
Fast, Robust and Accurate Detection of 
Cache-based Spectre Attack Phases

41st IEEE/ACM International Conference on 
Computer-Aided Design (ICCAD ‘22)

Arash Pashrashid, Ali Hajiabadi, Trevor E. Carlson

National University of Singapore



Breaking News: Fundamental Security Problem of Modern CPUs

2

• Computer architects’ main focus was on CPU performance for decades  
• However, modern CPUs can leak sensitive data like passwords, cryptographic keys 

via unexpected side channels
• Affects all modern processors, servers, smart phones

• Intel, AMD, ARM, IBM, etc.
• Affects all operating systems 

1. https://www.theguardian.com/technology/2018/jan/04/meltdown-spectre-computer-processor-intel-security-flaws-explainer

2. https://arstechnica.com/gadgets/2018/01/meltdown-and-spectre-every-modern-processor-has-unfixable-security-flaws/

1



• Speculative Execution +  Side-Channels

• Speculative Execution:

• Side-Channels: 

• Attacker analyzes these channels to extract victim’s secret dependent activities

• For example, last level cache is one of the common side-channels

Recipe for Spectre Attack

3

The victim exposes sensitive data 
unexpectedly in some shared units

Wrong Path (Transient Execution)

Correct Path
The attacker tricks 
the CPU to execute 

a wrong path



Example: Speculative Execution Attack via Cache

4

1. Initialization 2. Victim Execution 3. Probe1. Initialization 2. Victim Execution 3. Probe1. Initialization 2. Victim Execution 3. Probe

Cache

Attacker Victim

Attacker

Attacker

Attacker

Attacker

Attacker

Attacker

Step 1
Step 2,3

VictimStep 4

Not secret
Not secret
Not secret

Secret

if (safety check) 2 Misspeculation

3 Load Secret

4 Recovering the Secret

Secret-dependent trace in the cache

Speculative Access

e.g., access specific 
cache lines based on 

the secret value

e.g., load latency

Initializes the system for attack1
Branch_mistraining()

prime_μarch_state()

probe_μarch_state()

side-channel(secret)

secret = load(…)



• Problem: Comprehensive Spectre mitigation incurs significant performance 
overhead (Up to 2x)1,2

• Not all these overheads are necessary to provide the secure system
• One possible solution: If not attacks are present, no expensive mitigations needed
• Our goal: Addressing the limitations of existing detectors

5

Why Using Side-Channel Attacks Detectors?

Side channel 
attack detector

Suspicious ?

Mitigation enabledMitigation disabled
(e.g., 99% of the time)

YesNo

Monitoring the 
system behavior

1. Loughlin, Kevin, et al. "{DOLMA}: Securing Speculation with the Principle of Transient {Non-Observability}." 30th USENIX Security Symposium (USENIX Security 21). 2021.
2. Weisse, Ofir, et al. "NDA: Preventing speculative execution attacks at their source." Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 2019.



Insight: Is Machine Learning the Solution?

• The ideal detector should be fast, accurate, robust and efficient
• Machine learning is widely deployed for the SCA detectors1,2,3

• In this work, we propose the evasive attacks to break ML-based detectors

6

Question: Are ML-based methods robust to 
evasive attacks or benign applications? 

1- Nguyen, Luong N., et al. "Creating a backscattering side channel to enable detection of dormant hardware trojans." IEEE transactions on very large scale integration (VLSI) systems (2019)
2- Mirbagher-Ajorpaz, Samira, et al. "Perspectron: Detecting invariant footprints of microarchitectural attacks with perceptron." IEEE/ACM International Symposium on Microarchitecture (MICRO). 2020
3- Mushtaq, Maria, et al. "WHISPER: A tool for run-time detection of side-channel attacks." IEEE Access 8 (2020): 83871-83900.



Evasive Spectre Attacks

• Goal: To change the footprint of a Spectre attack without compromising the attack’s 
success

• How: Expanding the branch mistraining without disrupting the attack’s success

• Two variants of this attack: 
• insertion of NOPs to the branch mistraining part of the original Spectre
• insertion of memory delay instructions

• Accuracy of PerSpectron, the SOTA ML-Based detector, drops from 99% to 14%

7

Expanded-Spectre Benign-Program-Spectre

Spectre Attack Phases Mistraining BP Flushing cache lines Probing cache linesVictim

Expanded-Spectre 
Attack Phases Mistraining BP Flushing cache lines Probing cache linesVictim

delay delay delay



Evasive Spectre Attacks

• Goal: Performing all the essential steps of attack from benign programs

• How: Finding similar behavior inside benign programs for each step
1. Branch mistraining (Attacker): A loop with a large number of iterations.

2. Side-channel initialization phase (Attacker): Initialization of a large array

3.  Secret recovering phase (Attacker): Same with Phase 2

4. By linking the selected slices that represent each step, a full attack can be launched

• Accuracy of PerSpectron drops from 99% to 12% 

8

Expanded-Spectre Benign-Program-Spectre

Branch mistraining

mcf
Prime gadget Victim Probe gadget

mcf mcf



Motivation

• Limitations of state-of-the-art ML-based detectors:

• They are fragile to our Expanded-Spectre

• Also, they can be fooled by our Benign-Program-Spectre

• We need to design an SCA detector to overcome these shortcomings

• To be robust to our evasive Spectre attacks

• And to be accurate, fast, and efficient

• We design Spectify to get closer to an ideal detector

9



Spectify Detection Methodology

10

• We aim to track the sequence of attack phases

• Using a direct-analysis approach to monitor microarchitectural state changes

• Init transition: If enough number of cache lines are initialized

• Spec transition: If a sufficient number of cache lines are initialized by previous processes and the 
current process speculatively accesses one of initialized cache lines

• Squash transition: If misprediction happens and the state of only one of the initialized cache lines 
is changed

Initial State Sufficient cache lines 
initialized

Speculative access to an 
initialized cache line Data Leak

Init Spec Squash



ROB

Spectify Microarchitecture

11

Decode

RF

IQ
FPQ
LSQ

EXE WB

Commit

ROB

IFQ
BPU

L1 D-Cache

PAST-HistFAST PAST

Detector

Out-of-Order Core

Alert

New Modified Context Switch FlowInitialization Flow Squash Flow

1. Modifying the ROB to trach 
unresolved branches

2. Adding new tables (PAST and FAST) 
to track the accessed/flushed locations

3. If misprediction occurs, then track which 
locations accessed during speculation window

4. If context-switch occurs, then the new tables 
checked for a data leak. Also, taking a checkpoint 

before CS in a new table (PAST-Hist)



Experimental Setup

• Simulation:
• gem5 in syscall emulation mode
• CACTI 6.5 for power and area overheads

• Benchmarks: 
• Benign programs: SPEC CPU2006 benchmark suite
• Malicious programs: Spectre V1, Spectre V2, different cache attacks, and our evasive 

Spectre attacks 
• Representatives: ELFies as executable representative with a region size of 100M instructions

• PerSpectron Experimental Setup
• FANN C library for the implementation of neural networks
• 10k instruction sampling rate
• Single-layer perceptron neural network
• 66% of the data is used for training and the rest for testing

12



Comparison of PerSpectron and Spectify 

13

Test Scenario Accuracy Avg. 
#Alerts Accuracy

Benign 99.10% 11 99.98%

Spectre V1 99.61% 1 100.0%

Spectre V2 98.67% 1 100.0%

Expanded-Spectre-
NOP 14.34% 1 100.0%

Expanded-Spectre-
NOP (retrained) 61.25% 1 100.0%

Expanded-Spectre-
Mem. 54.89% 1 100.0%

Benign-program-
Spectre 12.27% 1 100.0%

PerSpectron

• While PerSpectron accuracy falls from 99% to 14% for 
Expanded-Spectre attack, there is no accuracy reduction for 
Spectify

• Even retraining PerSpectron with our evasive Spectre 
doesn’t give acceptable accuracy to the PerSpectron

• While PerSpectron accuracy falls from 99% to 12% for 
Benign-Program-Spectre attack, there is no accuracy 
reduction for Spectify

• Even the false positive rate in Spectify is less than 
PerSpectron and is around 0.02%

Spectify
• Both PerSpectron and Spectify show high accuracy for 

Benign, Spectre V1 and V2



Application #frames #min 2 sets 
primed #Data Leaks

401.bzip2 38136 6667 4
403.gcc 151771 53186 11
410.bwaves 55255 46278 3
416.gamess 26720 1205 10
429.mcf 217673 106053 52
434.zeusmp 32763 19760 40
436.cactusADM 60729 7407 0
444.namd 277321 244 0
445.gobmk 48742 4074 1
450.soplex 128519 39411 10
462.libquantum 72327 26315 0
471.omnetpp 85982 22715 2

Running Spectify with SPEC CPU2006

14

Demonstrates the possibility of initialization for 
Benign-Program-Spectre from the SPEC programs

Actual memory data leaks that 
potentially can be exploited

Demonstrates that our Benign-
Program-Spectre is possible

Number of times at least 2 
sets are primed



Efficiency Analysis of Spectify

15

• No performance overhead: Operates in parallel with the main processor core, off 
the critical path 

• Power overhead: 0.66% over the baseline core
• Most overheads come from FAST, PAST, and PAST-Hist

• Direct-mapped cache structures are relatively efficient

• The area overhead: 7.3% over the baseline core
0% 20% 40% 60% 80% 100% 120%

Baseline

Spectify

A
re
a

0% 20% 40% 60% 80% 100% 120%

Baseline

Spectify

icache BPred idecode ialu fpalu cmplxalu
dcache lsu rename regf scheduler rob
cdb FAST PAST PAST-Hist

Po
w
er



Conclusion

• We break the state-of-the-art detector, PerSpectron, by our evasive Spectre
• Expanded-Spectre

• Benign-Program-Spectre

• We propose a new detector to satisfy ideal detector conditions 

• 100% accuracy for our tested applications ✓
• Detection before attack completion ✓
• Robust to our evasive Spectre attacks ✓
• No performance overhead, 0.66% power overhead, and 7.3% area overhead ✓

16



Fast, Robust and Accurate Detection of 
Cache-based Spectre Attack Phases

41st IEEE/ACM International Conference on 
Computer-Aided Design (ICCAD ‘22)

Arash Pashrashid, Ali Hajiabadi, Trevor E. Carlson

National University of Singapore

Thanks for your attention!


