
HIDFIX: Efficient Mitigation of Cache-based Spectre Attacks
through Hidden Rollbacks

Arash Pashrashid, Ali Hajiabadi, and Trevor E. Carlson

National University of Singapore

Abstract—Mitigating Spectre attacks in modern systems is a chal-
lenging task for CPU vendors as they need to provide comprehensive
protection while maintaining high efficiency. One common solution is to
adopt always-on mitigation strategies to prevent all speculative data leaks.
However, these solutions incur prohibitive performance overheads as they
limit the benefits of speculative execution, the main performance enabler
of modern processors. Additionally, recent attacks have demonstrated the
limitations of many existing defenses.

Combining side-channel attack (SCA) detectors with mitigation strate-
gies is a promising direction to achieve efficient and selective mitigation of
Spectre attacks. In this work, we enumerate the combinations of state-of-
the-art detection and mitigation strategies and present both new attacks
as well as the potential risks of such detection/mitigation combinations.
The result is the HIDFIX methodology, an efficient mitigation for cache-
based Spectre attacks, that addresses the security limitations of prior
work. We show that HIDFIX has a near-zero performance overhead for
all evaluated applications. HIDFIX rollbacks the misspeculated data leaks
in a timely manner, before an attacker has the chance to infer the victim’s
sensitive data. We demonstrate that HIDFIX is more secure compared to
prior cache-based Spectre defenses, and moreover, it does not introduce
new side effects that might enable an attacker to observe secret dependent
changes in the system.zb

I. INTRODUCTION

Modern processors have been equipped with numerous techniques
to speed up performance over the past few decades. The main
performance enabler of these processors is speculative execution [1].
Speculative execution increases the performance in cases where the
processor faces long latency control flow decisions, as it predicts
the future path to execute while waiting for the correct path to
resolve. However, Kocher et al. revealed the Spectre vulnerability
in 2018 [2], as a fatal security flaw in modern processors which
affects the majority of computing devices. Spectre attacks convince
privileged victim applications to speculatively transmit sensitive data
into a persistent side-channel, the most common being the data cache.

There have been extensive, recent studies on a variety of methods to
mitigate Spectre-style attacks [3]–[7]. The majority of these solutions
propose always-on defenses in an attempt to comprehensively miti-
gate speculative execution attacks. However, these defenses sacrifice
performance to gain high levels of security. The most comprehensive
defenses restrict the speculative execution of instructions to prevent
data leaks through any potential side-channel. However, restriction-
based solutions incur prohibitive performance overheads, diminishing
the benefits of speculative execution [3], [4], [8]–[11]. To reduce
performance overheads, some solutions focus on securing the cache
side-channel, as it is the most practical and visible channel [12]–
[14]. Cache randomization [5], invisible speculation [7] (i.e., applying
changes to the cache only if the instructions become non-speculative),
and undoing misspeculated cache changes [6] are examples of pro-
tecting caches against Spectre attacks. Unfortunately, these always-
on cache protections can incur performance overheads of up to
80%, and moreover, they are either proven to be vulnerable to
recent attacks [15], [16], or provide limited protection (e.g., cache
randomization cannot protect against memory address contention

attacks like Flush+Reload). Isolation (e.g., cache partitioning [17])
and cache access obfuscation (e.g., randomizing the cache access
delays [18]) are other solutions to prevent attackers from extracting
the victim’s sensitive information. While always-on isolation and
obfuscation of all running applications are secure, they can result
to high performance overheads.

A promising direction to achieve a balanced trade-off between
performance and security is deploying side-channel attack (SCA) de-
tectors to selectively enable an appropriate defense. Existing method-
ologies that detect cache-based Spectre attacks can be categorized into
three different classes: (1) machine learning (ML) based detectors col-
lect runtime characteristics of the benign and malicious applications
to train a model to classify benign and malicious programs [18]–[24].
(2) Another class of detectors rely on detecting a common property
found in existing cache attacks – cyclic interference events on a spe-
cific cache location or memory address [25]–[27] (i.e., existing cache
attacks result in Attacker→Victim→Attacker interference patterns for
a specific resource as a common behavior). In addition, (3) prior
work [28] proposed a direct analysis of microarchitectural changes
of a successful Spectre attack to detect potential data leaks through
data caches. Among these solutions, ML-based detectors have been
shown to be vulnerable to evasive attacks [28]. However, the later
approaches are assumed to be viable options to provide the level of
security required, since no vulnerability is reported by prior work. In
this work, we will demonstrate the risks of using these solutions.

The goal of this work is to provide stronger security guarantees
compared to prior work with minimal performance loss. To achieve
this goal, we co-design detection and mitigation strategies and allow
modern processors to safely continue to benefit from full potentials
of speculative execution.

First, we enumerate the combinations of current detection and mit-
igation strategies. During this process, we demonstrate the limitations
of Cyclone [26], as the state-of-the-art cyclic interference detector,
and launch a successful attack without performing cyclic interference
events (BENIGNINTERFERE ATTACK). Moreover, we show that even
an improved version of the cyclic interference detectors is not timely
enough to combine with any mitigation strategy to prevent successful
secret extraction (SINGLEPROBE ATTACK). The final option that
we consider is using the state-of-the-art detectors [28] or even an
ideal detector (being accurate, robust, and timely) to selectively en-
able/disable isolation and obfuscation mitigations; as the only existing
defenses to be secure and flexible enough to selectively enable their
mitigation operations (as adopted in [18], [29]). We present a possible
attack (SINGLEPRIME ATTACK) on such designs when protecting
against cache-based Spectre attacks; ultimately demonstrating the vul-
nerabilities of isolation and obfuscation techniques when combined
with a detector.

As a solution to these newly discovered attacks, we propose a
novel detection and mitigation strategy, called HIDFIX, that directly
tracks the accesses to cache locations and memory addresses, and

1

effectively mitigates the misspeculated data leaks; we rollback the
misspeculated changes that have been initialized by a potential
attacker before the attacker has a chance to recover the victim’s
sensitive information. We demonstrate that our approach is more
secure compared to prior cache-based Spectre mitigations. HIDFIX

shows near-zero performance overhead for all tested applications
(both benign and malicious applications). In addition, we show that
our mitigation does not have any potential side effects that might
introduce new side-channel attacks.

The main contributions of this work are:
• Providing an in-depth analysis of combining state-of-the-art

detection and mitigation strategies, and demonstrating their
potential vulnerabilities through our proposed attacks;

• Proposing a secure detection/mitigation strategy for cache-based
Spectre attacks;

• Demonstrating near-zero performance overhead for the SPEC
CPU2006 benchmark suite [30] and a variety of Spectre attacks;
including our new proposed attacks and evasive attacks proposed
by prior work [28];

• Presenting a comprehensive security analysis of our methodol-
ogy against different potential attacks and showing that HIDFIX

does not introduce new side-channels.

II. BACKGROUND

A. Cache-based Spectre Attacks

Speculative execution attacks, popularized by Spectre-V1 [2],
exploit one of the main performance features of modern CPUs –
speculative execution. Speculative execution, especially using branch
prediction, allows a processor to continue to make progress even
though it is waiting for branch instructions to resolve (i.e., determin-
ing the correct path). Spectre attacks mistrain the branch predictor to
force the victim to execute an incorrect path of the program. Figure 1
shows a vulnerable code. In this example, the attacker convinces
the victim’s branch predictor to bypass the array bounds check
(line 3) and speculatively access an unauthorized memory location,
potentially sensitive information (line 4). While the processor discards
changes of the incorrect path upon misprediction, various channels
can contain persistent changes of misspeculated memory accesses.

The most vulnerable, and practical, side-channel used to conduct
Spectre attacks has been the processors’ private data caches, while
the victim and the attacker execute on the same core. For example,
Figure 1 explains a Flush+Reload cache side-channel attack that the
attacker first flushes all the cache lines associated with array B (step 1,
line 2). After the victim execution and data leak (step 2), it will reload
all those cache lines (line 10) and evaluates which cache line has been
loaded in the core by the victim (line 11). This evaluation allows the
attacker to extract the secret value since it will hit the cache, instead
of the expected cache miss. Other cache side-channel mechanisms
that we consider in this paper are Prime+Probe and Flush+Flush.
Prime+Probe initializes the cache side-channel by priming the cache
by its known data. Later the attacker probes all the primed cache lines
and extracts the secret value if one of the primed values has been
speculatively evicted by the victim. Flush+Flush deploys a similar
strategy to Flush+Reload, but for the secret extraction it flushes the
cache lines again and extracts the secret value by detecting the timing
difference of flushing the secret dependent cache line that has been
accessed by the victim.

B. Mitigation and Detection of Spectre Attacks

There have been extensive studies to protect modern processors
against speculative execution attacks. The most comprehensive de-

3
4
5
6
7

if (x < A_size){ //the branch mistrained to always take the branch
secret = A[x]; //speculative access to secret

// (x = secret_address - A)
temp = B[secret * 64]; //transmit secret to side-channel

}

Step : Side-channel initialization1
for (i = 0; i < 256; i++)

clflush(B[i * 64]); //flushing array B as side-channel
1
2

Step : Victim leak and transmit2

for (guess = 0; guess < 256; guess++){
t1 = rdtsc();
temp = B[guess * 64]; // reloading array B
if (rdtsc() – t1 < CACHE_HIT_THRESHOLD)

results[guess] += 1; // the secret hits in the cache
}

8
9

10
11
12
13

Step : Secret extraction3

Fig. 1. Spectre-V1 (array bound check bypass) attack via Flush+Reload.

fenses prevent branch-level speculation and restrict the execution
of any instruction that might leak sensitive data (restriction-based
defenses) [3], [4], [8]–[11]. However, these defenses tend to introduce
very high-performance overheads (up to 2.3× overhead for some
applications in the state-of-the-art work [3]), and still continue to
leak data [3].

More efficient defenses aim to only secure the cache side-channel.
A class of cache-based defenses implements invisible speculation
which prevents the speculative changes to the cache until they become
non-speculative [7], [31], [32]. However, prior work has demonstrated
the vulnerability of invisible speculation against Speculative Interfer-
ence attacks [15]. Another class of defenses tries to undo the effects of
misspeculated cache changes (undo-based defenses) in an attempt to
improve the performance since the misspeculation events are rare [6].
They are, however, shown to be vulnerable since their undo operations
introduce secret dependent timing differences that allow attackers
to create new attacks based on new inferred behavior [16]. Cache
randomization defenses [5], [33] also make it harder for attackers to
probe the same initialized cache sets, but they are still vulnerable to
memory address contention attacks (e.g., Flush+Reload that initializes
the side-channel through flushing a set of specific memory addresses,
not priming cache sets).

More resistant cache protections partition and isolate the caches
(isolation-based defenses) [17] to prevent the attacker to initialize
and probe the cache locations touched by the victim. However, the
cache isolation techniques introduce high performance overheads
since the applications can utilize a smaller partition of the cache.
Finally, another potential mitigation is access delay obfuscation that
randomizes the system frequency to obfuscate the data access timings
(i.e., making it harder for the attacker to differentiate between the
cache hits and misses [18]). This technique provides very high
performance overheads as it limits the benefits of accessing the data
that is already present in data caches. Moreover, prior work shows
that obfuscating the system frequency only lowers the success rate
of the attack, and does not completely block the side-channel [18].

All discussed defenses provide always-on protection, even if no
data leak or malicious activity happens in the system, resulting in
unnecessary overheads. Hence, some prior work focused on the
detection of malicious activities to enable proper mitigation only if
necessary. A large class of detectors trains machine learning (ML)
models to detect the Spectre and cache attacks [18]–[24], [26]. For
example, PerSpectron [19] uses the microarchitectural features of the
processor to detect various Spectre variants. However, prior work
has demonstrated a lack of robustness of ML-based detectors against
evasive attacks [28]. Another class of detectors proposes to exploit
the common behavior of cache attacks that cause a cyclic interference
in processor resources and cache locations [25]–[27]. In this work,

2

Evicts cache line N4
time

N8N7N6N5N4N3N2N1

Primes cache set N

Cache set N

Attacker (A) Victim (V) Attacker (A)
1 2 3

𝐴 ⇝ 𝑉 𝑉 ⇝ 𝐴

N8N7N6N5N4N3N2N1
Cache set N Cache set N

N8N7N6N5N4N3N2N1

Probes cache set N

Leakage

Fig. 2. Cache cyclic interference in Prime+Probe. A and V create two
consecutive directional interference events on cache line N4.

we show the ineffectiveness of cache cyclic interference detectors and
demonstrate they are not sufficient to be used to mitigate Spectre at-
tacks. We provide more details in Section II-C. Finally, prior work has
demonstrated, with very high accuracy, the ability to detect the phases
of a Spectre attack through direct analysis of the microarchitectural
changes of a successful attack [28]. We demonstrate that combining
this detector, or even an ideal detection methodology, with existing
mitigation strategies can potentially introduce new vulnerabilities,
ultimately enabling the attacker to recover sensitive information.

C. Cache Contention Cyclic Interference Detection

We provide a detailed background of Cyclone [26], as the state-
of-the-art cyclic interference detector, since we intend to have an
in-depth investigation of the limitations of such detectors. We are the
first to reveal the risks of using this class of detection.

A directional interference on a resource (e.g., cache line N) is
defined as X⇝Y , in which X and Y are two processes with different
security domains (i.e., they need to be isolated from each other) which
both touch the same resource. Cyclic interference detectors exploit
the common property of known cache contention leaks: recurring and
consecutive interference on resources and memory addresses (e.g.,
X ⇝ Y and Y ⇝ X occurring consecutively on cache line N).
Figure 2 shows an example of cyclic interference performed by the
Prime+Probe attack (A is the attack process, and V is the victim).
As it can be seen, there are two consecutive directional interference
events on cache line N4: (1) A⇝ V , and (2) V ⇝ A, creating a
A⇝ V ⇝ A cyclic interference. The Cyclone methodology uses a
local detector to determine the cyclic interference events of resources
and memory addresses completed by processes with different security
domains, and not interfered with third party applications. Cyclone
includes all cache contention-based attacks in their threat model,
and in addition, it claims to detect Spectre attacks through cache
contention. We will present a new version of Spectre attacks that can
bypass the Cyclone local detector (Section III-A). Note, that Cyclone
can only detect cache contention-based attacks and does not cover
attacks like Flush+Flush.

III. MOTIVATION

The goal of this work is to propose a highly efficient and robust
protection for cache-based Spectre attacks. We aim to enable our
proposed mitigation strategy only when a potential attacker is present
in the system. To achieve this, we require a detector that is accurate
(zero false negatives and low false positives), robust (comprehensive
security against existing attacks), and timely (reporting the leaks be-
fore the attacker has a chance to recover it) in order to selectively and
efficiently protect the potential data leaks [18], [28]. In this section,
we will explore different viable and existing options to use detection
mechanisms to provide mitigation, and evaluate their effectiveness.
ML-based detectors have already been shown to be vulnerable to
evasive attacks [28]. Hence, we start with another class of detection,
cyclic interference detectors. We first demonstrate the limitation of
the Cyclone [26], as the state-of-the-art cyclic interference detector,

Primes cache set N

Attacker Process (A) Victim Process (V)
1 3

Benign Process (B)
2

Attacker Process (A)
4

time
Primes cache set N Evicts cache line N4 Probes cache set N

Leakage

𝐴 ⇝ 𝐵 𝐵 ⇝ 𝑉 𝑉 ⇝ 𝐴

Fig. 3. BENIGNINTERFERE ATTACK using a third party and benign applica-
tion to launch a Prime+Probe attack, bypassing Cyclone [26] detection.

through the first of a number of new attacks presented in this work,
BENIGNINTERFERE ATTACK. Second, we discuss that even an ideal
and patched version of cyclic interference detectors is not timely
enough to be used for mitigation (SINGLEPROBE ATTACK). Third,
we discuss the limitations of isolation and obfuscation techniques,
as the only current viable mitigations to benefit from detectors. We
show that such defenses are still vulnerable (SINGLEPRIME ATTACK)
even using an ideal detection mechanism.

We will conclude by showing that blindly connecting detection
and mitigation strategies can introduce new vulnerabilities. Hence,
an efficient and robust solution requires to carefully co-design the
detection and mitigation mechanisms in order to protect all potential
speculatively leaked data.

A. BENIGNINTERFERE ATTACK: Bypassing Cyclone Detection

As we discussed in Section II-C, Cyclone detection mechanism
considers X ⇝ Y ⇝X interference events on a resource as cyclic
and potentially malicious, only if it is not interfered with a third
party process. We demonstrate that this assumption is not always
true through our new attack that uses benign applications as a third
party to interfere with the target cache location and still the attacker
can successfully recover the victim’s secret data. Figure 3 shows
how BENIGNINTERFERE ATTACK exploits the fact that the attacker
can share data with benign applications (e.g., shared libraries). There
are three directional interference events in this attack (A stands for
Attacker, B for interfering Benign application, and V for Victim): (1)
A⇝B, in which both A and B prime the cache line N with shared
data. (2) B⇝V interference happens when the victim speculatively
evicts the data in cache line N . Finally, (3) V ⇝ A interference
occurs due to the attacker probing cache line N to recover the secret.
As you can see, the A ⇝ B ⇝ V ⇝ A sequence does not have
any two consecutive directional interference events creating a cyclic
contention on cache line N , hence, bypassing the Cyclone local
detector. The general sequence of our attack is A⇝ .∗⇝B⇝V ⇝A,
which .∗ means that any number of applications interfering with the
cache line N can execute in between.

While it is possible to improve the Cyclone local detector to catch
all cases of BENIGNINTERFERE ATTACK (i.e., counting all A⇝ .+⇝
A interference sequences as potentially malicious), the performance
penalty and false positive rate of such modification is significant. We
tested a set of SPEC CPU2006 applications with the original and the
patched version of the Cyclone1, and we observe 164% increase in
the false positive rate of cyclic events detected by the local detector,
ultimately making it less practical to be used for efficient mitigation
because of more false alerts.

B. SINGLEPROBE ATTACK: Bypassing Isolation/Obfuscation +
Ideal Cyclic Interference Detection

Among all mitigation strategies discussed in Section II-B, restric-
tion based, isolation, and access obfuscation solutions provide strong
protections (as the other techniques are proven to be vulnerable or

1Section VII-A provides the details of our simulation and applications setup.

3

Attacker Process Victim Process
(secret = 0)

Attacker Process

Cyclic interference detected and
isolate/obfuscate the attacker process

Cache miss à secret = 0
Cache hit à secret = 1

1 2 3

time

Leakage

Cyclic Detection
Alert

Primes
cache set 1

Evicts from
cache set 0

Primes
cache set 0

Probes
cache set 0

Fig. 4. SINGLEPROBE ATTACK bypassing an ideal cyclic interference
detection when combined with isolation/obfuscation (Prime+Probe example).

provide limited protections). However, restriction-based mitigations
cannot benefit from detection mechanisms since they need to be
enabled by default in order to prevent data leaks; enabling such
mitigations after the detector’s alert is not timely enough to mitigate
the data that is already leaked.

Isolation-based and obfuscation-based strategies are viable candi-
dates to be combined with an SCA detector and prevent potentially
malicious processes to extract the secret when detectors raise an
alert (e.g., [29] deploys Cyclone to isolate malicious processes
for LLC attacks). We present SINGLEPROBE ATTACK that shows
the ineffectiveness of combining isolation/obfuscation with an ideal
version of cyclic interference detectors (i.e., resistant against BE-
NIGNINTERFERE ATTACK with a low false positive rate). The key
insight of our attack is to show that cyclic interference detectors are
not timely enough to protect data leaks and prevent secret recovery.

Figure 4 shows the steps of SINGLEPROBE ATTACK. First, the
attacker primes two cache lines to infer one bit of the secret. The
victim evicts the data in the second step (the secret bit is 0 in this
example, so the victim evicts from cache set 0). In the third step, the
attacker probes the first cache set (cache set 0) and then the detector
detects a cyclic interference on cache line 0 and raises the alert. While
the attacker’s process is isolated or obfuscated afterward, but only
probing the first cache line before the alert, enables the attacker to
recover the secret bit (observing a cache miss means that the secret is
0, otherwise the secret is 1). Hence, we conclude that even improving
the cyclic interference detectors is not secure and not timely enough
to raise an alert before the data leak.

C. SINGLEPRIME ATTACK: Bypassing Isolation/Obfuscation + Ideal
Detection

In this section, we go one step further and present SIN-
GLEPRIME ATTACK to show the limitation of isolation/obfuscation
mitigation strategies when combined even with an ideal detector (i.e.,
accurate, robust, and timely). The key insight of our attack is that
the protections are enabled or disabled in a secret dependent way.
Figure 5 depicts the four steps of SINGLEPRIME ATTACK for a
Prime+Probe approach. In the first step, the attacker primes only one
cache set (cache set 0). Then the victim evicts from cache set 0 or
cache set 1 depending on the secret bit (step 2). In step 3, if the primed
cache set and the evicted cache set match then the detector raises
an alert and activates isolation or obfuscation for the next process,
resulting in a slowdown of the process. However, if the evicted cache
set is not among primed cache sets then the detectors will not raise
an alert, hence, the attacker can successfully probe the primed cache
line and experience no slowdown. Since both isolation and access
obfuscation strategies slow down the execution the attacker can infer
the secret bit by monitoring the time difference between an enabled
and disabled isolated/obfuscated mode.

We conclude that blindly enabling existing mitigation strategies
selectively by using detectors (e.g., the state-of-the-art detector [28]
or even an ideal detector) will not provide a robust solution. Hence,

Attacker Process Victim Process Attacker Process

Cache hit

secret = 0

secret = 1

Detection
Alert

Process slowdown by
isolation/obfuscation

1 2 3 4

time

time

Primes
cache set 0

Primes
cache set 0

Evicts from
cache set 0

Evicts from
cache set 1

Probes
cache set 0

Leakage

Fig. 5. SINGLEPRIME ATTACK bypassing an isolation based mitigation using
an ideal detector (Prime+Probe example).

in this work, we discuss that we need to co-design the detection and
mitigation. We propose HIDFIX that aims to accurately detect the
speculatively leaked data and rollback all these potential leakages
before the attacker gets a chance to extract them. In Section V, we
will discuss the details of our methodology and the required changes
on the microarchitectural level.

IV. THREAT MODEL

The threat model of HIDFIX includes all Spectre-style attacks [2],
[34]–[36] that use the cache as the channel to leak the victim’s
secret data. In this work, we demonstrate the effectiveness of the
HIDFIX methodology for the Prime+Probe [13], Flush+Reload [14],
and Flush+Flush [12] cache primitives. However, our approach can
be extended to other cache primitives used for Spectre attacks.

We consider a trusted OS and a multi-core system in which the
main assumption for the attacker is that it runs on the same core
as the victim and they share the branch predictor and the private
data cache (a common assumption of Spectre-style attacks). Note,
that we do not consider cross-core Spectre attacks, as no prior work
has demonstrated the practicality of such an adversary; The main
challenges of cross-core Spectre attacks are that branch predictors
are not shared among different cores, and also non-inclusive last-
level caches in modern processors [37] make it challenging to create
cross-core cache-based side-channel. However, HIDFIX methodology
can be extended to all layers of the cache subsystem and is not
fundamentally limited to private data caches.

V. HIDFIX DESIGN

The goal of our work is to provide efficient mitigation for spec-
ulative data leaks that occur via the private data caches of modern
processors. We aim to accomplish this goal by achieving three key
requirements:
RQ1 Accurately spotting the speculatively leaked data through the

data cache;
RQ2 Reverting the data leaks before a potential attacker has a

chance to extract the data;
RQ3 Minimizing performance and efficiency overheads, while com-

prehensively blocking all the leaks.
We present the HIDFIX methodology in Section V-A that aims to

achieve these requirements. Section V-B provides the details of our
microarchitecture to implement HIDFIX in the hardware.

A. Overview of Methodology

Spotting Speculative Data Leaks. To comprehensively block any
speculative data leaks, we first have to spot all the potential leaks
before the attacker gets a chance to extract them (RQ1). As an
overview, we first describe the common steps of all cache-based
Spectre attacks:

Step 1 (initialization): Initializing the cache into a known state
(e.g., primed with known data in Prime+Probe, and flushing a specific
set of memory addresses in Flush+Reload and Flush+Flush).

4

Address Initialization Table (AIT)
MisspeculatedPrior

InitializedValidMemory
Address

11132523407

…………

00132517600

Cache Initialization Table (CIT)
Initialized

Memory AddressLRUMisspeculatedPrior
InitializedValidAccessedCache

Line

32542619211110

…………………

3251350000000N-1

ANDAND

Re-initialize the leaked
address by re-flushing

Re-initialize the leaked cache set(s) by
reloading all the cache lines in the set

(order specified by the LRU bits)

AlertAlert

Unresolved Instructions Table (UIT)
Potential Data Leak

Branch Memory
Address

L1
D-Cache Set

325234074BR1

………

L1 D-Cache

Tracking Misspeculation Events

Spotting Data Leaks

Reverting Data Leaks

D
et
ec
tio

n
M
iti
ga
tio

n

N N N

LL LL L L

NN N

Detection flow during
context switch

Mitigation flow during
context switch if leak detected

Fig. 6. Overview of HIDFIX design. The detection part spots data leaks (N
checks during the context switch) and the mitigation part rollbacks the leaks
during context switch, before scheduling the next process. N is the size of
CIT and AIT tables, and L is the number of leaks detected at context switches.

Step 2 (victim leak): The victim misspeculatively transmits poten-
tially sensitive data to the initialized cache sets or memory addresses.

Step 3 (data extraction): The attacker probes the initialized part
of the cache (e.g., via accessing its known data or known addresses)
and looks for the changes made by the victim.

Based on these steps, we need to determine all of the potential
misspeculated leaks before the secret extraction step (step 3). We
deploy a similar approach to [28] and directly track and spot potential
data leaks. A cache location or a memory address is considered a
potential data leak if it has been initialized by prior processes, either
primed or flushed (leak condition 1); and it has been speculatively
accessed by the current process and resulted in misspeculation (leak
condition 2). The majority of prior work only relies on the second
condition (i.e., the misprediction events) to spot the potential data
leaks [6], [7], however, we argue that the attacker will not be able to
recover a misspeculated data leak if the leakage source (either cache
set or memory address) has not been initialized by prior processes
(i.e., leak condition 1).

Our leak conditions capture all known cache-based Spectre attacks
(including our new attacks; Section III), and still provide a more
accurate approach (zero false negatives and low false positives),
resulting in an efficient approach to block the leaks (RQ3). Prior
work [28] attempts to be more selective by ignoring the cases that the
number of initialized locations and addresses are less than a threshold
(e.g., at least two caches sets need to be primed if the attacker is
leaking one bit of the secret). However, our SINGLEPRIME ATTACK

demonstrates the possibility of data leak in some situations even by
priming only one cache set. We do not consider any thresholds for
the number of initialized locations and addresses.

Our microarchitecture uses two tables: (1) Cache Initialization
Table (CIT) that tracks the initialization state of all cache lines (moni-
toring attacks like Prime+Probe), and (2) Address Initialization Table
(AIT) that tracks all the initialized memory addresses (monitoring
attacks like Flush+Reload and Flush+Flush). In addition, these tables
store more information to track all the leak conditions we discussed
(e.g., there is a misspeculated bit that indicates the leak condition 2).
Figure 6 shows the new structures of HIDFIX microarchitecture that
we discuss the details of the tables and their operation in Section V-B.

Reverting the Speculative Data Leaks. To effectively revert all the
potential data leaks before the attacker has the ability to extract them
(RQ2), we deploy a rollback mechanism at the context switches,

before running the next process, where we have spotted potential
data leaks. The goal of a rollback mechanism is to re-initialize
the misspeculatively leaked cache locations and memory addresses
that had been initialized by previous processes (possibly a malicious
process). In other words, a rollback mechanism prevents the attacker
from inferring any secret dependent changes in the initialized part of
the cache, hence, preventing the data extraction step of the attack.

One of the key aspects of our approach is that we only perform
the rollback at the end of the context switches by a trusted OS,
before scheduling the next process. Authors of [16] have demon-
strated the vulnerabilities of mitigations that solve the data leaks
by interfering with the running application [6] since it enables the
attacker to observe secret dependent timing differences introduced by
the mitigation operations. However, our approach does not have this
vulnerability because it does not interfere with the running process,
and prevents attackers from finding the exact timing of data leaks or
creating customized gadgets that reveal secret dependent timings.

To rollback the leaks through cache initialization (i.e., primed in
case of Prime+Probe), we reload the affected and leaked cache sets;
The cache lines are reloaded in the order specified by the initialized
Least Recently Used (LRU) bits checkpointed in CIT, to preserve
the same order that a potential attacker has used to initialize the
cache set; Otherwise, the order of evictions will be different in the
attack probe phase which reveals if the cache set has been touched
by the victim. To rollback the leaks through address initialization
(i.e., flushed in case of Flush+Reload and Flush+Flush), we flush
the leaked addresses again to ensure the attacker will not observe
any unintended leak from the victim. In Section VI, we discuss the
security analysis of our rollback mechanism and demonstrate that we
hide all the potential data leaks, and moreover, we do not introduce
new changes that might enable the attacker to bypass our defense.

Walkthrough Example. Figure 7 shows the HIDFIX methodology
when running two variants of Spectre: (a) via Prime+Probe, and (b)
via Flush+Reload. Process Pn−1 (a potentially malicious process)
primes two cache sets by initializing with known data or initializes
three memory addresses by flushing known addresses (step ❶).
Tables CIT and AIT are updated with this information during the
execution of process Pn−1. Then in step ❷, process Pn (potentially
a victim) leaks one of the initialized cache sets (cache set 1) during
a speculation window resulting in misspeculation. In addition, one
of the initialized memory addresses is leaked misspeculatively as
well (memory address 2). CIT and AIT tables mark the initialized
cache sets and memory addresses that have leaked misspeculatively.
In step ❸, we check the initialization tables to detect valid speculative
data leaks during context switch CTXn+1. Since a misspeculated
data leak is spotted in CIT and AIT, HIDFIX triggers the rollback
mechanism to re-initialize the leaked cache set (cache set 1) and
memory address (address 2). When the next process, process Pn+1,
starts executing the state of initialized caches sets and memory
addresses will be the same as process Pn−1 (step ❹), hence, there
will be no evidence for a potential attacker to infer the victim’s data.

B. Microarchitecture

Figure 6 depicts the new structures of HIDFIX and their interac-
tions on top of a baseline out-of-order (OoO) processor. HIDFIX

microarchitecture has three pieces to ultimately block the mis-
speculated data leaks: (1) tracking the initialization state of cache
lines and memory addresses, (2) tracking misspeculation events, and
(3) reverting the data leaks of misspeculated instructions to their
previosuly initialized states.

5

Process Pn-1 Process Pn Process Pn+1

10

CTXn

10CIT

AIT

1

CIT

AIT

CIT

AIT

0 1 0 1No data leak
found in CIT

and AIT

1 2 4

time

CTXn+1

1

Data leak
detected in CIT

Rollback

3
Process Pn-1 Process Pn Process Pn+1CTXn

CIT

AIT

CIT

AIT

No data leak
found in CIT

and AIT

1 2 4

time

CTXn+1

Data leak
detected in AIT

Rollback

3

0 1 2

0 1 2 0 1 2

2 2

CIT

AIT 0 1 2

(a) Spectre via Prime+Probe (b) Spectre via Flush+Reload

Alert Alert

n Flushing mem. Address n

n Accessing mem. Address n

Priming cache set m

Evicting a line from cache set mm

m

m

n

Re-initializing cache set m

Re-initializing mem. address n

Speculation window start

Misspeculation

Legend

Fig. 7. Workflow of HIDFIX for detection and mitigation of Spectre via (a) Prime+Probe, and (b) Flush+Reload cache primitives (Flush+Flush have a similar
initialization phase). Pn−1 and Pn+1 can be the same process, as the attack process and the common for Spectre. CTXi is ith context switch in the system.

(1) Tracking initialization states. We use two tables, the CIT
and AIT, to store the initialization information of all cache lines
and memory addresses (entries in the CIT are indexed by cache line
numbers, and entries in the AIT are indexed by memory addresses).
Each access to the L1 D-Cache updates the corresponding cache
line entry in the CIT (Accessed = 1). In addition, the memory
address of the data that has primed the cache line and its LRU
bits are checkpointed at the CIT table; We need this information
later to re-initialize the cache sets (with the same order) that have
misspeculatively leaked data. Any flushing operation on L1 D-Cache
will update the AIT with the flushed memory address (memory
addresses have the cache line granularity; as used in x86 clflush
instructions). We include a V alid bit per entry to indicate the
initializations that have been done by a user process, and not by
OS during the context switches.

At the end of each context switch, the Prior Initialized bit is set
to 1 only if the entry has been primed or flushed by prior processes
and not by the OS during the context switch (i.e., V alid = 1). In
addition, the Accessed bits of all entries in the CIT are reset to 0 to
capture the access patterns of the next process.

(2) Tracking misspeculation events. To capture data leaks during
speculative execution of the core, we monitor all live unresolved
branches in the ROB using a new structure called the Unresolved
Instructions Table (UIT). Whenever a cache miss occurs during
the speculation window of an unresolved branch, the corresponding
entry in the UIT is updated with the affected cache set number and
the memory address. If any of the branches in the UIT result in
misprediction, the Misspeculated bit of the affected entries in the
CIT and AIT are set to 1. In other words, upon each misspeculation
event, we update the initialization tables to mark the entries that have
been misspeculatively touched (i.e., the unintended cache changes).

(3) Reverting misspeculated data leaks. At each context switch,
we check the status of the initialization tables to detect misspeculated
data leaks. First, we look up the CIT and AIT to find such leaks.
Cache data leaks, as defined in Equation 1, are all entries e in the CIT
that have been initialized by prior processes (prior initialized =
1) and have not been interfered by context switches (V alid = 1).
Moreover, it has been misspeculated (misspeculated = 1).

cache leaks = {e ∈ CIT | e.Misspeculated = 1 ∧
e.Prior Initialized = 1 ∧ e.V alid = 1}

(1)

We detect the leaks through memory addresses in a similar way, as
defined in Equation 2.

memory leaks = {e ∈ AIT | e.Misspeculated = 1 ∧
e.Prior Initialized = 1 ∧ e.V alid = 1}

(2)

When the sets of data leaks have been determined, a rollback
mechanism is initiated to re-initialize the affected cache sets and
memory addresses. For the memory address leaks, we just flush
those addresses and ensure that the next processes will not observe

a cache hit for the leaked addresses. For the cache leaks, we reload
all the cache lines of the leaked cache set. We issue n loads, as n is
the number of cache lines per cache set (i.e., the number of ways),
with the checkpointed addresses in the CIT; the order of loads is
specified by the checkpointed LRU bits in the CIT. It is important
to issue the loads in the same order that a potential attacker has
used for initialization to guarantee that the probing access times will
be the same as if the victim has not leaked anything. The rollback
mechanism is an atomic operation, for example by acquiring a lock
to the target resource and freeing the lock when it is updated by the
valid data. This ensures that the system is updated with the correct re-
initializations before handing over the system to a potential attacker.

VI. SECURITY ANALYSIS

In this section, we discuss the comprehensiveness of our mitigation,
both in spotting and reverting data leaks. Moreover, we aim to show
that HIDFIX does not introduce additional changes enabling other
side-channel attacks. We study an adversary that runs on the same
core as the victim and there is a context switch when transitioning
between the malicious and benign processes. Figure 8 depicts the
timeline of the events occurring during an attack initializing the
cache sets (e.g., Prime+Probe) without the HIDFIX protection in a
baseline OoO processor (No Protection), and the HIDFIX protection
enabled. As it is shown, the target cache set is initialized (i.e., primed)
at the beginning (Initial State), then the victim misspeculatively
evicts a cache line from the initialized cache set. HIDFIX detects
such behavior in the next context switch (CTXn+1), before the next
process starts running, and initiates the rollback mechanism, while the
unprotected baseline leaves the potential data leak as it is. Finally, the
attacker will observe indistinguishable access timings for the target
cache sets when HIDFIX is enabled (Next Access). However, an
unprotected processor will show a timing difference that enables the
attacker to recover the secret (i.e., cache miss during Next Access
informs the attacker that the initialized cache set has been evicted
by the victim). Note, that HIDFIX re-initializes cache lines in the
leaking cache set in the same order that the attacker has initialized
originally (the order is specified with the checkpointed LRU bits of
the cache lines). This guarantees that the state of the cache set is
exactly the same as the original state that the attacker has initialized.

In addition, we demonstrate that the updates of the cache coherence
state of the affected cache lines during the rollback mechanism do
not introduce new vulnerabilities. To provide background, each cache
block in MESI coherence protocol has four possible states2: (1)
Modified (M) state means that the cache block is present in only
one private cache and is dirty. (2) Shared (S) state means that the
cache block is present in multiple privates caches and is clean, and (3)

2As explained in prior work [38], different processor families might have
more coherence states (e.g., MESIF protocol in Intel Xeon processors),
but they only serve as performance optimizations and do not add any
fundamentally different coherence states.

6

CTXn
Initial State

(Core 0)

Victim Eviction
(Core 0)

CTXn+1
Final State

(Core 0)

Next Access
(Core 0)

E/M I
I

E

E/M I E E/M

S I (Core 0) / S (other cores) S

S SS

S E
I (on all cores)

S E/ME

No Protection

HIDFIX

Eviction interference

Eviction interference

miss

miss

miss

hit

hit

hit

Rollback

Rollback

Rollback

primed

primed

primed

primed

primed

primed

I (Core 0) / S (other cores)

I (Core 0) / S (other cores)

I (Core 0) / S (other cores)

I (Core 0)
S (other cores)

time

time

time

time

time

time

Attacker priming the cache lines in Shared (S) state (with eviction interference from other cores)

Attacker priming the cache lines in Shared (S) state

Attacker priming the cache lines in Exclusive (E)/Modified (M) states

No Protection

HIDFIX

No Protection

HIDFIX

Other Cores

Leakage

Leakage

Leakage

Fig. 8. Timeline of the events with and without HIDFIX protection for cache
initialization attacks (e.g., Prime+Probe). The coherence state of the primed
and leaked cache set is also indicated, and HIDFIX does not introduce any
new leaks due to E/M→S transitions [6], [38].

Exclusive (E) state means that the cache block is present in only one
private cache and is clean. (4) Invalid (I) state indicates that none
of the private caches have a valid copy of the cache block. Prior
work [6], [38] demonstrates that E/M →S state changes can be a
vulnerability as they present an observable timing difference. Figure 8
indicates the coherence state of the target cache block on the top
and with different initial states (as the attacker has primed the block
in E/M state or S state). As one can see, HIDFIX operations do
not introduce these vulnerabilities (i.e., E/M →S state transitions)
in any of the transitions happening during HIDFIX rollbacks, even
if there are eviction interference during the victim execution from
other cores (i.e., the shared data has been evicted in remote private
caches). Note, that HIDFIX does not aim to mitigate non-speculative
coherence vulnerabilities [38] which are out of the scope of this work.

A. Security of HIDFIX against Known Attacks

We argue that the HIDFIX approach to detect and mitigate the
data leaks is sound since it directly tracks the initialization and
misspeculation state of all cache lines and memory addresses. Here,
we discuss the protection of HIDFIX against known attacks.

Security of HIDFIX against our attacks (Section III). BE-
NIGNINTERFERE ATTACK bypasses the Cyclone detection by a
third party application breaking the cyclic interference pattern of
the attack. However, HIDFIX is not vulnerable to such an attack
since we consider a cache set or memory address to be initialized,
even if it has been initialized multiple times by different processes.
SINGLEPROBE ATTACK defeats the cyclic interference detectors
since they are not timely in spotting the data leaks, and the attacker
can leak one bit of the secret before an alert is raised. However,
HIDFIX spots the data leaks before the system is handed over
to a potentially malicious process. SINGLEPRIME ATTACK defeats
the combination of isolation/obfuscation mitigations and detection
methodologies. Since this combination results in slowing down the
attacker’s process based on the secret value and the attacker can infer
the secret key by observing this behavior. HIDFIX is not vulnerable
to such attacks because it does not cause a slowdown of the attacker’s
processes and it reverts all of the victim changes during the OS
context switches as a trusted software. Moreover, the rollback delays
are extremely small compared to the context switch delays. Hence,
when the attacker runs there will be no footprints of the victim in
the system (i.e., misspeculated data leaks) and the attacker’s process
runs normally without any signs of secret dependent behavior.

TABLE I
PROCESSOR CONFIGURATION FOR GEM5 SIMULATION.

L1 D/I Cache 32KB, 8-way LQ/SQ/IQ/ROB 32/32/96/192 entries
L2 Cache 256KB, 8-way RF (INT/FP) 256/256 entries
L3 Cache 1MB, 16-way Branch Predictor TAGE-SC-L-64KB
F/D/I/C width 8/8/8/8 CIT/AIT/UIT 512/512/16 entries

Security of HIDFIX against attacks defeating current cache-
based Spectre mitigations. Speculative Interference attacks [15]
defeat invisible speculation defenses and exploit the fact these
mitigations load the secret values if they hit in the cache. Hence,
they create resource contention with the secret values to extract the
secret. The UnXpec attack [16] defeats the undo-based defenses, like
CleanupSpec [6], by creating gadgets that create secret dependent
timing differences introduced by undo operations. HIDFIX is secure
against both attacks as it does not interfere with the execution of
any of the running processes and all rollback operations are handled
at the end of context switches before scheduling the next process.
Hence, an attacker cannot trigger and observe secret dependent timing
differences during its execution.

Security of HIDFIX against attacks evading ML-based de-
tectors. Prior work [28], [39] has demonstrated the limitations of
ML-based detection methodologies either by changing the footprint
of the attack or by connecting benign gadgets to launch an attack.
However, all the known evasive attacks follow the same three steps
that we discussed in Section V-A. Since HIDFIX directly tracks all
cache lines and memory addresses following the steps of a successful
Spectre attack, it can protect against all these attacks.

Table II experimentally confirms the ability of HIDFIX to detect
and mitigate the attacks presented in this paper and the ML evasive
attacks [28]. Table III in the Related Work section (Section VIII)
provides an overview of prior mitigations and how their protection
guarantees compare to HIDFIX.

VII. EVALUATION

A. Experimental Setup

We use gem5 simulator [40] to evaluate the performance impacts
of HIDFIX. The simulations are done in Syscall Emulation (SE)
mode using the DerivO3CPU core model. In addition, we use CACTI
6.5 [41] to estimate the area and power overheads. Table I shows the
details of our gem5 configuration. Note, that the size of the CIT is
equal to the number of cache lines in L1 D-Cache. Also, we use a
16-entries UIT table since our experiments show that the number of
unresolved branches does not hit the limit of 16.

We test our design with the SPEC CPU2006 [30] benchmark suite
and build 100M-instruction representative executables (SimPoint) for
each application using the ELFies methodology [42]. Additionally, we
communicated with the authors of Cyclone [26] to use their gem5
implementation to evaluate our new attacks against cyclic interfer-
ence detectors (BENIGNINTERFERE ATTACK and SINGLEPROBE AT-
TACK). We used the ML evasive attacks from Spectify [28] as well
to evaluate HIDFIX against such attacks.

B. Performance Evaluation

Table II shows the performance impacts of HIDFIX on SPEC
CPU2006 applications compared to an unprotected OoO core as the
baseline. The execution of each program is split into different frames
that represent the program execution between context switches and
as the points that we examine the CIT and AIT tables to rollback
the potential data leaks3. While SPEC CPU2006 applications are

3We consider the time quantum of task scheduling to be 10ms [43].

7

TABLE II
HIDFIX STATISTICS AND PERFORMANCE OVERHEAD.

Application #Leaks Baseline OoO HIDFIX Performance
#cycles #cycles Overhead (%)

Sp
ec

tr
e

Po
C

[2
] Spectre (Prime+Probe) 1 2,476,199 2,476,359 0.0065%

Spectre (Flush+Reload) 1 1,606,505 1,606,665 0.0099%
Spectre (Flush+Flush) 1 3,539,091 3,539,251 0.0045%

Sp
ec

tif
y

[2
8]

Expanded-Spectre-nop 1 1,738,309 1,738,469 0.0092%
Expanded-Spectre-mem 1 11,811,613 11,811,773 0.0013%
Benign-Program-Spectre 1 17,736,531 17,736,691 0.0009%

Th
is

w
or

k BENIGNINTERFERE 1 1,655,046 1,655,206 0.0096%
SINGLEPROBE 1 115,091 115,251 0.1390%
SINGLEPRIME 1 108,159 108,319 0.1479%

SP
E

C
C

PU
20

06

zeusmp 44 65,516,404 65,523,444 0.0107%
bwaves 4 110,485,539 110,486,179 0.0006%
bzip2 6 76,260,838 76,261,798 0.0013%
cactus 0 121,449,812 121,449,812 0.0000%
gamess 32 53,436,713 53,441,833 0.0096%
gcc 15 303,419,510 303,421,910 0.0008%
gobmk 7 97,271,448 97,272,568 0.0012%
libquantum 0 144,772,205 144,772,205 0.0000%
mcf 86 435,546,173 435,559,933 0.0032%
omnetpp 8 171,908,584 171,909,864 0.0007%
soplex 6 256,567,930 256,568,890 0.0004%
Average (SPEC CPU2006)‡ 18.45 135,986,161 135,989,670 0.0025%

‡ geomean is used for performance overhead, and arithmetic mean for the number of leaks.

0%

20%

40%

60%

80%

100%

120%

Baseline OoO HidFix Baseline OoO HidFix

Area Power

AIT
CIT
UIT
ALU-cmplx
ALU-fp
ALU-int
BPU
CDB
D-Cache
Decode
I-Cache
Issue
LSQ
Renamce
RF
ROB

Fig. 9. Power and area overheads of HIDFIX compared to an unprotected
baseline out-of-order (OoO) processor. The new structures are shown in bold.

benign, we detected 18.45 data leaks on average (up to 86 leaks in
mcf) during the execution of 100M instructions as the points that the
applications speculatively leaked their data unintentionally. HIDFIX

can introduce performance overhead if the rollback mechanism evicts
data from the cache and the evicted data is accessed in the next frames
of the execution. However, our experiments show that the HIDFIX

overheads are very negligible for SPEC CPU2006, only 0.0025%
over the unprotected OoO processor.

In addition, we show that HIDFIX performance overhead is negli-
gible under attack as well. We tested three Spectre Proof-of-Concept
(PoC) attacks (Prime+Probe, Flush+Reload, and Flush+Flush), ML
evasive Spectre attacks [28], and the new attacks that we present in
this paper (Section III).

C. Security Evaluation and Penetration Tests

As Table II shows, we are able to detect and mitigate the data
leaks occurring during all three tested Spectre PoC attacks. Note,
that these attacks are extracting only one byte of the secret and only
one data leak happens in the system. In addition, we tested our attacks
presented in Section III with both HIDFIX and Cyclone gem5 im-
plementations. While HIDFIX can successfully detect data leaks, the
attacks can bypass the Cyclone detection technique. Finally, we have
tested HIDFIX design against the evasive Spectre attacks bypassing
ML-based detectors [28] and confirm that we can successfully detect
the leaks and mitigate them.

D. Power and Area Overheads

Figure 9 shows the detailed power and area overheads of HIDFIX

compared to an unprotected baseline OoO core. The average power
consumption overhead of HIDFIX is 0.5%, which comes from the
new three tables (CIT/AIT/UIT) as direct-mapped memory structures.
The area overhead is 5.6% over the baseline OoO core.

TABLE III
RELATED WORK COMPARISON.

Defense Approach Protection for Cache-based Spectre Max. reported Flexibility‡Safe? Vulnerability perf. overhead

DOLMA [3] Restriction ✗
Speculative

Interference [15] 130%

NDA [4] Restriction ✓ - 240%
MI6 [17] Isolation ✓ - 34%

InvisiSpec [7] Invisible Speculation ✗
Speculative

Interference [15] 80%

CleanupSpec [6] Undoing Speculation ✗ UnXpec [16] 25%

CEASER [5] Cache Randomization ✗
Address Contention
(e.g., Flush+Reload) 4%

HIDFIX Selective Rollback ✓ - ∼ 0%

‡ : cannot combine with a detector, : can combine with a detector, but vulnerable to SINGLEPRIME ATTACK,
: can combine with a detector with no known vulnerabilities. SINGLEPRIME is our proposed attack.

VIII. RELATED WORK

Table III shows existing approaches to mitigate cache-based Spec-
tre attacks. Restriction-based defenses attempt to comprehensively
protect all potential channels, including the data caches. However,
DOLMA [3], as a recent restriction-based defense, is vulnerable to
attacks like Speculative Interference attacks [15]. NDA [4] is the most
comprehensive solution which incurs prohibitive performance over-
heads of up to 240% for some applications. Invisible speculation and
undo-based speculation defenses show better average performance
overheads, however, all of them are vulnerable to recent attacks [15],
[16]. Cache randomization techniques, like CEASER [5], incur low
performance overhead, but they cannot provide protection for address
contention attacks (e.g., Flush+Reload and Flush+Flush). In addition,
all the aforementioned defenses are not flexible to benefit from a
detection methodology since they need to be enabled by default and
it will be late for them to selectively enable their mitigations. In other
words, they cannot combine with detection methodologies to decrease
performance overheads. Isolation-based techniques, like MI6 [17],
have the flexibility to benefit from detection methodologies. However,
we have demonstrated that combining isolation methods with detec-
tors can introduce new vulnerabilities (see SINGLEPRIME ATTACK

in Section III-C). HIDFIX is the first solution providing the flexibility
of taking advantage of detection methodologies, resisting all known
cache-based Spectre attacks and their evasive variants [28], [44], and
finally showing near zero performance overhead.

IX. CONCLUSION

In this work, we investigate existing detection and mitigation
methodologies proposed for cache-based Spectre attacks, and how
these methods can be combined to achieve higher efficiency against
such attacks. We present three new attacks and vulnerabilities demon-
strating the limitations of prior work in the direction of detection and
mitigation of Spectre attacks. We propose HIDFIX as an efficient and
robust detection/mitigation methodology. We spot all misspeculated
data leaks that a potential attacker has prior knowledge about them
(i.e., initialized by the attacker). HIDFIX guarantees to rollback the
cache state to a state that is indistinguishable for the attacker. We
provide an in-depth discussion of HIDFIX protection against known
attacks, and we argue HIDFIX does not introduce new side effects
that might enable an attacker to observe secret dependent changes in
the system. We show that HIDFIX incurs almost zero performance
overhead, with negligible power and area overheads.

ACKNOWLEDGEMENTS

We would like to thank Austin Harris and the authors of Cyclone
for sharing their gem5 implementation. We also thank the anony-
mous reviewers and Gururaj Saileshwar for feedback and discussion.
Supported by Singapore NRF grant NRF2018NCR-NCR002.

8

REFERENCES

[1] D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the dominant
out-of-order performance advantage: Is it speculation or dynamism?” in
ASPLOS, 2013.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploiting
speculative execution,” in SP, 2019, pp. 1–19.

[3] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy, and
B. Kasikci, “Dolma: Securing speculation with the principle of transient
non-observability,” in USENIX Security, 2021.

[4] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci, “NDA:
Preventing speculative execution attacks at their source,” in MICRO,
2019, pp. 572–586.

[5] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in MICRO, 2018, pp. 775–787.

[6] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An “undo” approach
to safe speculation,” in MICRO, 2019, pp. 73–86.

[7] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in MICRO, 2018, pp. 428–441.

[8] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (STT) a comprehensive protection
for speculatively accessed data,” in MICRO, 2019, pp. 954–968.

[9] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“Context: A generic approach for mitigating spectre.” in NDSS, 2020.

[10] L.-A. Daniel, M. Bognar, J. Noorman, S. Bardin, T. Rezk, and
F. Piessens, “Prospect: Provably secure speculation for the constant-time
policy (extended version),” arXiv preprint arXiv:2302.12108, 2023.

[11] R. Choudhary, J. Yu, C. Fletcher, and A. Morrison, “Speculative privacy
tracking (SPT): Leaking information from speculative execution without
compromising privacy,” in MICRO, 2021, pp. 607–622.

[12] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: a fast
and stealthy cache attack,” in DIMVA, 2016, pp. 279–299.

[13] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in SP, 2015, pp. 605–622.

[14] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security, 2014, pp.
719–732.

[15] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X. Zou,
T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison et al., “Specu-
lative interference attacks: Breaking invisible speculation schemes,” in
ASPLOS, 2021, pp. 1046–1060.

[16] M. Li, C. Miao, Y. Yang, and K. Bu, “unXpec: Breaking undo-based
safe speculation,” in HPCA, 2022, pp. 98–112.

[17] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, and S. Devadas, “MI6:
Secure enclaves in a speculative out-of-order processor,” in MICRO,
2019, pp. 42–56.

[18] H. Wang, H. Sayadi, A. Sasan, S. Rafatirad, and H. Homayoun,
“Hybrid-shield: Accurate and efficient cross-layer countermeasure for
run-time detection and mitigation of cache-based side-channel attacks,”
in Proceedings of the 39th ICCAD, 2020, pp. 1–9.

[19] S. Mirbagher-Ajorpaz, G. Pokam, E. Mohammadian-Koruyeh, E. Garza,
N. Abu-Ghazaleh, and D. A. Jiménez, “Perspectron: Detecting invariant
footprints of microarchitectural attacks with perceptron,” in MICRO,
2020, pp. 1124–1137.

[20] M. Mushtaq, A. Akram, M. K. Bhatti, V. Lapotre, and G. Gogniat,
“Cache-based side-channel intrusion detection using hardware perfor-
mance counters,” in CryptArchi 2018-16th International Workshops on
Cryptographic architectures embedded in logic devices, 2018.

[21] M. Payer, “Hexpads: a platform to detect “stealth” attacks,” in In-
ternational Symposium on Engineering Secure Software and Systems.
Springer, 2016, pp. 138–154.

[22] X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri, “Confirm:
Detecting firmware modifications in embedded systems using hardware
performance counters,” in ICCAD, 2015, pp. 544–551.

[23] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Symposium
on Research in Attacks, Intrusions, and Defenses. Springer, 2016, pp.
118–140.

[24] S. M. Ajorpaz, D. Moghimi, J. N. Collins, G. Pokam, N. Abu-Ghazaleh,
and D. Tullsen, “EVAX: Towards a practical, pro-active & adaptive
architecture for high performance & security,” in MICRO, 2022, pp.
1218–1236.

[25] J. Chen and G. Venkataramani, “CC-Hunter: Uncovering covert timing
channels on shared processor hardware,” in MICRO, 2014, pp. 216–228.

[26] A. Harris, S. Wei, P. Sahu, P. Kumar, T. Austin, and M. Tiwari,
“Cyclone: Detecting contention-based cache information leaks through
cyclic interference,” in MICRO, 2019, pp. 57–72.

[27] F. Yao, H. Fang, M. Doroslovacki, and G. Venkataramani, “To-
wards a better indicator for cache timing channels,” arXiv preprint
arXiv:1902.04711, 2019.

[28] A. Pashrashid, A. Hajiabadi, and T. E. Carlson, “Fast, robust and accurate
detection of cache-based spectre attack phases,” in ICCAD, 2022, pp. 1–
9.

[29] Y. Verma and B. Panda, “Avenger: Punishing the cross-core last-level
cache attacker and not the victim by isolating the attacker,” in SEED,
2022, pp. 1–12.

[30] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[31] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in DAC, 2019, pp. 1–6.

[32] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay and
value prediction,” in MICRO, 2019, pp. 723–735.

[33] G. Saileshwar and M. K. Qureshi, “MIRAGE: Mitigating conflict-based
cache attacks with a practical fully-associative design.” in USENIX
Security, 2021, pp. 1379–1396.

[34] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
EuroS&P’19. IEEE, 2019, pp. 142–157.

[35] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer.” in
WOOT@ USENIX Security Symposium, 2018.

[36] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018, pp. 2109–2122.

[37] Y. Guo, A. Zigerelli, Y. Zhang, and J. Yang, “Adversarial prefetch: New
cross-core cache side channel attacks,” in SP, 2022, pp. 1458–1473.

[38] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence protocol
states vulnerable to information leakage?” in HPCA, 2018, pp. 168–179.

[39] C. Li and J.-L. Gaudiot, “Challenges in detecting an “evasive spectre”,”
IEEE Computer Architecture Letters, vol. 19, no. 1, pp. 18–21, 2020.

[40] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[41] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-
p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in ICCAD, 2011, pp. 694–701.

[42] H. Patil, A. Isaev, W. Heirman, A. Sabu, A. Hajiabadi, and T. E. Carlson,
“ELFies: executable region checkpoints for performance analysis and
simulation,” in CGO, 2021, pp. 126–136.

[43] D. G. Feitelson and L. Rudolph, Job Scheduling Strategies for Parallel
Processing: IPPS’95 Workshop, Santa Barbara, CA, USA, April 25,
1995. Proceedings. Springer Science & Business Media, 1995, vol.
949.

[44] M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat,
and P. Benoit, “Whisper: A tool for run-time detection of side-channel
attacks,” IEEE Access, vol. 8, pp. 83 871–83 900, 2020.

9

	Introduction
	Background
	Cache-based Spectre Attacks
	Mitigation and Detection of Spectre Attacks
	Cache Contention Cyclic Interference Detection

	Motivation
	BenignInterfere Attack: Bypassing Cyclone Detection
	SingleProbe Attack: Bypassing Isolation/Obfuscation + Ideal Cyclic Interference Detection
	SinglePrime Attack: Bypassing Isolation/Obfuscation + Ideal Detection

	Threat model
	HidFix Design
	Overview of Methodology
	Microarchitecture

	Security Analysis
	Security of HidFix against Known Attacks

	Evaluation
	Experimental Setup
	Performance Evaluation
	Security Evaluation and Penetration Tests
	Power and Area Overheads

	Related Work
	Conclusion
	References

