-up interval to compute the last reuse for each key cacheline.
The overhead for collecting key reuse distances is very high, up to
the point that it negates the benefit from having to collect fewer
reuse distances under DSW compared to RSW. The reason for the
high overhead is that DSW detects many reuses for a single key
cacheline out of which it only needs the last one. Hence, although
DSW needs to collect few key reuse distances, the overhead for
collecting them in a naive implementation is high.

This is why TT is needed to translate the small number of key
reuse distances under DSW into a substantially higher evaluation
speed compared to RSW. Employing a multi-pass approach allows
for progressively reducing the number of key cachelines to track
in the different Explorers: Explorer-1 sets watchpoints for all key
cachelines for a short interval; Explorer-2 then sets watchpoints for
a smaller number of cachelines (i.e., the remaining key cachelines
after Explorer-1) for a longer interval; follow-on Explorers set even
fewer watchpoints for progressively longer intervals. By doing so,
DeLorean limits the number of watchpoints that need to be set
while being able to collect all key reuse distances. This translates
into a substantial improvement in evaluation speed compared to
RSW.
Design Space Exploration: It is interesting to note that the over-
head due to warm-up can be amortized across multiple parallel
simulations, which is particularly appealing when performing de-
sign space exploration studies, as we will demonstrate and quantify
in the evaluation section. In particular, DeLorean allows for running
multiple detailed evaluations concurrently and warm them all up
from the same warm-up. In TT terminology, this means there is a
single Scout and a single set of Explorers that feed a number of An-
alysts, with each Analyst simulating a different cache configuration
or processor architecture configuration. As soon as Explorer-N has
reached the beginning of a detailed region, control is transferred to
the different Analysts to simulate the different cache and processor
configurations in parallel.

This is possible because the reuse distance which underpins
DSW is independent of the underlying cache hierarchy. Hence, we
need to collect the reuse distances in the warm-up interval only
once, after which we can predict warming misses in the detailed
region for a range of cache and processor configurations. Collecting
the reuse distance warm-up information is thus amortized across
multiple parallel detailed evaluations.

4 GENERAL APPLICABILITY
The core contributions in DeLorean — DSW and TT — build upon
statistical cache modeling which has been demonstrated for a range
of architectures and configurations, including (i) cache replacement
policies, (ii) multiprogrammed workloads, and (iii) multi-threaded

1Watchpoints for collecting the vicinity distribution are set at random memory loca-
tions, however, an order of magnitude fewer reuse distances need to be collected than
for RSW, as mentioned before.
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execution. We hence believe that DeLorean is more generally ap-
plicable beyond the concrete implementation in this paper which
considers LRU cache replacement and single-threaded execution.
(In fact, the evaluation section includes one example to illustrate
DeLorean’s wider applicability.)

4.1 Cache Replacement
The very first work demonstrating how sparse (approximate) reuse
distance distributions can be used to statistically model caches
considered caches with random replacement [6]. Follow-on work
demonstrates similar accuracy for LRU caches [11]. More recent
work extends statistical cache modeling to cover other replacement
algorithms, including pseudo-LRU and NMRU [25]. Sen and Wood
[27] suggest that stack distance — which can be estimated using
the reuse distance distribution — can be used to model other re-
placement algorithms as well. Beckmann and Sanchez [2] propose
probabilistic methods to model age-based replacement policies,
such as RRIP. This body of prior work makes us confident that tech-
niques to model other replacement algorithms are already available
or can be designed.

4.2 Multi-Programming
StatCC [10] is amethod inwhich sparse reuse information, collected
separately for each application, can be used to model how several
independent applications in a multi-programmed workload interact
when sharing a cache. StatCC recursively uses a simplistic CPU
performance model to determine the CPI for each application in
the workload mix. The per-application’s reuse information is scaled
according to its CPI, which results in a new CPI for each application
to be used in the next iterative CPI estimation. After a few itera-
tions already, a stable solution is found. Combining StatCC with
DeLorean will likely improve the accuracy of StatCC by replacing
the simplistic CPI estimation with DeLorean’s detailed simulation
to estimate the per-application CPI for the next iteration.

4.3 Multi-Threading
StatCache-MP [7] shows how sparse reuse information, collected
from a single execution of multiple threads, can be used to model
the execution of multi-threaded applications across a wide selection
of different cache sizes and cache topologies with MSI coherence.
StatCache-MP models both constructive and destructive cache shar-
ing in a way that fits DeLorean’s approach very well. If a key access
by thread A during detailed simulation is known to be preceded
by a write to the same memory location by another thread B, and
threads A and B do not share the cache in the modeled topology,
detailed simulation should model a coherence miss for thread A.
However, if both threads share the modeled cache, a constructive
sharing cache hit should be modeled — provided that the reuse
distance between the two accesses is short enough, otherwise a ca-
pacity cache miss should be modeled. We believe that this approach
can be further extended to model other coherence states (e.g., O
and E states) but this is left for future work.

4.4 ISA Extensions and Accelerators
DeLorean leverages hardware virtualization which is widely sup-
ported across ISAs. Research into ISA extensions can be handled
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Pr
ed
ic
to
r Tournament 2 bit choice counters, 8 k entries

Local 2 bit counters, 2 k entries
Global 2 bit counters, 8 k entries
BTB 4 k entries
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L1-I 64 KiB, 2-way LRU, 64 B line
L1-D 64KiB, 2-way LRU, 64 B line
LLC 1MiB to 512MiB, 8-way LRU, 64 B line
MSHRs 4 (L1-I), 8 (L1-D), 20 (LLC)
Table 1: Simulated processor architecture.

through emulation of unimplemented instructions in KVM. Work-
loads that offload (a) part(s) of their execution to an accelerator
can also leverage DeLorean. One can fast-forward the execution
and then, for the portion of the workload that is executed on the
accelerator, switch to detailed simulation with statistical modeling
of the on-chip caches using DeLorean to reduce simulation time.

5 EXPERIMENTAL SETUP
We perform full-system gem5 simulations of a 64-bit x86 super-
scalar 8-wide out-of-order processor with split 2-way 64KiB L1
instruction and data caches and a unified 8-way LLC with sizes
ranging from 1MiB to 512MiB. A summary of the important simu-
lation parameters can be found in Table 1. We use gem5 revision
2c9f7ebca: we use the default superscalar out-of-order model as our
timing model in the detailed regions with the ‘classic’ memory sys-
tem. We use KVM hardware virtualization on the simulation host
machine to fast-forward between detailed regions at near-native
hardware speed. We run Ubuntu 12.04.5 LTS running Linux 3.2.44
in full-system simulation.

We consider the SPEC CPU2006 benchmarks with reference
inputs in the evaluation2. All benchmarks were compiled with GCC
4.6.3 and optimization flag -O2. All simulations are started from
the same checkpoint of a booted system that has executed 100 B
instructions. Evaluation speed is measured on a dual-socket Intel
Xeon E5520 with 4 cores per CPU and 2 threads per core, running
at 2.26 GHz.

Due to the high overhead of the reference experiments, we use
10 detailed regions spread uniformly across 10 B instructions (1 B
instructions apart). For each detailed region, we use gem5’s out-of-
order CPU model and run for 10,000 instructions. Prior research
shows that the highest accuracy is achieved for small detailed re-
gions [34]; larger detailed regions will likely make DeLorean even
more accurate since small regions make the penalty for mispredict-
ing the outcome of a single key access high. Prior to each detailed
region, we warm up microarchitecture state (processor pipeline,
caches, branch predictor) for 30,000 instructions.
2We were unable to run 403.gcc, 433.milc., 447.dealII, 481.wrf and 482.sphinx3 because
these benchmarks either produced outputs that could not be verified with the reference
input or did not run to completion.
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6 EVALUATION
We now evaluate DeLorean’s speed and accuracy. DeLorean’s key
advantage over the state-of-the-art is its significantly improved
evaluation speed while delivering similar accuracy. We also present
a sensitivity analysis and several use cases. We consider the follow-
ing sampling strategies in the evaluation:

• SMARTS: Functional Warming (FW) is used to keep the
caches warm using functional simulation in-between de-
tailed regions as done in SMARTS [34].

• CoolSim: Randomized Statistical Warming (RSW) is em-
ployed to collect randomly selected reuse distances at near-
native hardware speed in-between detailed regions. This is
the state-of-the-art statistical cache warming strategy called
CoolSim [23]. We pick the best possible configuration for
CoolSim, which encompasses an adaptive sampling strategy:
sample one memory location every 40k memory instructions
for the first 750M instructions, then one every 20k for the
next 200M instructions, and finally one every 10k for the last
50M instructions.

• DeLorean employsDSW to determine the key reuse distances
which are collected through TT.

6.1 Speed
Figure 5 reports simulation speed normalized to SMARTS. De-
Lorean improves simulation speed by 96× on average compared
to SMARTS. Compared to CoolSim, DeLorean improves simula-
tion speed by 5.7× on average. We note there is some variation
across benchmarks in simulation speedup compared to CoolSim.
The highest speedup (49×) is reported for bwaves: this benchmark
features a small number of key accesses, and the corresponding
key reuse distances are small so that they can all be profiled by
Explorer-1. This implies that DeLorean essentially fast-forwards
through most of the benchmark. CoolSim on the other hand collects
a large number of reuse distances which are not needed to accu-
rately model cache warm-up. The smallest speedups are reported
for povray (1.05×) and gems (1.4×). The reason is slightly different
though for the two benchmarks. gems features a large working set
and key accesses with very long reuse distances; hence, it engages
all four Explorers. The working set size for povray is much smaller
but there is one detailed region with a few key accesses with very
long reuse distances, which engages all four Explorers. These long
reuse distances, in addition, incur a large number of false positive
watchpoint triggers. This is due to the use of the page protection
mechanism to collect the reuse distances at near-native hardware
speed, as previously described, i.e., cachelines with large reuses
map into the same physical page as cachelines with very short
reuses, making the collection of those longer reuses expensive due
to false positives.

These simulation speedups lead to high absolute simulation
speeds. We report that DeLorean achieves a simulation speed of
126MIPS, compared to 21.9MIPS for CoolSim and 1.3MIPS for
SMARTS. In other words, DeLorean is within one order of mag-
nitude compared to native hardware execution. This high simu-
lation speed enables a new range of experiments to be run with
much longer running, and hence more realistic, workloads than

the relatively small workloads that are typically run with detailed
cycle-accurate simulation.

The reason for DeLorean’s high simulation speed is a result of
both DSW and TT, the two key contributions in this paper. We
provide deeper insight where the improved simulation speed is
coming from in the next two subsections.

6.1.1 DSW. Directed statistical warming (DSW) substantially re-
duces the number of reuse distances that need to be collected during
the warm-up interval compared to RSW. Figure 6 quantifies the
total number of collected reuse distances across the 10 detailed
regions (note the logarithmic scale): DSW reduces the number of
reuse distances by 30× on average (and up to 6,800×) compared
to RSW. Whereas RSW collects 340,000 reuse distance on aver-
age, DSW collects 11,000 reuse distances. The reason is that DSW
collects a select number of reuse distances, namely the key reuse
distances and the vicinity reuse distances, whereas RSW collects a
much larger number of random reuse distances.

6.1.2 Time Traveling. Time traveling (TT) translates the reduction
in reuse distances collected during warm-up through DSW into a
significant evaluation speedup. Recall that the number of engaged
Explorers depends on the number of key accesses and their reuse
distances. Figure 7 breaks down the key reuse distances as they are
collected by the respective Explorers. Most key reuse distances are
collected by Explorer-1, however, additional Explorers are engaged
for a number of benchmarks. Figure 8 quantifies the average num-
ber of Explorers engaged. The number of Explorers varies across
the benchmarks depending on how long the reuse distances are.
For example, bwaves features short key reuse distances, hence the
number of Explorers needed is small, even less than one on average
(vast majority of memory operations hit in the lukewarm cache or
MSHRs). In contrast, benchmarks such as zeus, cactus, gems and
lbm feature a relatively large number of long reuse distances, hence
they require up to four Explorers on average. A couple benchmarks
have few long reuse distances across all detailed regions, see for
example mcf, gromacs, leslie3d, sjeng and astar, hence they also
engage a relatively large number of Explorers. calculix is an excep-
tion having a relatively large number of long reuse distances, yet
the number of Explorers is relatively small; the reason is that the
long reuse distances originate from a single detailed region, hence
we need to engage up to four Explorers only for a single detailed
region and not the other regions.

6.2 Accuracy
Figures 9 and 10 quantify DeLorean’s simulation accuracy for pre-
dicting CPI for two cache sizes to reflect a modern-day LLC size
(8MiB) as well as a large-scale DRAM cache (512MiB), respectively.
Note that SMARTS is our reference here because of the full cache
warming done in-between detailed regions. DeLorean predicts CPI
with an average error of 3.5% and 2.9% for the 8MiB and 512MiB
LLCs, respectively. DeLorean is substantially more accurate than
CoolSim for soplex and gems. The average error for CoolSim equals
9.1% and 9.3% on average for the 8MiB and 512MiB LLCs, respec-
tively. The reason for the high error for CoolSim for soplex and
gems is a result of an overestimation of the number of LLC misses.
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Figure 5: Normalized simulation speed for DeLorean, CoolSim and SMARTS. DeLorean improves simulation speed by 96× on average
compared to SMARTS, and by 5.7× compared to CoolSim.
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Figure 6: Number of reuse distances collected by CoolSim (RSW) versus DeLorean (DSW). DeLorean reduces the number of reuse
distances by 30× on average compared to CoolSim.
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Figure 8: Average number of Explorers to collect the key
reuse distances with DeLorean. The number of Explorers varies
across benchmarks depending on how many key reuse distances are
needed and how long the reuse distances are.

6.3 Sensitivity Analyses
We now consider two sensitivity analyses related to the vicinity
distributions and hardware prefetching.

6.3.1 Vicinity Reuse Distance Distribution. Recall that DeLorean
samples the reuse distance distribution in the vicinity as input to
statistical cache modeling. The sampling rate is a parameter that
can be freely set. The default sampling rate is set to 1 out of 100 k
memory instructions. We now evaluate DeLorean’s sensitivity in

terms of simulation speed and accuracy with respect to sampling
density in the vicinity. Increasing sampling density improves accu-
racy by collecting more reuse distances. On the other hand, higher
density also increases the profiling overhead of the Explorers. Fig-
ure 11 quantifies this trade-off in simulation speed versus accuracy
for an 8MB LLC. With a density of 1 over 100 k memory instruc-
tions, we can simulate at 126MIPS with an error of 3.5%. Increasing
density to 1 over 10 k instructions brings down the error to 2.2% at
a simulation speed of 71.3MIPS.

6.3.2 Hardware Prefetching. As argued in Section 4, DeLorean is
broadly applicable because it builds upon statistical cache modeling
which has been demonstrated for a range of different architectures
and configurations. We now consider hardware prefetching to il-
lustrate DeLorean’s broader applicability. Hardware prefetching
improves performance by speculatively fetching cachelines before
the application actually needs it. Hardware prefetch requests are
typically triggered by cache misses, i.e., cache misses with particu-
lar patterns (e.g., a stride) trigger prefetch requests. We extend De-
Lorean to trigger the hardware prefetcher using misses as predicted
by the statistical cache model. In other words, DeLorean feeds the
hardware prefetcher with predicted cache miss information rather
than actual (simulated) cache miss information. Likewise, prefetch
requests to cachelines that are in the cache already (in detailed
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Figure 9: Reported CPI for DeLorean, CoolSim and SMARTS (reference) for an 8MB LLC. DeLorean’s simulation accuracy is within
3.5% on average for CPI compared to SMARTS.
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Figure 10: Reported CPI for DeLorean, CoolSim and SMARTS (reference) for a 512MB LLC. DeLorean’s simulation accuracy is within
2.9% on average for CPI compared to SMARTS.
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Figure 12: CPI error with and without prefetching for an
8MB LLC. DeLorean is slightly more accurate for an architecture
with hardware prefetching.

simulation) versus predicted to be in the cache (for DeLorean) are
nullified to save memory bandwidth. Figure 12 reports CPI error for
our baseline processor with and without an LLC stride prefetcher
with 8 streams. We conclude that DeLorean is slightly more accu-
rate for an architecture with hardware prefetching because there
are fewer cache misses to be predicted in the first place.

6.4 Use Cases
Having demonstrated the speed and accuracy of DeLorean, we now
consider two case studies to illustrate its usage in practical design
studies. We consider application working set characterization and
design space exploration.

6.4.1 Working Set Curves. Working set curves are widely used to
characterize an application’s working set size. A working set curve
shows cache miss rate (or MPKI) as a function of cache size, and
typically incurs a point (cache size), or multiple points, at which the
miss rate falls off. This is commonly referred to as the ‘knee’ of the
curve. This knee indicates the working set size of the application
at hand.

Figure 13 provides a number of interesting examples, i.e., cactus,
leslie3d and lbm; the solid line shows the reference curve while
the dashed line shows the curve obtained through DeLorean. (We
observe similar results for the other benchmarks; not provided be-
cause of space constraints.) The key observation is that DeLorean
tracks the reference curves obtained using SMARTS well. For exam-
ple, lbm has a knee in the curve around 8MiB and 512MiB, which
is accurately predicted by DeLorean; cactus and leslie3d, on the
other hand, do not have a pronounced knee in the curve, which is
also accurately predicted by DeLorean.

6.4.2 Design Space Exploration. DeLorean is a fast simulation
methodology, significantly speeding up design space exploration
studies. Figure 14 shows performance curves (CPI) as a function of
cache size for the same set of benchmarks as in Figure 13. DeLorean
tracks the reference (SMARTS) accurately and accurately predicts
performance sensitivity to LLC size.

Note that all 10 points in Figure 14 were obtained from the same
warm-up in a parallel simulation run. As explained in Section 3.3,
warm-up cost can be amortized across multiple parallel simulations
by feeding multiple parallel Analysts from a single Scout and a sin-
gle set of Explorers. Collecting reuse distances takes up most of the
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Figure 13: Working set curves for three example benchmarks. The reference (SMARTS) is shown as a solid line whereas De-
Lorean is shown as a dashed line. DeLorean tracks the reference working set curves well.
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Figure 14: Performance (CPI) as a function of cache size for three example benchmarks. The reference (SMARTS) is shown as
a solid line whereas DeLorean is shown as a dashed line. DeLorean tracks the reference curves well.

time and most of the simulation host resources compared to timing
simulation of the detailed regions — the time spent in warming
versus detailed simulation is about a factor 235× for DeLorean. The
marginal cost for parallel simulation in DeLorean is thus small in
terms of required simulation resources — less than 1.05× for 10
parallel Analysts. This is much smaller than the 10× marginal cost
for parallelizing 10 detailed simulations as is commonly done.

7 RELATEDWORK
Checkpointed Warming. One popular approach to the cache
warm-up problem in sampled processor evaluation is checkpointed
warming, which takes a checkpoint of the microarchitecture state
prior to each detailed region. Wenisch et al. [32] store the state of
the caches and other micro-architectural structures in checkpoints.
These so-called Flex points eliminate warming overhead in SMARTS.
Flex points are large (20MiB to 100MiB). In follow-up work, they
introduce Live points [33] and reduce the space requirements for
each checkpoint down to 142 KiB. Van Biesbrouck et al. [30] pro-
pose a similar approach called memory hierarchy state (MHS) to
minimize checkpoint size, in the context of SimPoint [28]. Barr
et al. [1] propose the Memory Timestamp Record (MTR), a method
to record memory patterns, compress and store them for use in
checkpoints for sampled simulation of multi-threaded workloads
on multi-processor system. Hassani et al. [14] use sampled simula-
tion combined with MTR and in-memory checkpoints to evaluate
benchmarks in a few seconds by simulating detailed regions in
parallel. A major limitation of checkpointed warming is that is not
re-usable across software changes. In contrast, DeLorean does not
incur any storage overhead and is re-usable across software and
hardware changes.
Functional Warming. Instead to storing a checkpoint on disk,
functional warming warms up microarchitecture state on the fly
by simulating microarchitecture structures prior to each detailed
region. Functional warming does not incur any storage overhead

and is re-usable across software changes. Traditionally, functional
warming warms up microarchitecture state using all memory ref-
erences between two consecutive detailed regions, which is very
slow [34]. Various approaches have been proposed to reduce the
warm-up length prior to each detailed region. Haskins and Skadron
[12] and Luo et al. [19] use heuristics to find the minimum number
of instructions needed to warm a cache of specified size. Haskins
and Skadron [13] introduce the concept of Memory Reference Reuse
Latencies (MRRLs) which is the number of completed instructions
between consecutive references to the same memory location. The
number of instructions that provides a large enough cumulative
distribution of MRRLs is used as the warming interval. Eeckhout
et al. [9] introduce the Boundary Line Reuse Latency (BLRL) which
extends the MRRL concept. They apply similar heuristics to find
a shorter warm-up period. Van Ertvelde et al. [31] extend on the
concept of BLRL using a form of hardware state checkpoints. Sand-
berg et al. [26] propose a method that uses two parallel simulations,
pessimistic and optimistic, to bound the maximum error due to
warming. While minimizing the number of instructions needed to
warm up microarchitecture state improves evaluation speed, all
of these functional warming techniques suffer from the inherent
limitation that they need to simulate all memory references in the
warm-up interval. In other words, even though the interval is short-
ened, these techniques still need to simulate all of them, and most
of these references are not needed to accurately warm up the cache
hierarchy. In contrast, DeLorean limits the number of warm-up ref-
erences that need to be inspected, dramatically improving warm-up
efficiency.
Statistical Cache Modeling. Stack distance analysis has been ex-
tensively used to model caches. Mattson et al. [20] use a simple
stack algorithm to inspect every access and collect stack distance in-
formation. To improve performance, researchers use k-ary [4] and
AVL [24] trees instead of linked lists. However, all of the proposed
methods have to inspect all memory accesses and measure stack
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distance. Other works [29] have proposed hardware-accelerated
stack distance collection. Liu and Mellor-Crummey [17] use a tech-
nique based on shadow profiling that forks off a redundant copy of
an application, instrumented by Pin, to measure the stack distances
for a selected set of references [17].

A major limitation of stack distance analysis is that measuring
stack distances is computationally demanding because all refer-
ences between two reuses of the same cacheline need to be in-
spected to compute the number of unique cachelines. Eklov and
Hagersten [11] demonstrate how reuse distance, which is compu-
tationally less demanding to collect, can be used to predict stack
distance. Reuse distance based statistical cache modeling was suc-
cessfully demonstrated to model caches with different replacement
policies [25], multi-programming workloads [10] as well as multi-
threaded workloads [7]. Randomized statistical warming leverages
statistical cache models to predict which memory references in a
detailed region are warming misses. As extensively argued in this
paper, randomized statistical warming requires a large number of
reuse distances, many of which are useless to accurately predict
warm-up effects during sampled evaluation. Directed statistical
warming dramatically reduces the number of reuse distances that
need to be collected.

8 CONCLUSION
Sampling allows for realistic workload evaluation by reducing the
number of instructions that need to be evaluated in detail. Un-
fortunately, warming caches dominates simulation overhead and
prevents simulation frameworks from realizing a proportional re-
duction in simulation time while maintaining flexibility to make
changes in software and hardware.

DeLorean delivers a substantial simulation speedup compared
to the state-of-the-art through two key innovations: directed sta-
tistical warming and time traveling. Directed statistical warming
collects a select number of key reuse distances and their vicinity
distributions — a reduction by 30× compared to the state-of-the-art
CoolSim. Time traveling measures these key reuse distances in a sin-
gle evaluation run by first quickly looking into the future (through
virtualized fast-forwarding) to determine the key cachelines, and
then going back in time to compute the key reuse distances and
vicinity distributions at near-native hardware speed (through virtu-
alized directed profiling). Time traveling translates the reduction in
reuse distances that need to be profiled into a simulation speedup
of 5.7× compared to CoolSim. Warm-up cost can be amortized
across multiple parallel simulations when conducting design space
exploration studies. DeLorean also improves simulation accuracy:
prediction error is reduced from around 9% for CoolSim to around
3% on average. Ultimately, DeLorean enables detailed cycle-accurate
gem5 simulations at a speed of 126MIPS.
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