Solving the N-Body Problem with
the ALICE Grid System

Dac Phuong HO, Y M Teo* and J P Gozali*

Department of Computer Network
Vietnam National University of Hanoi

#Department of Computer Science
National University of Singapore

3 December 2002 ASTANO02 1

Outline

* Introduction

» Barnes-Hut Algorithm

* ALICE Grid System

* Mapping the N-Body Problem onto ALiCE
* Experiment

* Conclusion

3 December 2002 ASTANO02 2

Introduction

A parallel computer is a collection of processing
elements that cooperate and communicate to solve large
problems fast.

Almasi and Gottlieb, Highly Parallel Computing ,1989

3 December 2002 ASIANO2 3

What is Grid Computing?

A\}

coordinated resource sharing and
problem solving in dynamic, multi-institutional
virtual organizations.”

3 December 2002 ASIANO2 4

N-Body Problem

How n number of particles will move under

one of the physical forces. Physical forces: Common
Applications include: * Gravity » simple formulas
« Astronomy » electro-magnetic * some properties

 strong nuclear of a particle:
— Mass

— Position

* Molecular Dynamics

* Fluid Dynamics * weak nuclear

* Plasma Physics — Electrical charge

3 December 2002 ASIANO02 5 3 December 2002 ASIANO02 6
Newtonian Physics Static and Dynamic Mapping
) e The N-body problem: Given
x n bodies in 3D space,
. o determine the gravitational
’ force F between them at any //@
a Vo= x" given point in time. @/ v
/
Gm,m, \/ I
” i F= — I, /\ |
ol 7 \ I
\
. Gmymg where G is the gravitational =~ @
r, constant, 7 is the distance
B between the bodies, m, and m,

are the masses of the bodies.

3 December 2002 ASIANO2 7 3 December 2002 ASIANO2

3

Exact N-body Serial Algorithm

At each time t, velocity v and
position x of body, i may change.

Real problem a bit more complicated
than this.

For (t=0: t<max; t++)

For (i=0; i<N; i++) {
F=Force_routine(i);
v[i]_new = v[i[+F*dt;
x[i]_new=x[i]+v[i]_new*dt;

}

For (i=0; i<nmax; i++) {
x[i] = x[i]_new;
v[i]=v[i]_new;

}

3 December 2002 ASIANO2

Improving the N-body Algorithm

* Complexity of serial n-body
algorithm very large: O(n2) for each
iteration.

* Communication structure not local —
each body must gather data from all
other bodies.

* Most interesting problems are when
n is large — not feasible to use exact
method.

* Barnes-Hut algorithm is well-known
approximation to exact n-body
problem and can be efficiently
parallelized.

3 December 2002 ASIANO2 10

Barnes-Hut Approximation

» Barnes-Hut algorithm based on
the observation that a cluster
of distant bodies can be
approximated as a single
distant body

— Total mass = aggregate of bodies
in cluster

— Distance to cluster = distance to
center of mass of the cluster

e This clustering idea can be
applied recursively.

3 December 2002 ASIANO2

Barnes-Hut idea

* Dynamic divide and conquer
approach:

— Each region (cube) of space
divided into 8 subcubes

— If subcube contains more than 1
body, it is recursively subdivided

— If subcube contains no bodies, it
is removed from consideration

» 2D example on right — each

2D region divided into 4
subregions

3 December 2002 ASIANO2

Barnes-Hut Algorithm

* For 2D decomposition,
result is a quadtree,
pictured below.

* For 3D decomposition,
result is an octtree.

3 December 2002 ASTANO02 13

Barnes Hut 3D Problem Pseudo-code

For (t=0; t< tmax; t++) {
Build octtree;
Compute total mass and center;
Traverse the tree, computing the forces
Update the position and velocity of all bodies

}

« Notes:
— Total mass and center of mass of each sub-cube stored at its root.

— Tree traversal stops at a node when the clustering approximation
can be used for a particular body.

* Need criteria for determining when bodies are in the same cluster.

3 December 2002 ASTANO02 14

Complexity of Barnes-Hut Algorithm
* Partitioning is dynamic: Whole octtree must be

reconstructed for each time step because bodies
will have moved.

« Constructing tree can be done in O(nlog n).
« Computing forces can be done in O(nlog n).

 One iteration of Barnes-Hut is O(nlog n) versus
0O(n2) with the exact solution.

3 December 2002 ASIANO2 15

Generalizing the Barnes-Hut Approach

* Approach can be used for
applications which repeatedly
perform some calculation on
particles/bodies/data indexed
by position.

¢ Recursive Bisection:

— Divide region in half so
that particles are balanced

each time.
— Map rectangular regions
onto processors so that 1

load is balanced.

3 December 2002 ASIANO2 16

Recursive Bisection Programming Issues

How do we keep track of the regions
mapped to each processor?

What should the density of each region
be? [granularity!]

What is the complexity of performing the
partitioning? How often should we
repartition to optimize the load balance? . |
How can locality of communication or .
. L] L
processor configuration be leveraged? .
3 December 2002 ASIANO02 17

What is ALiCE (Adaptive and scal.able

Internet-based Computing Engine)?

ALICE
Brokered Grid Model

‘%
E server
L

Lo

Kook Lagiop

Grid Model

3 December 2002 ASTANO02 18

ALICE Three-Layer Architecture

ALIiCE A A
Applications DESKey | | Ray Satellite Image Biosequence

| Search Tracer - Pracessing Comparison
an

Toolkits

ALiCE
8 Programming
Extensions Templates

Compute Grid Data Grid Services Monitoring and
ALICE Services Accounting
Core
Object Network Transport T R I S—
Architecture Infrastructure

Java
T i ‘ JVM, Jini™, JavaSpaces™, INI, RMI U
‘ Grid Fabric D
3 December 2002 ASIANO2 19

ALICE Producer-Consumer Model

Consumers (C)
= interface to users
= launch point for applications

= collection point for results
(visualization)

Resource Broker (RB)

= authentication
= application execution control
= resource management

Producers (P)
= provide computing power
= executes tasks

= scheduling
= load balancing

3 December 2002 ASIANO2 20

Object Network Transfer Architecture

(1) Serialize object

Object
Repository) File Reference / Message
Space

Orasks ey,) distributed-

% shared memory
_Otjects) o) ~
Resul!.s)

(3) File Reference { Message

Remote Object
Loader
(5) Load abject from file

3 December 2002 ASTANO02

(4) Download fil?

21

ALIiCE Implementation

Resource Broker

= Java SDK
= Java Jini/JavaSpaces or I}
Gigaspaces
i :
_opaee L—, |
A\ o <JTask Pool
5, iy |
77777777777777777777777 R Mg
= Java SDK | L iin]
= Java Jini ,,,,,,,,,, Pr°ducer ,,,,,,,,,,
= Swing Java SDK
. Java Jini
Java Reflection
777777777777777777777777 APT
Consumer Swing
3 December 2002 ASIANO2 T n

Programming in ALICE

3 December 2002 ASIANO2

23

Types of Application

1. Sequential Jobs
- parametric computation

- supports single-tasking programs with well-
defined methods like main() or run()

2. Parallel Job - Object-level Parallelism

- exploits object-level parallelism through
ALICE Object Programming Template (AOPT)

- main motivation is to hide complexities of
parallel programming

3 December 2002 ASIANO2 24

ALIiCE Template-based Programming

Template

Function

TaskGenerator

- Invoked at resource broker
* Method to send tasks to producer

ResultCollector

- Visualizer to be invoke at consumer
+ Method to retrieve results

Task

+ Specify functions to execute at
producer
* Return a Result object

Result

- Interface for producer to instantiate
and return result

3 December 2002

ASIANO02 25

Java Programming Template

Task Generator Template

import aliceconsumer.*

EN_CLASSNAME extends TaskGenera
TASKGEN_CLASSNAME(()

o ¢
initiaistion code here

* Main method - enty point *
public void main(String args[) {
i

ated, usually in foop.

ch task.
ME (= new TASK_CLASSNAME();

and write from/o it

(" Tle_name”.ghis):
10N, LENGTH):

OSITION, LENGTH),

@ an object

from the result collector:
()

= new OBJECT_CLASSNAME():

(OBIECT_CLASSNAME)
requestObject("rev_str_id);

Task Template

import alice.consumer.*;
import java.fo
public class

SK_CLASSNAME extends Tas

iables here
TASK_CLASSNAME () {

Obi

excete) {
i s where you do your computations. The resuls can be any kind

You can generate and send a new task to b produced
O_TASK_ CLASSNAME t~ new O_TASK_CLASSNAME();
process(l;

To open a data ik, read and it fromito it
DataFile = Data openFile("fle_name".this)
READ_BUFF - [read(POSITION, LENGTH);
fwrite(WRITE_BUFF, POSITION, LENGTH):

= new OBJECT CLASSNAME():

s id');
ME revObj ~(OBIECT_CLASSNAME)
requestObject('rev_str_id")

}

3 December 2002

Result Template ResultCollector Template
importjava.o :
_CLASSNAME extends ResuColetor {
public lass MyResul implements Srilzabe { aibles Hre
public DATA TVPE vrs public RESCOL CLASSNAME({
Public MyResu) { i
NI

To get a new resultcall
RES_CLASSNAME fes = (RES_CLASSNAME collectResult);

TANO2

Job (Tasks) Execution

4. The ResultCollectar at the
visualizer collects results
retumed by Resource
Broker

A

results pool of task objects.

Consumer

1. The TaskGenerator at the
Visualizer Resource Broker initiates
application and produces a

results

2. The TaskExecute method
15 run at the Producers

task
e |

task

3. Result objects produced
are refurned to the
Resource Broker

3 December 2002

ASIANO02 27

Application Architecture

Consumer

= Read data from file
* Receive results

Resource Broker

* Receive data from Consumer
+ Create QuadTree

+ Create Tasks

+ Send Tasks to Producers

tasks
ucer

3 December 2002

Producer
* Receive tasks
+ Execute tasks.
+ Return results
results
ASIANO02

28

TASK GENERATOR

A < new Tree
Initialize (A)
foriin 1 to N/M

T <~ new TASK containing (Tree A,
NodeID body[M])

send T to Resource Broker
endfor

3 December 2002 ASTANO02 29

RESULT COLLECTOR

foriinltoN

RESULT R <« incoming Result from
Resource Broker

Write R to the file
endfor

3 December 2002 ASTANO02 30

TASK EXECUTE (Tree A, Node i[])

Calculate the total force of all bodies to node 1

Calculate the new position of M bodies in
array body[M]

Result R «— new Result
Insert new positions into R
Return R

3 December 2002 ASIANO2 31

Experiments

* 8 nodes : Intel Pentium III 866MHz with
256MB of RAM.

* 16 nodes : Intel Pentium II 400MHz with
256MB of RAM

» Heterogeneous nodes are inter-connected
via a 100Mbps switch.

3 December 2002 ASIANO2 32

Sequential and ALiCE (one Producer)

Varying Task Sizes and the Number of Tasks

#Bodies Sequential Execution Time | ALICE Execution Time for One jzzg
= (scc:)nd) Pmdut:‘: (second) 10000) s
200 2 4 i ~
500 13 6 E 50000 | —e— Sequential
1000 3 1 § 2= / \m‘
2000 193 41 g o /
2 : & 15000 /
4000 403 125 10000 [
8000 1537 1427 5000
10000 2401 4357 04
15000 5349 33457 0 5000 10000 15000 20000 25000
20000 9428 43711 Number of Bodies
3 December 2002 ASIANO02 33

Tusk sire (odiew k) | Wlaska | OFrmlucers
100 i)]
124
e : EON]
] %0] ot
200 13 i . \
500 50 i M 0020 \
" J‘ g 0 \ —=Tash sz =100
0 2 [} i § A \ -Tash sz = 20
- :" 6 g FEL \ Tadsze =500
™ T =)
u
200 133 L] 178 10020 \ \
0 0 ¥ 141
1000] 8 1230 OJQEE\—
100 10 0 0 § 1 1
W %) 10
o - N o NunberofPrdcers
i i Ji 1
3 December 2002 ASIANO02 34

Thank you.

Questions

Acknowledgements

Current ALICE Team:
Johan Prawira Gozali, Ng Yew Kwong, Zheng Yudong, Verdi March, Ameya Virkar,
Aditya, Chia Eileen, Wong Keng Choon, Erik Knave (Sweden), Erik Stackenland
(Sweden), Lee Yih

Collaborators:
Sun Microsystems, Centre for Remote Imaging, Sensing and Processing (CRISP),
Bioinformatics Institute, Nanyang Poly (School of Life Sciences).

3 December 2002 ASIANO2 35

	Solving the N-Body Problem with the ALiCE Grid System
	Outline
	Introduction
	What is Grid Computing?
	N-Body Problem
	
	Newtonian Physics
	Static and Dynamic Mapping
	Exact N-body Serial Algorithm
	Improving the N-body Algorithm
	Barnes-Hut Approximation
	Barnes-Hut idea
	Barnes-Hut Algorithm
	Barnes Hut 3D Problem Pseudo-code
	Complexity of Barnes-Hut Algorithm
	Generalizing the Barnes-Hut Approach
	Recursive Bisection Programming Issues
	ALiCE Three-Layer Architecture
	ALiCE Producer-Consumer Model
	Programming in ALiCE
	Types of Application
	ALiCE Template-based Programming
	Java Programming Template
	Job (Tasks) Execution
	TASK GENERATOR
	RESULT COLLECTOR
	TASK EXECUTE (Tree A, Node i[])
	Experiments
	Sequential and ALiCE (one Producer)
	Varying Task Sizes and the Number of Tasks

