
BARRIERPOINT:	SAMPLED SIMULATIONOF
MULTI-THREADED APPLICATIONS

TREVOR E.	CARLSON,	WIM HEIRMAN

KENZO VAN CRAEYNEST AND LIEVEN EECKHOUT
MONDAY,	MARCH 24TH,	2014

ISPASS	2014	– MONTEREY,	CA,	USA



DEMANDS ON SIMULATION ARE INCREASING

• Simulation	targets	are	evolving
– Increasing	core	counts	per	processor
– More	complex	memory	hierarchies

• Traditional	cycle-level	simulation	is	
single-threaded
– Single-threaded	performance	is	not	

improving	significantly

• Results	in	a	large	simulation	gap

• New	solutions	are	needed

2

Xeon	Phi,	Source:	 Intel



SIMULATION WORKLOAD REDUCTION IS KEY

• Many	reduction	techniques	exist	today
– Application	reduction
• Smaller	input	sizes
• Reduced	numbers	of	iterations

– Sampling:	same	workload,	but
• Only	part	of	the	workload	is	simulated	in	detail
• Whole-program	performance	is	extrapolated
• Examples:

– SimPoint
– SMARTS/Flex	Points
– Time-based	MT-Sampling

3



MT-SAMPLING WISH LIST

• Multi-Threaded	SimPoints-like	solution
– Simulation	Time	=	O(#	SimPoints)	instead	of	O(#	insns)
– Easy	to	use,	fast	to	run	(in	parallel)

• Multi-threaded	SimPoints is	not	a	valid	solution
– Operates	on	average	CPI,	not	application	runtime

• Does	not	allow	for	runtime	(non-idle	+	idle)	reconstruction
– What	is	the	starting	point	of	a	SimPoint region?

• Must	constitute	a	valid	thread	ordering	for	all	architectures

4



CURRENT SAMPLING SOLUTION SPACE

5

Native	Application	Simulation

Time-based	Multi-Threaded	Sampling

Thread	Synchronization	Amount

Throughput	 (server)
workloads:

client/server,	etc.

Barrier-synchronizing
workloads:

OpenMP,	auto-parallelized

Workload-specific	methodologies

1000	s

100	s

<	1	s

Unstructured	synchronization
mechanisms:

Work-stealing,	mutexes

Sim O(#	insns)	 limits	speedup

SMARTS/Flex	Points
Averages	User-IPC

BarrierPoint
Slowest	thread	matters



BARRIERPOINT

• Key	Contributions
– Micro-architecture	independent	selection	of	
representative	multi-threaded	regions

– Extrapolate	and	estimate	total	application	runtime

– Evaluation	with	realized	speedups	and	errors

– Propose	a	straight-forward	multi-threaded	
warmup technique

15



BARRIERPOINT
• Main	Idea
– Simulate just the 

representative regions 
between barriers
(potentially	in	parallel)

– We	call	these	
barrierpoints

16

• Application	Trends
– Scientific	applications	
use	barriers	(OpenMP)

– Auto-parallelization	of	
applications	uses	fork-
join	parallelism

Barrier&0& 1& 2& 4&

Time&

3& 5&

Time%



BARRIERPOINT METHODOLOGY

• Compare	workloads	between	barriers	for	similarity

• Select	and	simulate	the	representative	barrierpoints

• Reconstruct	the	runtime	from	the	barrierpoints’	results

17



MULTI-THREADED REGIONS

• What	is	an	inter-barrier	region?
– The	execution	of	all	threads	after	a	barrier,	up	to	and	
including	the	completion	of	the	following	barrier

IP
C	
1

barrier-wait

barrier-wake

time

IP
C	
0

One	inter-barrier	region

18



ΜARCH-INDEPENDENT REGION SELECTION

• Basic-block	vectors	(BBVs)
– Application	execution	fingerprint
– Captures	basic-block	execution

• LRU-stack	distance	vectors	(LDVs)
– Application	data	access	fingerprint
– Counts	the	number	of	unique address	accesses	that	occur	

between	two	accesses	to	the	same	address	(at	cache	line	
granularity)

• BBVs	+	LDVs
– Combine	instruction	and	data	fingerprint	into	a	single	inter-

barrier	signature

19



UNIQUE ADDRESS WARMUP

• Multi-threaded	warmup technique	for	Barrierpoint
– Avoid	long	execution-driven	simulation	before	ROI
– Warmupdata	part	of	checkpoint,	relatively	µarchitecture	

independent
– Ensure	cache	coherency

• Unique	Address	Warmup
– Similar	to	MTR1,	but	avoids	cache-specific	reconstruction
– Collect,	from	program	start	up	to	barrierpoint start

• Each	core	records	the	most	recent	read,	write	and	instruction	cache	
accesses	 (by	cache	line)

• We	collect	(M	*	(last	N	cache	lines)),	where	N	is	the	number	required	
to	fill	up	the	entire	cache	hierarchy,	and	M	is	the	number	of	threads

– Replay:
• Issue	per-core	list	of	unique	addresses	 in	parallel
• Feed	into	real	cache	models,	which	remain	coherent	during	warmup

20

1 K.	C.	Barr,	et	al.,	“Accelerating	Multiprocessor	 Simulation	with	a	Memory	Timestamp	Record,”	in	ISPASS	 2005



RECONSTRUCTING PROGRAM METRICS

• Each	barrierpoint is	given	a	weight
– The	number	of	times	that	it	occurs	in	the	run

• With	the	list	and	weights,	we	can	reconstruct	the	runtime
– Runtimecg/A/8 =	Runtimecg/A/8	(bp0)	*	1.0

+	Runtimecg/A/8	(bp15)	*	12.0
+	Runtimecg/A/8	(bp21)	*	2.0	+	…

• Similar	to	SimPoint reconstruction, but now with 
time (including	idle/sync.)	rather	than	CPI

• Also	works	for	other	application	metrics:	MPKI,	etc.

21

BM/input cores barriers barrierpoints barrierpoint #	and	multiplier
npb-cg/A 8 46 5 0	(1.0),	15 (12.0),	21	(2.0),	…
npb-mg/A 8 245 8 2	(2.0),	52	(4.6),	57	(9.0),	…



ARCH-INDEPENDENT REGION SELECTION

22
NPB,	A	input,	32-cores;	Aggregate	IPCs	shown



EXPERIMENTAL SETUP
• We	model	a	Xeon/Nehalem-like	machine

– 8-core	and	32-core	architecture
– 8-cores	share	an	LLC

• Sniper	Multi-Core	Simulator
• Benchmarks

– Most	NAS	Parallel	Benchmarks	(NPB)
• A	inputs

– Parsec
• Bodytrack Large

• Implemented	for	OpenMP applications
– Fork/join	parallelism,	one	barrier	per	#ompparallel	for
– Can	be	extended	to	other	types	of	global	synchronization,	e.g.

• pthread_barrier()
• MPI_(All)Reduce(MPI_COMM_WORLD)

23



RESULTS

• BarrierPoint shows	accurate	absolute	results

24

Average	error	of	0.9%
with	a	maximum	of	2.9%	error

Application	 runtime



RESULTS

• BarrierPoint shows	accurate absolute results
and	relative	scaling	results

25



• Realized	simulation	speedups	are	good
– Resource	utilization	reduction	(improved	
throughput)	by	78x

– Speedup	of	25x	on	average,	867x	maximum

RESULTS

26

Serial	Speedup:	back-to-back	
execution

Parallel	Speedup:	execution	with	
sufficient	 resources



ADDITIONAL RESULTS

• Barrierpoints are	a	common	unit	of	work	
across	architecture	configurations
– 8-core	vs.	32-core
– Allows	for	a	single	characterization	run

• Fingerprinting	across	both	instruction	and	
data	profiles	provide	the	best	results
– Equal	combination	of	BBVs	and	LDVs

27



BARRIERPOINT
• Key	Contributions
– Micro-architecture	independent	selection	of	
representative	multi-threaded	regions
• Explore	alternatives	to	BBVs,	such	as	LRU-stack	distances
• Extrapolate	and	estimate	total	application	runtime

– Evaluation
• Average	reduction	of	machine	resources	of	78x
• Realized	an	average	speedup	of	25x	and	maximum	of	867x
• Average	error	of	0.9%,	maximum	of	2.9%

– Propose	a	straight-forward	multi-threaded	warmup
technique

– Technology	Preview	to	be	released	soon
• http://snipersim.org

28



BARRIERPOINT:	SAMPLED SIMULATIONOF
MULTI-THREADED APPLICATIONS

TREVOR E.	CARLSON,	WIM HEIRMAN

KENZO VAN CRAEYNEST AND LIEVEN EECKHOUT
MONDAY,	MARCH 24TH,	2014

ISPASS	2014	– MONTEREY,	CA,	USA


