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Overview

• End of Dennard scaling
• CGRAs are a promising 

alternative
• CGRAs are limited to to lack of:
• Flexibility
• Adaptability

• Our Goal: Build flexible CGRA 
infrastructure
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Background: CGRA scheduling

• Compilation from data flow graph to HW specific 
configuration takes a long time (seconds to hours).
• A fast compiler can provide a path toward run-time 

scheduling.

e.g., LLVM
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Background: Modulo Scheduling for CGRAs

• Inputs:
• Data Flow Graph (DFG)
• Processing Elements (PEs)

• Output:
Mapping (or scheduling)
• Resulting performance: 

Iteration Interval (II)

[2] Bingfeng Mei, S. Vernalde, D. Verkest, H. De Man and R. Lauwereins, "Exploiting loop-level parallelism on coarse-grained reconfigurable architectures using modulo 
scheduling," 2003 Design, Automation and Test in Europe Conference and Exhibition, 2003, pp. 296-301
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Challenge: scheduling is complex and time 
consuming

• For each instruction
• Repeated Place & Route

• In the placement phase
• Routing costs calculation to each PE
• Comparison between them
• Takes most of the time 

• 𝑂 𝑉	×	𝑁 !  where 𝑉	is the size of a DFG 
and 𝑁	is the size of a CGRA [3].

Place

Route

Place: looking for the best PE
 to place an instruction

Route: allocate resources 
(e.g., wires, ports, etc.)

5[3] Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. 2018. RAMP: resource-aware mapping for CGRAs. In Proceedings of the 55th Annual Design Automation Conference 
(DAC '18)



Observation 

• Routing becomes difficult due to the single-
hop data transfer constraint.
• 3-dimensional problem (e.g., col, row, and time)
• Ex) If n1 is placed at PE1 in cycle 0, where and 

when n2 should be mapped?
• For each candidate, routing cost is calculated 

considering the time dimension.
• Too frequent shortest path searching in 3D.
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Our approach results in a significantly faster 
compile time

• Operations are placed following a 
topological order.
• Parent instrs. tend to be followed by their 

children instrs.
• We try to place them close to each other 

without calculating routing costs to all 
PEs.

• Placement is done in the fixed order of 
PEs in O(1) time.
• If multi-hop data transfer is allowed, 

Routing is just BFS in 2-dimensions.
• Using multi-hop data transfer feature of 

state-of-the-art CGRA implementation [4].
7[4] M. Karunaratne, A. K. Mohite, T. Mitra and L. Peh, "HyCUBE: A CGRA with reconfigurable single-cycle multi-hop interconnect," 2017 54th ACM/EDAC/IEEE Design Automation 

Conference (DAC), 2017
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Our approach: diagonal mapping
• For each target II, for each PE, we try to place instructions until 

the PE has II number of instructions in its configuration memory.
• Find all paths from its already placed parent instructions to this PE.
• If all the paths exist, allocate the resources. Otherwise, try to place at 

the next next candidate position & time slot.

• Instructions placed at N-th PE are executed following instructions 
at (N-1)-th PE.

• ex) If the II is 2 and all paths exist,
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cycle 0 n1 n3

cycle 1 n2 n4

cycle 2 n1 n3

cycle 3 n2 n4

… 8



Our approach: diagonal mapping

• PE order:
• PE1 → PE2 → PE4 → PE3

• We achieve the same II (=1) 
with the previous example.
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Diagonal mapping: one more example
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Experimental setup
benchmark Nodes Edges Domain

adpcm en. 103 167 telecom

adpcm de. 84 128 telecom

dwt 122 190 signal

eq. of SF 48 57 physics

fft 20 26 telecom

gemm 17 23 lin. algebra

gsm 88 110 speech

hydro frag. 22 25 data parl.

jpeg 90 142 image

mpeg2 154 213 video

1st diff. 17 21 approx.

2d- ehf 52 79 data parl.

• 4x4 CGRA with memory 
access only at the first 
column
• Single-hop anywhere data 

transfer
• Unlimited on PE register file 

to store the data reached 
too early
• Tested on benchmarks from 

various domains.
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Results
Benchmark

adpcm en.

adpcm de.

dwt

eq. of SF

fft

gemm

gsm

hydro frag.

jpeg

mpeg2

1st diff.

2d-ehf 12

Mapping Performance (II)

ResMII Baseline Ours

7 28 10

6 9 7

8 11 13

3 4 5

2 4 2

2 4 3

6 9 7

2 2 3

6 13 10

10 16 20

2 2 7

4 5 7

Compilation Time (s)

Baseline Ours Speedup

5,825.40 0.039 149,360

4,716.91 0.016 294,806

20,226.81 0.055 367,760

47.21 0.018 2,623

18.84 0.016 1,177

20.54 0.045 455

15,638.50 0.019 823,078

12.18 0.008 1,522

2,433.08 0.036 67,585

61,947.53 0.121 511,963

13.92 0.016 870

1,497.16 0.020 74,857

• Up to 800,000x faster

• Within 2 IIs of the previous 
compiler



Conclusion

• We propose a fast CGRA compilation with mapping quality 
comparable to state-of-the-art.

• CGRA scheduling now takes place in milliseconds, which takes hours 
with previous works.

• We hope that this technique can help to expand CGRA uses cases 
though run time scheduling.
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Thank you
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