BARRIERPOINT: SAMPLED SIMULATION OF
MULTI-THREADED APPLICATIONS

TREVOR E. CARLSON, WIM HEIRMAN
KENZO VAN CRAEYNEST AND LIEVEN EECKHOUT

MONDAY, MARCH 24TH, 2014
ISPASS 2014 — MONTEREY, CA, USA

umé%%mn @til

DEMANDS ON SIMULATION ARE INCREASING

e Simulation targets are evolving
— Increasingcore counts per processor
— More complex memory hierarchies

* Traditional cycle-level simulation is i)
S| ngle-th readed Xeon Phi, Source: Intel
— Single-threaded performanceis not
improvingsignificantly

J‘AuwuwuwwwmMA,MWWJL\WWJJAJWWMMLMM AT

. . . J‘HUWMMMWMMJ{JMIWMAALWWAJWLWMMMLMWJAHMMMM

* Results in a large simulation gap bl bbbl
LLJWMWMWMWI—LLJWWW&LWWM”WWMMJNMMJMMM&W

* New solutions are needed

SIMULATION WORKLOAD REDUCTION IS KEY

 Many reduction techniques exist today

— Application reduction
* Smallerinputsizes

e Reduced numbers of iterations

— Sampling: same workload, but
* Only part of the workload is simulated in detail
 Whole-program performance is extrapolated

* Examples: EIMEOINT
— SimPoint
— SMARTS/Flex Points
— Time-based MT-Sampling >>>I

MT-SAMPLING WISH LIST

e Multi-Threaded SimPoints-like solution

— Simulation Time = O(# SimPoints) instead of O(# insns)
— Easy to use, fast to run (in parallel)

 Multi-threaded SimPoints is not a valid solution
— Operates on average CPI, not application runtime
e Does notallow for runtime (non-idle + idle) reconstruction

— What is the starting point of a SimPoint region?

* Must constitute a valid thread orderingfor all architectures

CURRENT SAMPLING SOLUTION SPACE

Native Application Simulation 1000 s
Time-based Multi-Threaded Sampling Sim O(# insns) limits speedup 100 s
Workload-specific methodologies <1ls

SMARTS/Flex Points
Averages User-IPC

Throughput (server) Unstructured synchronization Barrier-synchronizing
workloads: mechanisms: workloads:
client/server, etc. Work-stealing, mutexes OpenMP, auto-parallelized

Thread Synchronization Amount
> 5

BARRIERPOINT

* Key Contributions

— Micro-architecture independent selection of
representative multi-threaded regions

— Extrapolate and estimate total application runtime
— Evaluation with realized speedups and errors

— Propose a straight-forward multi-threaded
warmup technique

15

BARRIERPOINT

* Application Trends * Main Idea
— Scientific applications — Simulate jU_St the |
use barriers (OpenMP) representative regions

between barriers

— Auto-parallelization of (potentially in parallel)

applications uses fork-
join parallelism |

— We call these H

10000 barrierpOintS H
_ 1000 - —
(c(33 Time
-E’ 100 -
g 0 _ l W
|_I Barrier 0 1 2 3 4
1

B s, sy s s, s, B % Time
Y G % % % % % %
(o)

(%3
%,

K 16

BARRIERPOINT IVIETHODOLO&Y <

V'
N
e Compareworkloadsbetween barriers for similarity
e Select andsimulatethe representative barrierpoints
 Reconstructthe runtime fromthe barrierpoints’ results
__ PREEOSOSSSSSSESSSSS)

One-time costs : : One-time or
' —— : per-simulation costs

Barrier Barrier :
Application Pintool ug gimilarity SimPoint Barrier Functional

Points Simulation

Application
Runtime

Runtime Simulation | Detailed
Reconstruction Results Simulation

e R |

Per-simulation costs

MULTI-THREADED REGIONS

 What is an inter-barrier region?

— The execution of all threads after a barrier, up to and
includingthe completion of the followingbarrier

barrier-wait

IPC 1

barrier-wake

IPC O

> time

18

MARCH-INDEPENDENT REGION SELECTION

e Basic-block vectors (BBVs)
— Application execution fingerprint
— Captures basic-block execution

 LRU-stackdistance vectors (LDVSs)

— Application data access fingerprint

— Countsthe number of unique address accesses that occur
between two accesses to the same address (atcache line

granularity)

* BBVs+ LDVs

— Combineinstruction and datafingerprintinto a single inter-
barrier signature

19

UNIQUE ADDRESS WARMUP

* Multi-threaded warmup technique for Barrierpoint
— Avoidlong execution-driven simulation before ROI

— Warmup data part of checkpoint, relatively parchitecture
independent

— Ensurecache coherency

* Unique Address Warmup
— Similar to MTR?, but avoids cache-specificreconstruction

— Collect, from program startup to barrierpointstart

* Each core records the most recent read, write and instruction cache
accesses (by cache line)

* We collect (M * (last N cache lines)), where N is the number required
to fill up the entire cache hierarchy, and M is the number of threads

— Replay:
* [ssue per-core list of unique addresses in parallel
* Feed into real cache models, which remain coherent during warmup

1 K. C. Barr, et al., “Accelerating Multiprocessor Simulation with a Memory Timestamp Record,” in ISPASS 2005
20

RECONSTRUCTING PROGRAM METRICS

* Each barrierpointis given a weight

— The numberof times thatit occurs in the run

With the list and weights, we can reconstruct the runtime

— Runtime,a/s = Runtime, 5 (bpo) * 1.0
+ Runtime /55 (bpys) * 12.0
+ Runtime, /s (bp,;) * 2.0 + ...

* Similar to SimPoint reconstruction, but now with
time (includingidle/sync.) rather than CPI

* Also works for other application metrics: MPKI, etc.

BM/input mm barrierpoint # and multiplier

npb-cg/A 8 0(1.0), 15(12.0), 21 (2.0), ..
npb-mg/A 8 245 8 2 (2.0), 52 (4.6), 57 (9.0), ...

21

ARCH-INDEPENDENT REGION SELECTION

IPC

e A®]
S 00N OO
LI |

Reconstructed IPC
o

BarrierPoint

NPB, A input, 32-cores; Aggregate IPCs shown

22

EXPERIMENTAL SETUP

We model a Xeon/Nehalem-like machine
— 8-core and 32-core architecture

— 8-cores sharean LLC
* Sniper Multi-Core Simulator

Benchmarks SNi per
— Most NAS Parallel Benchmarks (NPB)

* Ainputs
— Parsec
e Bodytrack Large
* Implemented for OpenMP applications
— Fork/join parallelism, one barrier per #omp parallel for

— Can be extended to other types of global synchronization, e.g.

e pthread_barrier()
 MPI_(All)Reduce(MPI_COMM_WORLD)

23

RESULTS

e BarrierPoint shows accurate absolute results

abs runtime % ermror

3.0
2.5
2.0
1.5
1.0
0.5
0.0

Application runtime

Average error of 0.9%
with a maximum of 2.9% error

8cores 1 32cores

24

RESULTS

* BarrierPoint shows accurate absolute results
and relative scaling results

22.00
20.00
18.00
16.00
14.00
12.00
10.00

8.00

6.00

4.00

UL EEY EY

Speedup vs. 8-core

| | | 1 | | | | | 1

| | I | I I | | I I

actual C——1 predicted

25

RESULTS

e Realized simulation speedups are good

— Resource utilization reduction (improved
throughput) by 78x

— Speedup of 25x on average, 867x maximum

1000

100 |
10
I I ‘ ‘ [‘ I'n
Serial Speedup: back-to-back Parallel Speedup: execution with
execution ‘ sufficient resources

Speedup

O D e % Do D D D P 2
Vg T, B, Gp B, 6, 6,.26, 6, R, Fe, R K6 R R R

e, o, YU, %, 0 0. o Co Oy B, U, U 0. 0.

%, 60000 &0%,0 2@ Ty @ “b%"u@& 2

% %,
r o
¢ B

serial speedup 1 parallel speedup m—

26

ADDITIONAL RESULTS

e Barrierpoints are a common unit of work
across architecture configurations

— 8-corevs. 32-core
— Allows for a single characterization run

* Fingerprinting across both instruction and
data profiles provide the best results

— Equal combination of BBVs and LDVs

27

BARRIERPOINT

* Key Contributions
— Micro-architecture independent selection of
representative multi-threaded regions

* Explorealternativesto BBVs, such as LRU-stack distances
e Extrapolateand estimatetotal application runtime

— Evaluation
* Averagereduction of machine resources of 78x
* Realized an average speedup of 25x and maximum of 867x
* Averageerror of 0.9%, maximum of 2.9%

— Propose a straight-forward multi-threaded warmup
technique

— Technology Preview to be released soon
* http://snipersim.org

28

BARRIERPOINT: SAMPLED SIMULATION OF
MULTI-THREADED APPLICATIONS

TREVOR E. CARLSON, WIM HEIRMAN
KENZO VAN CRAEYNEST AND LIEVEN EECKHOUT

MONDAY, MARCH 24TH, 2014
ISPASS 2014 — MONTEREY, CA, USA

umé%%mn @til

