Photon: A Fine-grained Sampled Simulation Methodology for GPU Workloads

Changxi Liu¹, Yifan Sun², Trevor E. Carlson¹ ¹National University of Singapore ²College of William & Mary

GPUs and GPU Simulators

NUS National University of Singapore

- GPU simulators
 - Pre-silicon GPUs Architecture Exploration
 - Software profiling and optimization
 - Obtain performance characteristics for new architectures

GPUs and GPU Simulators

- GPU simulators
 - 12.5 KIPS

Simulators	GPGPUSi m 3.x	gem5- APU	MGPUSim	MacSim	Multi2- Sim	Accel-Sim
Sim. Rate (KIPS)	3	N/A	28	N/A	0.8	12.5

[1]. Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling." ISCA 2020.

Table source: [1]

GPUs and GPU Simulators

- GPU simulators
- Today's GPUs achieve nearly 134 TFLOPS [2]
- Over 1,000,000,000 slower than the real GPU

	m 3.x	APU	MGPUSim	MacSim	Sim	Accel-Sim
Sim. Rate (KIPS)	3	N/A	28	N/A	0.8	12.5

Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling." ISCA 2020.
NVIDIA, "NVIDIA H100 Tensor Core GPU Architecture," https://www.nvidia.com/en-us/data-center/h100/, 2022

Table source: [1]

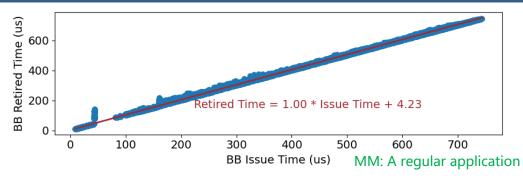
	Profiling	Inter-kernel Sampling	Intra-kernel Sampling
PKA[1]	Offline	Yes, handpicked features	Stable IPC
TBPoint[2]	Offline	Yes, handpicked features	Stable IPC
Sieve[3]	Offline	Yes, handpicked features	N/A

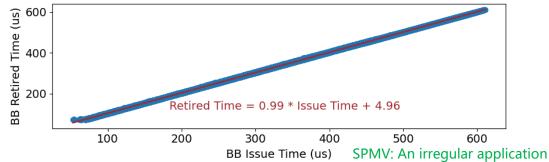
[1]. Avalos Baddouh, Cesar, et al. "Principal kernel analysis: A tractable methodology to simulate scaled gpu workloads." MICRO 2021.

[2]. Huang, Jen-Cheng, et al. "TBPoint: Reducing simulation time for large-scale GPGPU kernels." IPDPS 2014.

[3]. Naderan-Tahan, et al"Sieve: Stratified GPU-Compute Workload Sampling." ISPASS 2023.

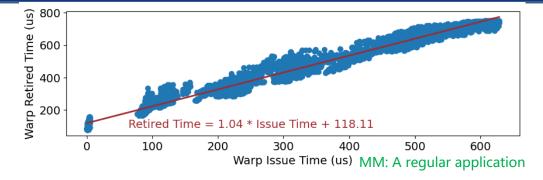
	Profiling	Inter-kernel Sampling	Intra-kernel Sampling
PKA[1]	Offline	Yes, handpicked features	Stable IPC
TBPoint[2]	Offline	Yes, handpicked features	Stable IPC
Sieve[3]	Offline	Yes, handpicked features	N/A
Photon	Online	Yes, GPU BBVs	Stable warps and basic blocks

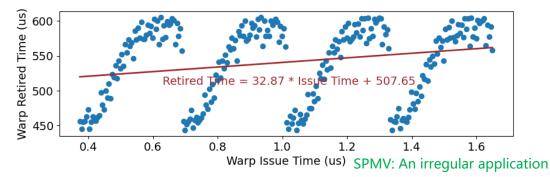

[1]. Avalos Baddouh, Cesar, et al. "Principal kernel analysis: A tractable methodology to simulate scaled gpu workloads." MICRO 2021.


[2]. Huang, Jen-Cheng, et al. "TBPoint: Reducing simulation time for large-scale GPGPU kernels." IPDPS 2014.

[3]. Naderan-Tahan, et al"Sieve: Stratified GPU-Compute Workload Sampling." ISPASS 2023.

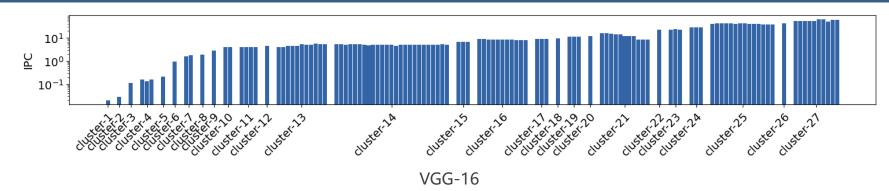
Observations – Basic Blocks

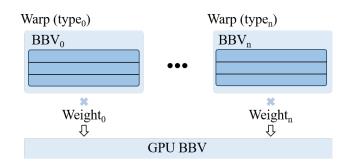



The issue and retired time of the dominating (in terms of execution time) basic blocks, which all have the same entry and exit points.

- Basic blocks' execution time can be stable over time
 - Slope value close to 1
 - The least square method

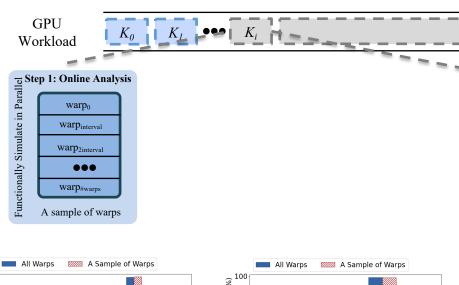
Observations – Warps




The issue and retired time of warps

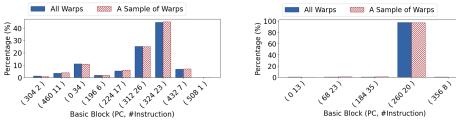
- Warps for regular applications can be stable over time
 - Regular applications
 - The slope is close to 1.
 - Irregular applications
 - The slope is far away from 1.

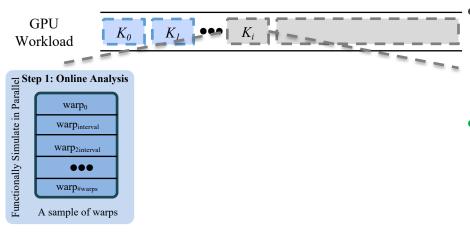
Observations – Kernels

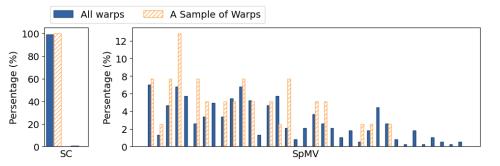


- GPU BBV
 - Concat *BBV*×*Weight* of each type of Warp

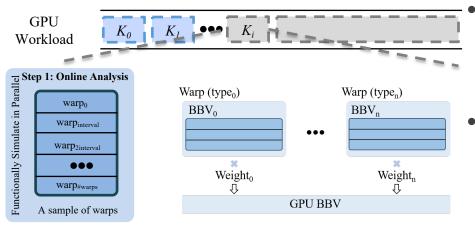
•
$$weight_{type} = \frac{\# Warptype}{\# Warpall}$$

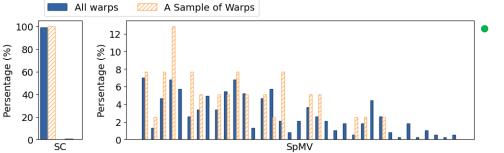

• GPU Kernels with similar GPU BBV have similar IPC




Basic Blocks

 The distribution of basic blocks of all warps and a sample of warps.



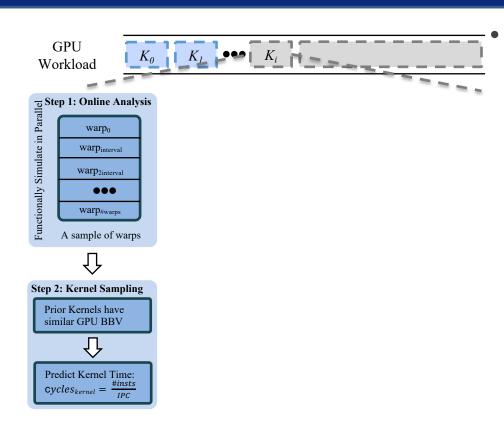


Basic Blocks

- The distribution of basic blocks of all warps and a sample of warps.
- Warps
 - The distribution of different warp types of all warps and a sample of warps.

Basic Blocks

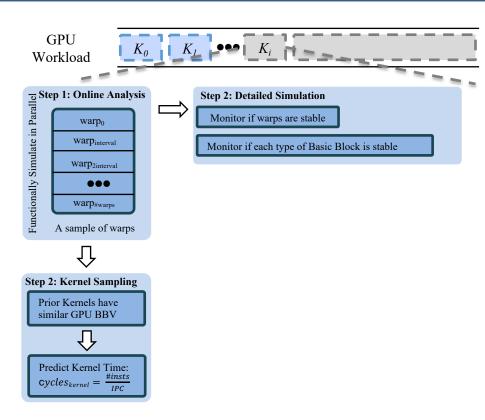
 The distribution of basic blocks of all warps and a sample of warps.


Warps

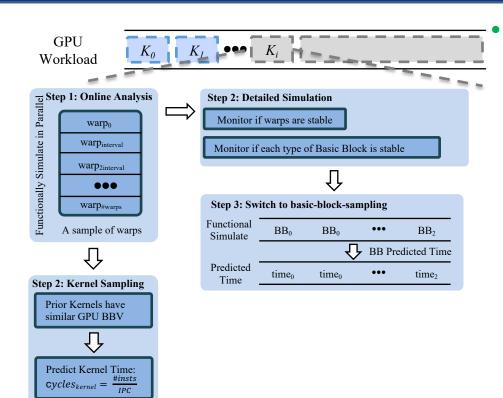
 The distribution of different warp types of all warps and a sample of warps.

Kernels

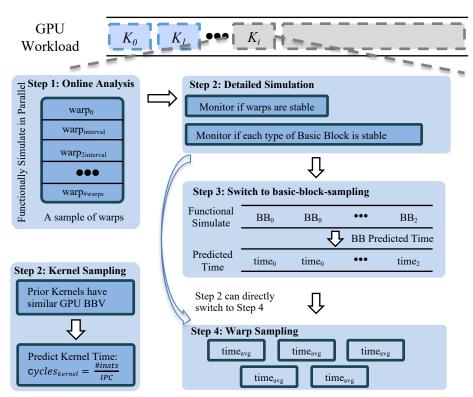
 GPU BBV is combined with BBVs for each type of warp from a sample of warps.



Kernel-Sampling

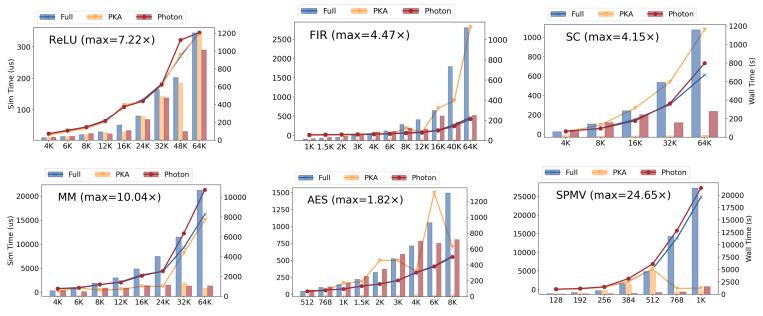

- Prior Kernels have similar GPU BBV
 - Skip the simulation of the kernel
 - predict the simulation time with prior similar kernels' IPC
- Prior Kernels **do not** have similar GPU BBV
 - basic-block-sampling and warpsampling

- Warp-Sampling
 - Check if warps are stable.
- Basic-Block-Sampling
 - Check if each type of basic block is stable.
 - Check the percentage of stable basic blocks
- Stable
 - The slope value of the last N warps (basic blocks) is close to 1.



Basic-Block-Sampling

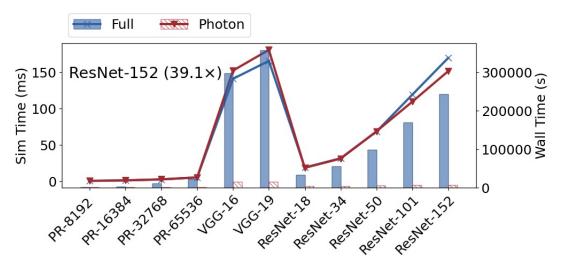
- Functional simulate
- Predict the simulation time of warps using the predicted time of each type of basic block.



- Basic-Block-Sampling
 - Functional simulate
 - Predict the simulation time of warps using the predicted time of each type of basic block.
- Warp-sampling
 - Predict the simulation of warps using the average warp runtime
 - Only the warp scheduler enables

Experiments

 Photon achieves up to 24.65 × speedup (average speedup 1.87 ×) with an average simulation error of 6.83%



kernel execution time (left y-aixs with lines); Wall time (right y-axis with bars)

Experiments

 Photon reduces the simulation time needed to perform one inference of ResNet-152 with batch size 1 from 7.05 days to just 1.7 hours with a low sampling error of 10.7%.

kernel execution time (left y-aixs with lines); Wall time (right y-axis with bars)

Photon: A Fine-grained Sampled Simulation Methodology for GPU Workloads

Changxi Liu¹, Yifan Sun², Trevor E. Carlson¹ ¹National University of Singapore ²College of William & Mary

