
IT Uppsala universitet

The Load Slice Core
Microarchitecture

Trevor E. Carlson, Uppsala University

Wim Heirman, Intel

Osman Allam, Ghent University

Stefanos Kaxiras, Uppsala University

Lieven Eeckhout, Ghent University

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 2 @ UU/IT

LSC: Improving Energy Efficiency
!  All systems are power-limited
!  OoO cores are inefficient

Azizi, et al., Energy-Performance Tradeoffs in Processor
Architecture and Circuit Design:
A Marginal Cost Analysis, ISCA 2010

In-order:
efficient

OoO:
performance

Goal:
OoO performance at
in-order efficiency

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 3 @ UU/IT

Performance Through MHP
!  Goal

•  Out-of-order-like performance with in-order efficiency

!  Opportunity for in-order processors:
•  Applications wait for the memory hierarchy
•  Stalls in-order processors

!  How to fix and keep efficiency?
•  Identify Memory Hierarchy Parallelism (MHP)
•  Prioritize MHP-critical instructions

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 4 @ UU/IT

The Load Slice Core

!  Restricted out-of-order core
!  Learn critical instruction slices

•  Iterative Backwards Dependency Analysis (IBDA)
to find loads and address generating instructions

!  Bypass critical instructions
•  Expose MHP for performance

!  Prior work
•  Dyn./spec. precomp., Continual flow, slipstream: OoO as a starting point
•  Complexity effective: focuses on ILP, not MHP
•  SLTP, iCFP, flea-flicker two-pass: use extensive structures for slices
•  Runahead execution: re-executes instructions
•  DAE, braid, OUTRIDER, flea-flicker multi-pass: require recompilation

!  LSC: hardware-only, does not re-execute

Fetch Decode

Instr.
Queue

Bypass
Queue

Commit
Writeback

ALUs
and

Caches
Learn
Slice

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 5 @ UU/IT

!  SPEC CPU2006 leslie3d
!  Two load instructions

are long-latency
!  First use by add
!  Key address generating

instructions
!  Branch instructions left

out for clarity

ld (r9+r8*8), r1 !
mov r6, r8 !
add r1, r1 !
mul r7, r8 !
add rdx, r8 !
mul (r9+r8*8), r2 !
!
!

Optimization Example

ld (r9+r8*8), r1 !
mov r6, r8 !
add r1, r1 !
mul r7, r8 !
add rdx, r8 !
mul (r9+r8*8), r2 !
!
!

ld (r9+r8*8), r1 !
mov r6, r8 !
add r1, r1 !
mul r7, r8 !
add rdx, r8 !
mul (r9+r8*8), r2 !
!
!

ld (r9+r8*8), r1 !
mov r6, r8 !
add r1, r1 !
mul r7, r8 !
add rdx, r8 !
mul (r9+r8*8), r2 !
!
!

label: !
ld (r9+r8*8), r1 !
mov r6, r8 !
add r1, r1 !
mul r7, r8 !
add rdx, r8 !
mul (r9+r8*8), r2 !
test r8, $0x8000 !
bne label !
!

label: !
ld (r9+r8*8) r1 !
mov r6, r8 !
add r1, r1 !
mul r7, r8 !
add rdx, r8 !
mul (r9+r8*8), r2 !
test r8, $0x8000 !
bne label !
!

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 6 @ UU/IT

!  SPEC CPU2006 leslie3d
!  Two load instructions

are long-latency
!  First use by add
!  Key address generating

instructions
!  Branch instructions left

out for clarity

label: !
ld (r9+r8*8), r1 !
mov r6, r8 !
add r1, r1 !
mul r7, r8 !
add rdx, r8 !
mul (r9+r8*8), r2 !
test r8, $0x8000 !
bne label !
!

Optimization Example

In-order will stall here

Could get more MHP if we
prioritize these instead

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 7 @ UU/IT

In-order
stall-on-use

time

Out-of-order

on-hold

OoO: High complexity
to get MLP

IO: Stalls on first use

Two key LSC techniques:
 1) Identify critical instruction slices
 2) Bypass to increase MHP and performance

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 8 @ UU/IT

time

Iter #0 Iter #1

#1: Identifying critical instruction slices

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 9 @ UU/IT

time

ld

ld

ld compute compute

addr addr addr addr addr

Iter #0 Iter #1

Identification of all
dependencies is complex Instead, focus on

the critical slice

Critical Instruction Slice

#1: Identifying critical instruction slices

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 10 @ UU/IT

Iterative Backward Dependency Analysis
!  Learning critical slices

1.  Start with load and store addresses
2.  IBDA to learn address generating instructions

!  IST – Instruction Slice Table
•  Tracks critical instructions
•  Enables bypassing for MHP

!  RDT – Register Dependency Table
•  Maps registers to instruction producers
•  Enables backwards dependency analysis

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 11 @ UU/IT

time

Iter #0 Iter #2 Iter #1

Marked this cycle

Marked previously/critical

IST IST IST

IBDA learns critical
backwards slice

Iterative Backwards Dependency Analysis

RDT

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 12 @ UU/IT

Bypassing
!  Restricted out-of-order core

!  Bypass queue:
•  Execute critical slice instructions earlier
•  Out-of-order with respect to regular queue
•  In-order within each queue
•  Loads can bypass store data (great for MHP)

!  Do we have memory dependence violations?
•  Address computations always marked for bypass
•  Address computations execute in program order
•  Guarantees correct memory ordering

(store buffer knows addresses)

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 13 @ UU/IT

time

Marked this cycle

Marked previously/critical

#2: Bypassing to increase MHP

Instr.
Queue

Bypass
Queue

Learn
Slice

ALUs
and

Caches

IST

The critical slice can now bypass
the compute (blue) instructions

RDT

First learned address gen.
in bypass

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 14 @ UU/IT

Experimental Setup
!  Sniper multi-core simulator

•  ARM Cortex-A7-like configuration
•  32KB L1s, 512KB L2, L1D prefetcher
•  28nm (CACTI 6.5), 2.0GHz

!  SPEC CPU2006 representative 750M instruction SimPoints
and SPEC OMP and NPB representatives used

In-order LSC OOO

Stall on use Restricted out-of-order Full out-of-order

16-entry queue 32-entry IQ
bypass queue,
scoreboard

32-entry ROB and
scheduler/issue queue

2-wide issue 2-wide issue 2-wide dispatch

ARM Cortex-A7-like 15% area overhead 155% area overhead
(ARM Cortex-A9-like)

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 15 @ UU/IT

LSC Performance
mcf soplex

h264ref calculix

0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0

IO LSC OOO

CP
I

base
branch
L1
L2
DRAMMHP:

DRAM

0.0
1.0
2.0
3.0
4.0
5.0
6.0

IO LSC OOO
CP

I

base
branch
L1
L2
DRAM

0.0
0.5
1.0
1.5
2.0
2.5

IO LSC OOO

CP
I

base
branch
L1
L2
DRAM

0.0
0.5
1.0
1.5
2.0
2.5

IO LSC OOO

CP
I

base
branch
L1
L2
DRAMMHP:

L1
MHP:
L1

LSC does not
help ILP

MHP:
DRAM+L2

0.0
1.0
2.0
3.0
4.0
5.0
6.0

IO LSC OOO
CP

I

base
branch
L1
L2
DRAM

Average: 53%
improvement in-
order, within
25% of OoO;

Better energy/
area efficiency
overall

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 16 @ UU/IT

LSC Many-Core Performance
Power (W) Area (mm2) Cores

Max 45.0 350 -
In-order 25.5 344 105
LSC 25.3 322 98
Out-of-Order 44.0 140 32

LSC has almost a
2x performance
benefit over an out-
of-order design

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N-bt/A
N-cg/A
N-ft/A
N-is/A
N-lu/A
N-mg/A
N-sp/A
N-ua/A
O-applu/ref
O-apsi/ref
O-equake/ref

O-fma3d/ref
O-gafort/ref
O-mgrid/ref
O-swim/ref
O-wupwise/ref
H. Mean

Re
la

tiv
e

pe
rfo

rm
an

ce

in-order load-slice out-of-order

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N-bt/A
N-cg/A
N-ft/A
N-is/A
N-lu/A
N-mg/A
N-sp/A
N-ua/A
O-applu/ref
O-apsi/ref
O-equake/ref

O-fma3d/ref
O-gafort/ref
O-mgrid/ref
O-swim/ref
O-wupwise/ref
H. Mean

Re
la

tiv
e

pe
rfo

rm
an

ce

in-order load-slice out-of-order

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N-bt/A
N-cg/A
N-ft/A
N-is/A
N-lu/A
N-mg/A
N-sp/A
N-ua/A
O-applu/ref
O-apsi/ref
O-equake/ref

O-fma3d/ref
O-gafort/ref
O-mgrid/ref
O-swim/ref
O-wupwise/ref
H. Mean

Re
la

tiv
e

pe
rfo

rm
an

ce

in-order load-slice out-of-order

UU/IT

ISCA 2015, Portland OR, Monday June 15th, 2015 | 17 @ UU/IT

Conclusion
!  MHP: an opportunity for better in-order performance

Load Slice Core
!  Identify critical slices:

•  Backwards with IBDA
•  Learn across iterations

!  Bypass critical instructions
•  Simple queue

!  More performance through increased MHP:
•  Single-core: within 25% of OoO
•  Multicore: nearly 2x for area/power-limited designs

IT Uppsala universitet

The Load Slice Core
Microarchitecture

Trevor E. Carlson, Uppsala University

Wim Heirman, Intel

Osman Allam, Ghent University

Stefanos Kaxiras, Uppsala University

Lieven Eeckhout, Ghent University

