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Introduction

A parallel computer is a collection of processing
elements that cooperate and communicate to solve large
problems fast.

Almasi and Gottlieb, Highly Parallel Computing ,1989
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What is Grid Computing?

A\}

coordinated resource sharing and
problem solving in dynamic, multi-institutional
virtual organizations.”
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N-Body Problem

How n number of particles will move under

one of the physical forces. Physical forces: Common
Applications include: *  Gravity » simple formulas
« Astronomy » electro-magnetic * some properties

 strong nuclear of a particle:
— Mass

— Position

* Molecular Dynamics

* Fluid Dynamics * weak nuclear

* Plasma Physics — Electrical charge
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Newtonian Physics Static and Dynamic Mapping
) e The N-body problem: Given
x n bodies in 3D space,
. o determine the gravitational
’ force F between them at any //@
a Vo= x" given point in time. @/ v
/
Gm,m, \/ I
” i F= — I, /\ |
ol 7 \ I
\
. Gmymg where G is the gravitational =~ @
r, constant, 7 is the distance
B between the bodies, m, and m,

are the masses of the bodies.
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Exact N-body Serial Algorithm

At each time t, velocity v and
position x of body, i may change.

Real problem a bit more complicated
than this.

For (t=0: t<max; t++)

For (i=0; i<N; i++) {
F=Force_routine(i);
v[i]_new = v[i[+F*dt;
x[i]_new=x[i]+v[i]_new*dt;

}

For (i=0; i<nmax; i++) {
x[i] = x[i]_new;
v[i]=v[i]_new;

}
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Improving the N-body Algorithm

* Complexity of serial n-body
algorithm very large: O(n2) for each
iteration.

* Communication structure not local —
each body must gather data from all
other bodies.

*  Most interesting problems are when
n is large — not feasible to use exact
method.

* Barnes-Hut algorithm is well-known
approximation to exact n-body
problem and can be efficiently
parallelized.
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Barnes-Hut Approximation

» Barnes-Hut algorithm based on
the observation that a cluster
of distant bodies can be
approximated as a single
distant body

— Total mass = aggregate of bodies
in cluster

— Distance to cluster = distance to
center of mass of the cluster

e This clustering idea can be
applied recursively.
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Barnes-Hut idea

* Dynamic divide and conquer
approach:

— Each region (cube) of space
divided into 8 subcubes

— If subcube contains more than 1
body, it is recursively subdivided

— If subcube contains no bodies, it
is removed from consideration

» 2D example on right — each

2D region divided into 4
subregions
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Barnes-Hut Algorithm

* For 2D decomposition,
result is a quadtree,
pictured below.

* For 3D decomposition,
result is an octtree.
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Barnes Hut 3D Problem Pseudo-code

For (t=0; t< tmax; t++) {
Build octtree;
Compute total mass and center;
Traverse the tree, computing the forces
Update the position and velocity of all bodies

}

« Notes:
— Total mass and center of mass of each sub-cube stored at its root.

— Tree traversal stops at a node when the clustering approximation
can be used for a particular body.

* Need criteria for determining when bodies are in the same cluster.
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Complexity of Barnes-Hut Algorithm
* Partitioning is dynamic: Whole octtree must be

reconstructed for each time step because bodies
will have moved.

« Constructing tree can be done in O(nlog n).
« Computing forces can be done in O(nlog n).

 One iteration of Barnes-Hut is O(nlog n) versus
0O(n2) with the exact solution.
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Generalizing the Barnes-Hut Approach

* Approach can be used for
applications which repeatedly
perform some calculation on
particles/bodies/data indexed
by position.

¢ Recursive Bisection:

— Divide region in half so
that particles are balanced

each time.
— Map rectangular regions
onto processors so that 1

load is balanced.
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Recursive Bisection Programming Issues

How do we keep track of the regions
mapped to each processor?

What should the density of each region
be? [granularity!]

What is the complexity of performing the
partitioning? How often should we
repartition to optimize the load balance? . |
How can locality of communication or .
. L] L
processor configuration be leveraged? .
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What is ALiCE (Adaptive and scal.able

Internet-based Computing Engine)?

ALICE
Brokered Grid Model

‘%
E server
L

Lo

Kook Lagiop

Grid Model
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ALICE Three-Layer Architecture

ALIiCE A A
Applications DESKey | | Ray Satellite Image Biosequence

| Search Tracer - Pracessing Comparison
an

Toolkits

ALiCE
8 Programming
Extensions Templates

Compute Grid Data Grid Services Monitoring and
ALICE Services Accounting
Core
Object Network Transport T R I S—
Architecture Infrastructure

Java
T i ‘ JVM, Jini™, JavaSpaces™, INI, RMI U
‘ Grid Fabric D
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ALICE Producer-Consumer Model

Consumers (C)
= interface to users
= launch point for applications

= collection point for results
(visualization)

Resource Broker (RB)

= authentication
= application execution control
= resource management

Producers (P)
= provide computing power
= executes tasks

= scheduling
= load balancing
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Object Network Transfer Architecture

(1) Serialize object

Object
Repository ) File Reference / Message
Space

Orasks ey, ) distributed-

% shared memory
_Otjects ) o) ~
Resul!.s)

(3) File Reference { Message

Remote Object
Loader
(5) Load abject from file
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(4) Download fil?
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ALIiCE Implementation

Resource Broker

= Java SDK
= Java Jini/JavaSpaces or I}
Gigaspaces
i :
_opaee L—, |
A\ o <JTask Pool
5, iy |
77777777777777777777777 R Mg
= Java SDK | L iin ]
= Java Jini ,,,,,,,,,, Pr°ducer ,,,,,,,,,,
= Swing Java SDK
. Java Jini
Java Reflection
777777777777777777777777 APT
Consumer Swing
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Programming in ALICE
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Types of Application

1. Sequential Jobs
- parametric computation

- supports single-tasking programs with well-
defined methods like main() or run()

2. Parallel Job - Object-level Parallelism

- exploits object-level parallelism through
ALICE Object Programming Template (AOPT)

- main motivation is to hide complexities of
parallel programming
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ALIiCE Template-based Programming

Template

Function

TaskGenerator

- Invoked at resource broker
* Method to send tasks to producer

ResultCollector

- Visualizer to be invoke at consumer
+ Method to retrieve results

Task

+ Specify functions to execute at
producer
* Return a Result object

Result

- Interface for producer to instantiate
and return result

3 December 2002
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Java Programming Template

Task Generator Template

import aliceconsumer.*

EN_CLASSNAME extends TaskGenera
TASKGEN_CLASSNAME( ()

o ¢
initiaistion code here

* Main method - enty point *
public void main(String args[) {
i

ated, usually in foop.

ch task.
ME (= new TASK_CLASSNAME();

and write from/o it

(" Tle_name”.ghis):
10N, LENGTH):

OSITION, LENGTH),

@ an object

from the result collector:
()

= new OBJECT_CLASSNAME():

(OBIECT_CLASSNAME)
requestObject("rev_str_id);

Task Template

import alice.consumer.*;
import java.fo
public class

SK_CLASSNAME extends Tas

iables here
TASK_CLASSNAME () {

Obi

excete ) {
i s where you do your computations. The resuls can be any kind

You can generate and send a new task to b produced
O_TASK_ CLASSNAME t~ new O_TASK_CLASSNAME();
process(l;

To open a data ik, read and it fromito it
DataFile = Data openFile("fle_name".this)
READ_BUFF - [read(POSITION, LENGTH);
fwrite( WRITE_BUFF, POSITION, LENGTH):

= new OBJECT CLASSNAME():

s id');
ME revObj ~(OBIECT_CLASSNAME)
requestObject('rev_str_id")

}
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Result Template ResultCollector Template
importjava.o :
_CLASSNAME extends ResuColetor {
public lass MyResul implements Srilzabe { aibles Hre
public DATA TVPE vrs public RESCOL CLASSNAME( {
Public MyResu) { i
NI

To get a new resultcall
RES_CLASSNAME fes = (RES_CLASSNAME collectResult);

TANO2

Job (Tasks) Execution

4. The ResultCollectar at the
visualizer collects results
retumed by  Resource
Broker

A

results pool of task objects.

Consumer

1. The TaskGenerator at the
Visualizer Resource Broker initiates
application and produces a

results

2. The TaskExecute method
15 run at the Producers

task
e |

task

3. Result objects produced
are refurned to the
Resource Broker
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Application Architecture

Consumer

= Read data from file
* Receive results

Resource Broker

* Receive data from Consumer
+ Create QuadTree

+ Create Tasks

+ Send Tasks to Producers

tasks
ucer
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Producer
* Receive tasks
+ Execute tasks.
+ Return results
results
ASIANO02
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TASK GENERATOR

A < new Tree
Initialize (A)
foriin 1 to N/M

T <~ new TASK containing (Tree A,
NodeID body[M])

send T to Resource Broker
endfor
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RESULT COLLECTOR

foriinltoN

RESULT R <« incoming Result from
Resource Broker

Write R to the file
endfor
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TASK EXECUTE (Tree A, Node i[])

Calculate the total force of all bodies to node 1

Calculate the new position of M bodies in
array body[M]

Result R «— new Result
Insert new positions into R
Return R
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Experiments

* 8 nodes : Intel Pentium III 866MHz with
256MB of RAM.

* 16 nodes : Intel Pentium II 400MHz with
256MB of RAM

» Heterogeneous nodes are inter-connected
via a 100Mbps switch.
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Sequential and ALiCE (one Producer)

Varying Task Sizes and the Number of Tasks

#Bodies Sequential Execution Time | ALICE Execution Time for One jzzg
= (scc:)nd) Pmdut:‘: (second) 10000 ) s
200 2 4 i ~
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1000 3 1 § 2= / \m‘
2000 193 41 g o /
2 : & 15000 /
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15000 5349 33457 0 5000 10000 15000 20000 25000
20000 9428 43711 Number of Bodies
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Thank you.
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