
SAMPLED SIMULATION OF
MULTI-THREADED APPLICATIONS

TREVOR E. CARLSON, WIM HEIRMAN,
LIEVEN EECKHOUT

HTTP://WWW.SNIPERSIM.ORG
MONDAY, APRIL 22ND, 2013



OVERVIEW

• How can we help the hero save the princess?
• How can we create a representative sample of 

a multi-threaded application?

• Prior Work
• Key Contributions of this Work
• Results

2



DEMANDS ON SIMULATION ARE INCREASING

• Increasing cache sizes
– Need a large working set to fully exercise a large cache
– Scaled-down applications do not exhibit the same behavior

• Increasing core counts
– Linear increase in simulator workload
– Single-threaded simulator sees a rising gap

• workload: increasing target cores
• available processing power: near-constant single-thread performance 

of host machine
• Multi-threaded workloads

– Not reproducible with traces requiring a number of simulation 
runs

• New solutions are needed

3



WORKLOAD REDUCTION IS THE KEY
• Many workload reduction techniques exist today
– Sampling

• SimPoint
• SMARTS
• FlexPoints

– Reduction
• Smaller input sizes
• Reduced numbers of iterations

• Current sampling techniques are not sufficient
– Using CPI as a proxy for runtime does not hold for multi-

threaded applications
• Invalidates assumptions of previous work
• Waiting for locks and barriers and other synchronization primitives

4



• Overview
– Supports sampling multi-threaded throughput (server) applications
– Creates a sample based on a number of sampling units to minimize CPI 

variation
– Not applicable to applications where threads synchronize or communicate

FLEXPOINTS

5
Wenisch, et al., IEEE MICRO 2006



MULTI-THREADED SAMPLING

• Goals:
– Accurately predict application runtime of 

synchronizing multi-threaded applications
• (not just average CPI)

– Periodically sample a multi-threaded application to 
reduce amount of detailed simulation time

• Examples of synchronizing mechanisms
– Barriers, mutexes

• OMP-style parallelism
• Pipelined parallelism

– LOCKed instructions, compare-and-swap

6



INITIAL SAMPLING PROCESS
• Sampling Overview

– Detailed = all components enabled (warmup+simulation)
– Fast-forward = memory-hierarchy enabled

• Key Insights
– Independent IPCs for each individual thread
– Keeping track of wait/wake during fast-forwarding

7



SAMPLE SELECTION

8



APPLICATIONS ARE PERIODIC

9

npb-ft, class A, 8 threads



APPLICATION PERIODICITY AFFECTS ACCURACY

10

Sampling at exactly one
period would produce

excellent results

Sampling at more than
one period can produce
a sampling error



IDENTIFY PERIODICITIES

• We wanted to identify application 
periodicities in a micro-architectural 
independent manner

11

BBV Autocorrelation
npb-ft, class A, 8 threads, with 550k
and 1.14M insn periodicities OMP Call Structure

npb-lu, class A, 8 threads
with high variability (not used)



SAMPLING PROCESS

• Sampling sufficiently above or below the 
period will minimize error

12

Runtime limitPeriodicities

Good Region

Best Region



RESULTS

• Predicted Most-Accurate Results
– Average speedup of 2.9x, maximum of 5.8x 
– Average absolute error of 3.5%

13



RESULTS

• Predicted Fastest Results
– Average speedup of 3.8x, maximum of 8.4x 
– Average absolute error of 5.1%

14



MULTI-THREADED SAMPLING

• Key Contributions
– Understanding application phase behavior is key to 

effective sampling
– Modeling inter-thread interactions during fast-

forwarding is important for multi-threaded sampling 
accuracy

• Predicted Most-Accurate Results
– Average speedup of 2.9x, maximum of 5.8x
– Average absolute error of 3.5% across applications

• Predicted Fastest Results
– Average speedup of 3.8x, maximum of 8.4x
– Average absolute error of 5.1% across applications

15



SAMPLED SIMULATION OF
MULTI-THREADED APPLICATIONS

TREVOR E. CARLSON, WIM HEIRMAN,
LIEVEN EECKHOUT

HTTP://WWW.SNIPERSIM.ORG
MONDAY, APRIL 22ND, 2013


