The Load Sllce Core Trevor E. Carlson, Uppsala University

Microarchitecture Nl iR

Osman Allam, chent university
Stefanos Kaxiras, uppsala University
Lieven Eeckhout, Ghent university

Uppsala universitet

Uu/iT

LSC: Improving Energy Efficiency

= All systems are power-limited
= 000 cores are inefficient

500

000:

=
o
o

c

=/

S performance

2 300

5 Goal:

32000 | INn-order: Oo00 performance at
S efficient in-order efficiency

c

w

-
(=]
o

>

00 500 1000 1500 2000 Azizi, et al., Energy-Performance Tradeoffs in Processor
Performance (MIPS) Architecture and Circuit Design:

A Marginal Cost Analysis, ISCA 2010

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 2

Uu/iT

Performance Through MHP

= Goal
 Qut-of-order-like performance with in-order efficiency

= Opportunity for in-order processors:
* Applications wait for the memory hierarchy
 Stalls in-order processors

= How to fix and keep efficiency?
* |dentify Memory Hierarchy Parallelism (MHP)
* Prioritize MHP-critical instructions

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 3

Uu/iT

The Load Slice Core

Instr.
.> _—
Queue ALU
S .
Learn Commit
Fetch P Decode PPt . — P and P>)
Slice - Caches Writeback
ypass |
> Queue

= Restricted out-of-order core

= Learn critical instruction slices
» lterative Backwards Dependency Analysis (IBDA)
to find loads and address generating instructions
= Bypass critical instructions
* Expose MHP for performance

= Prior work
* Dyn./spec. precomp., Continual flow, slipstream: OoO as a starting point
« Complexity effective: focuses on ILP, not MHP
« SLTP, iCFP, flea-flicker two-pass: use extensive structures for slices
* Runahead execution: re-executes instructions
« DAE, braid, OUTRIDER, flea-flicker multi-pass: require recompilation

LSC: hardware-only, does not re-execute

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 4

Uu/iT

Optimization Example

= SPEC CPU2006 leslie3d

ld (r9+r8x8), ril . .

mov ré, r8 A) = Two load instructions
add r1, ril are long-latency

mul r7, r8 = First use by add

add rdx, r8 = Key address generating
mul (r9+r8%8), r2 instructions

= Branch instructions left
out for clarity

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 5

Uu/iT

Optimization Example

ld (r9+r8%8), ril
mov ro6, r8
add r1, rl ‘In-order will stall here

mut r7, r8 | B
add rdx, r8 ~ Could get more MHP if we
mul (r9+r8x8), r2 ‘prioritize these instead

@ uuiT

ISCA 2015, Portland OR, Monday J

une 15th, 2015 | 6

Uu/iT

time | | | | |

oot P@ OO OO OO

on-hold

0Oo00: High complexity
to get MLP

In-order
stall-on-use

|O: Stalls on first use

Two key LSC techniques:
1) Identify critical instruction slices
2) Bypass to increase MHP and performance

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 7

Uu/iT

time #1: Identifying critical instruction slices

900000000 (

' Iter #0 | Iter #1

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 8

Uu/iT

time #1: Identifying critical instruction slices

Critical Instruction Slice

L

compute

compute

v

[

|dentification of all J

depen |nstead, focus on |
the critical slice

' Iter #0 " Iter #1

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 9

uuiT

Iterative Backward Dependency Analysis

= Learning critical slices
1. Start with load and store addresses
2. IBDA to learn address generating instructions

= |ST — Instruction Slice Table
* Tracks critical instructions
* Enables bypassing for MHP

= RDT — Register Dependency Table

* Maps registers to instruction producers
* Enables backwards dependency analysis

@ Uu/IT ISCA 2015, Portland OR, Monday June 15th, 2015 | 10

time Iterative Backwards Dependency Analysis

IST |[RDT IST IST

@ O
4 !

Iter #0 | Iter #1 | Iter #2

IBDA learns critical
backwards slice

Marked this cycle

OO

Marked previously/critical

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 11

Bypassing

= Restricted out-of-order core

= Bypass queue:
« Execute critical slice instructions earlier
« Qut-of-order with respect to regular queue
* In-order within each queue
« Loads can bypass store data (great for MHP)

= Do we have memory dependence violations?
« Address computations always marked for bypass
* Address computations execute in program order

« Guarantees correct memory ordering
(store buffer knows addresses)

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 12

Uu/iT

time #2: Bypassing to increase MHP

- 1RDT e

IST \"%

/

>

000000000 0000000

> Queve Q000000
Learn | | N 'A;Ln%s
Slice BVDAsS Caches
> Queue 000000000}00

Marked this cycle

OO

Marked previously/critical

@ uunT

The critiq

the com

\
First learned address gen.
In bypassl

ISCA 2015, Portland OR, Monday June 15th, 2015 | 13

Experimental Setup

= Sniper multi-core simulator >>|
 ARM Cortex-A7-like configuration
 32KB L1s, 512KB L2, L1D prefetcher
« 28nm (CACTI 6.5), 2.0GHz

= SPEC CPU2006 representative 750M instruction SimPoints
and SPEC OMP and NPB representatives used

In-order LSC 000

Stall on use Restricted out-of-order | Full out-of-order

16-entry queue 32-entry 1Q 32-entry ROB and
bypass queue, scheduler/issue queue
scoreboard

2-wide issue 2-wide issue 2-wide dispatch

ARM Cortex-A7-like 15% area overhead 155% area overhead

(ARM Cortex-A9-like)

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 14

Uu/iT

LSC Performance

mcf soplex
14.0 MHP: — ., MHP: SRAM
12.0 | DRAM 50 DRAM+L2 e 2
10.0 | 4'0 - | 1
~ 80| " 1 branch
Q. o 3.0 mms base
O 60F ool
4.0 - R
2.0 | 107
00 L 0.0
I0 LSC 000 0 LSC 000
h264ref calculix Average: 53%
25 1 MHP: 2.5 MHP: Improvement in-
2.0 L1 20 | L1 order, within
_ _ . |
= 157 1.5 | 1 25% of O00;
© 10 1.0 h

0.5 05 |

00 L 0.0

IO LSC OO0 IO LSC 000

Better energy/
area efficiency
overall

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 15

LSC Many-Core Performance

Power (W) | Area (mm?) | Cores

Max 45.0 350 -1 |LSC has almost a
In-order 25.5 344 | 105||2x performance
LSC 25.3 322 98 | | benefit over an out-
Out-of-Order 44.0 140 32| | of-order design

Q 4.0

S 85

£ 3.0

2 2.5

o 2.0

o 15

2 10|

S 05 |-

o 0.0

in-order] load-slice 1 out-of-order Y

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 16

Conclusion

= MHP: an opportunity for better in-order performance

Load Slice Core

= |dentify critical slices:

 Backwards with IBDA
 Learn across iterations

= Bypass critical instructions
« Simple queue

= More performance through increased MHP:

 Single-core: within 25% of Oo0O
* Multicore: nearly 2x for area/power-limited designs

@ uuiT ISCA 2015, Portland OR, Monday June 15th, 2015 | 17

The Load Sllce Core Trevor E. Carlson, Uppsala University

Microarchitecture Nl iR

Osman Allam, chent university
Stefanos Kaxiras, uppsala University
Lieven Eeckhout, Ghent university

Uppsala universitet

