
1

3 December 2002 ASIAN02 1

Solving the N-Body Problem with
the ALiCE Grid System

Dac Phuong HO, Y M Teo## and J P Gozali##

Department of Computer Network
Vietnam National University of Hanoi

##Department of Computer Science
National University of Singapore

3 December 2002 ASIAN02 2

Outline

• Introduction
• Barnes-Hut Algorithm
• ALiCE Grid System
• Mapping the N-Body Problem onto ALiCE
• Experiment
• Conclusion

3 December 2002 ASIAN02 3

Introduction

A parallel computer is a collection of processing
elements that cooperate and communicate to solve large
problems fast.

Almasi and Gottlieb, Highly Parallel Computing ,1989

3 December 2002 ASIAN02 4

What is Grid Computing?

“… coordinated resource sharing and
problem solving in dynamic, multi-institutional
virtual organizations.”

2

3 December 2002 ASIAN02 5

N-Body Problem
How n number of particles will move under
one of the physical forces.
Applications include:

• Astronomy
• Molecular Dynamics
• Fluid Dynamics
• Plasma Physics
• ………..

3 December 2002 ASIAN02 6

Physical forces:
• Gravity
• electro-magnetic
• strong nuclear
• weak nuclear

Common
• simple formulas
• some properties

of a particle:
– Mass
– Position
– Electrical charge

3 December 2002 ASIAN02 7

Newtonian Physics

3 December 2002 ASIAN02 8

Static and Dynamic Mapping

• The N-body problem: Given
n bodies in 3D space,
determine the gravitational
force F between them at any
given point in time.

where G is the gravitational
constant, r is the distance
between the bodies, and
are the masses of the bodies.

2r
mGmF ba=

am bm

3

3 December 2002 ASIAN02 9

Exact N-body Serial Algorithm
• At each time t, velocity v and

position x of body, i may change.

• Real problem a bit more complicated
than this.

• For (t=0: t<max; t++)
For (i=0; i<N; i++) {

F= Force_routine(i);
v[i]_new = v[i]+F*dt;
x[i]_new=x[i]+v[i]_new*dt;

}

For (i=0; i<nmax; i++) {
x[i] = x[i]_new;
v[i]=v[i]_new;
}

3 December 2002 ASIAN02 10

Improving the N-body Algorithm
• Complexity of serial n-body

algorithm very large: O(n2) for each
iteration.

• Communication structure not local –
each body must gather data from all
other bodies.

• Most interesting problems are when
n is large – not feasible to use exact
method.

• Barnes-Hut algorithm is well-known
approximation to exact n-body
problem and can be efficiently
parallelized.

3 December 2002 ASIAN02 11

Barnes-Hut Approximation
• Barnes-Hut algorithm based on

the observation that a cluster
of distant bodies can be
approximated as a single
distant body
– Total mass = aggregate of bodies

in cluster
– Distance to cluster = distance to

center of mass of the cluster

• This clustering idea can be
applied recursively.

3 December 2002 ASIAN02 12

Barnes-Hut idea
• Dynamic divide and conquer

approach:
– Each region (cube) of space

divided into 8 subcubes
– If subcube contains more than 1

body, it is recursively subdivided
– If subcube contains no bodies, it

is removed from consideration

• 2D example on right – each
2D region divided into 4
subregions

4

3 December 2002 ASIAN02 13

Barnes-Hut Algorithm

• For 2D decomposition,
result is a quadtree,
pictured below.

• For 3D decomposition,
result is an octtree.

3 December 2002 ASIAN02 14

Barnes Hut 3D Problem Pseudo-code
• For (t=0; t< tmax; t++) {

Build octtree;
Compute total mass and center;
Traverse the tree, computing the forces
Update the position and velocity of all bodies

}

• Notes:
– Total mass and center of mass of each sub-cube stored at its root.
– Tree traversal stops at a node when the clustering approximation

can be used for a particular body.
• Need criteria for determining when bodies are in the same cluster.

3 December 2002 ASIAN02 15

Complexity of Barnes-Hut Algorithm

• Partitioning is dynamic: Whole octtree must be
reconstructed for each time step because bodies
will have moved.

• Constructing tree can be done in O(nlog n).

• Computing forces can be done in O(nlog n).

• One iteration of Barnes-Hut is O(nlog n) versus
O(n2) with the exact solution.

3 December 2002 ASIAN02 16

Generalizing the Barnes-Hut Approach

• Approach can be used for
applications which repeatedly
perform some calculation on
particles/bodies/data indexed
by position.

• Recursive Bisection:
– Divide region in half so

that particles are balanced
each time.

– Map rectangular regions
onto processors so that
load is balanced.

5

3 December 2002 ASIAN02 17

Recursive Bisection Programming Issues

• How do we keep track of the regions
mapped to each processor?

• What should the density of each region
be? [granularity!]

• What is the complexity of performing the
partitioning? How often should we
repartition to optimize the load balance?

• How can locality of communication or
processor configuration be leveraged?

3 December 2002 ASIAN02 18

What is ALiCE (Adaptive and scaLable
Internet-based Computing Engine)?

Client/Server Model

Grid Model

Brokered Grid Model
ALiCE

server

3 December 2002 ASIAN02 19

ALiCE Three-Layer Architecture

Grid Fabric

JVM, JiniTM, JavaSpacesTM, JNI, RMI

Compute Grid
Services

Data Grid Services Monitoring and
Accounting

Object Network Transport
Architecture

Security
Infrastructure

Programming
Templates

Runtime Support Data Services

Java
Technologies

DES Key
Search

Ray
Tracer

Satellite Image
Processing

Biosequence
Comparison

ALiCE
Core

ALiCE
Extensions

ALiCE
Applications
and
Toolkits

3 December 2002 ASIAN02 20

ALiCE Producer-Consumer Model

Consumers (C)
interface to users
launch point for applications
collection point for results
(visualization)

Resource Broker (RB)
authentication
application execution control
resource management

scheduling
load balancing

…

Producers (P)
provide computing power
executes tasks

6

3 December 2002 ASIAN02 21

Object Network Transfer Architecture

distributed-
shared memory

3 December 2002 ASIAN02 22

Java SDK
Java Jini
Java Reflection
API
SwingConsumerConsumer

ProducerProducer

Resource BrokerResource Broker

task result Task PoolTask Pool

Java SDK
Java Jini
Swing

Java SDK
Java Jini/JavaSpaces or
Gigaspaces

ALiCE Implementation

3 December 2002 ASIAN02 23

Programming in ALiCE

3 December 2002 ASIAN02 24

Types of Application
1. Sequential Jobs

- parametric computation
- supports single-tasking programs with well-

defined methods like main() or run()

2. Parallel Job - Object-level Parallelism
– exploits object-level parallelism through

ALiCE Object Programming Template (AOPT)
– main motivation is to hide complexities of

parallel programming

7

3 December 2002 ASIAN02 25

ALiCE Template-based Programming

• Interface for producer to instantiate
and return result

Result

• Specify functions to execute at
producer

• Return a Result object

Task

• Visualizer to be invoke at consumer
• Method to retrieve results

ResultCollector

• Invoked at resource broker
• Method to send tasks to producer

TaskGenerator
FunctionTemplate

3 December 2002 ASIAN02 26

Java Programming Template
Task Generator Template

import alice.consumer.*;
import alice.data.*;
public class TASKGEN_CLASSNAME extends TaskGenerator {
 public TASKGEN_CLASSNAME() {}
 public void init() {
 //Place your initialisation code here
 }

 /* Main method - entry point */
 public void main(String args[]) {
 // This is where the tasks are generated, usually in a loop

 // This should be called for each task
 TASK_CLASSNAME t = new TASK_CLASSNAME();
 process(t);

 // To open a data file, read and write from/to it
 DataFile f = Data.openFile("file_name",this);
 READ_BUFF = f.read(POSITION, LENGTH);
 f.write(WRITE_BUFF, POSITION, LENGTH);

 // To send/receive an object
 OBJECT_CLASSNAME obj = new OBJECT_CLASSNAME();
 sendObject(obj, "snd_str_id");
 OBJECT_CLASSNAME rcvObj = (OBJECT_CLASSNAME)
 requestObject("rcv_str_id");

 // To receive a string message from the result collector:
 String msg = getStringMessage();
 }
}

Task Template

import alice.consumer.*;
import java.io.*;
public class TASK_CLASSNAME extends Task {
 // Place variables here
 public TASK_CLASSNAME () {
 }

 public Object execute () {
 // This is where you do your computations. The results can be any kind
 // of objects

 // You can generate and send a new task to be produced
 O_TASK_CLASSNAME t = new O_TASK_CLASSNAME();
 process(t);

 // To open a data file, read and write from/to it
 DataFile f = Data.openFile("file_name",this);
 READ_BUFF = f.read(POSITION, LENGTH);
 f.write(WRITE_BUFF, POSITION, LENGTH);

 // To send/receive an object
 OBJECT_CLASSNAME obj = new OBJECT_CLASSNAME();
 sendObject(obj, "snd_str_id");
 OBJECT_CLASSNAME rcvObj =(OBJECT_CLASSNAME)
 requestObject("rcv_str_id");
 }
}

Result Template

import java.io.*;

public class MyResult implements Serializable {
 public DATA_TYPE var;
 public MyResult() {
 var=NULL;
 }
}

ResultCollector Template

import alice.result.*;
public class RESCOL_CLASSNAME extends ResultCollector {
 // Place Variables Here
 public RESCOL_CLASSNAME() {
 }

 public void collect() {
 // Place here the result collection and processing code to obtain
 // number of results ready call
 int resReady = getResultsNoReady()

 // To get a new result call
 RES_CLASSNAME res = (RES_CLASSNAME)collectResult();
 }
}

3 December 2002 ASIAN02 27

Job (Tasks) Execution

3 December 2002 ASIAN02 28

Application Architecture

8

3 December 2002 ASIAN02 29

TASK GENERATOR

A ← new Tree
Initialize (A)
for i in 1 to N/M

T ← new TASK containing (Tree A,
NodeID body[M])
send T to Resource Broker

endfor

3 December 2002 ASIAN02 30

RESULT COLLECTOR

for i in 1 to N
RESULT R ← incoming Result from
Resource Broker
Write R to the file

endfor

3 December 2002 ASIAN02 31

TASK EXECUTE (Tree A, Node i[])

Calculate the total force of all bodies to node i
Calculate the new position of M bodies in

array body[M]
Result R ← new Result
Insert new positions into R
Return R

3 December 2002 ASIAN02 32

Experiments

• 8 nodes : Intel Pentium III 866MHz with
256MB of RAM.

• 16 nodes : Intel Pentium II 400MHz with
256MB of RAM

• Heterogeneous nodes are inter-connected
via a 100Mbps switch.

9

3 December 2002 ASIAN02 33

Sequential and ALiCE (one Producer)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5000 10000 15000 20000 25000

Number of Bodies

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sequential
1 Producer

#Bodies Sequential Execution Time
(second)

ALiCE Execution Time for One
Producer (second)

100 1 4
200 2 4
500 13 6
1000 23 12
2000 193 41
4000 403 125
8000 1537 1427
10000 2401 4357
15000 5349 33457
20000 9428 43721

3 December 2002 ASIAN02 34

Varying Task Sizes and the Number of Tasks

3 December 2002 ASIAN02 35

Acknowledgements

Current ALiCE Team:
Johan Prawira Gozali, Ng Yew Kwong, Zheng Yudong, Verdi March, Ameya Virkar,
Aditya, Chia Eileen, Wong Keng Choon, Erik Knave (Sweden), Erik Stackenland
(Sweden), Lee Yih

Collaborators:
Sun Microsystems, Centre for Remote Imaging, Sensing and Processing (CRISP),
Bioinformatics Institute, Nanyang Poly (School of Life Sciences).

Thank you.
Questions

	Solving the N-Body Problem with the ALiCE Grid System
	Outline
	Introduction
	What is Grid Computing?
	N-Body Problem
	
	Newtonian Physics
	Static and Dynamic Mapping
	Exact N-body Serial Algorithm
	Improving the N-body Algorithm
	Barnes-Hut Approximation
	Barnes-Hut idea
	Barnes-Hut Algorithm
	Barnes Hut 3D Problem Pseudo-code
	Complexity of Barnes-Hut Algorithm
	Generalizing the Barnes-Hut Approach
	Recursive Bisection Programming Issues
	ALiCE Three-Layer Architecture
	ALiCE Producer-Consumer Model
	Programming in ALiCE
	Types of Application
	ALiCE Template-based Programming
	Java Programming Template
	Job (Tasks) Execution
	TASK GENERATOR
	RESULT COLLECTOR
	TASK EXECUTE (Tree A, Node i[])
	Experiments
	Sequential and ALiCE (one Producer)
	Varying Task Sizes and the Number of Tasks

