

Aligning Multiple Biosequences Progressively
on Cluster Grids using ALiCE

Yong Meng TEO, Yew Kwong NG and Kuo-Bin LI†
Department of Computer Science
National University of Singapore

3 Science Drive 2
Singapore 117543

Email: teoym@comp.nus.edu.sg

Abstract

In the absence of powerful supercomputer hardware, grid computing offers
an alternative avenue by providing a heterogeneous, scalable and reliable
high performance processing environment to address problems involving
large computational granularities and enormous datasets. The physical and
life sciences typically include numerous classes of sophisticated problems
and the retrieval of information from large volumes of formatted databases.
This paper reports the development and deployment of a bioinformatics
problem, Progressive Multiple Sequence Alignment (PMSA), on cluster grids
using ALiCE, a grid computing middleware. PMSA comprises of three
consecutive stages: pairwise sequence comparison, guide tree construction
and sequence profiles alignment. Our implementation of PMSA involves
parallelizing the first and third stages of the algorithm. Experiments on
homogeneous and heterogeneous cluster grids demonstrate how performance
scales with problem size and computational power, illustrating that grid
computing is a feasible means to approach several categories of problems in
the life sciences by integrating pooled resources to produce supercomputing
capabilities.

1. Introduction

The popularity and scalability of the Internet has revolutionized traditional computing

concepts and practices. With the availability of powerful computers and high-speed

networking technologies as low-cost commodity components, it is possible to cluster or

couple a wide variety of heterogeneous resources including supercomputers, storage systems,

data sources and special classes of devices distributed geographically and use them as a single,

unified resource [3]. This methodology is known as grid computing, and it enables the

development of virtual organizations [13] sharing core competencies, resources and skills, to

respond to business opportunities and large-scale application processing requirements more

† Bioinformatics Institute, 30 Medical Drive, Level 1, IMCB Building, Singapore 117690

submitted to ICPP 2003 1

effectively [1]. A computational grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive and inexpensive access to high-end computational

capabilities [10]. The pioneer grid efforts spun off as experimental attempts to link

supercomputing sites in the US, and grid computing has since then evolved to adopt a service-

oriented [12] approach, emphasizing on capability rather than connectivity.

Research in the physical and life sciences characteristically involves the manipulation of

astronomical volumes of raw scientific data produced in experiments. In the biological and

biomedical fields, the data takes the form of biosequences flat files, three-dimensional

structures, motifs and three-dimensional microscopic image files [30]. However, while

genome projects and DNA arrays technology are constantly and exponentially increasing the

amount of data available, the capability of a sequential computer can allow only a small

portion of the huge dataset to be processed in a reasonable response time. Furthermore,

several well-known bioinformatics problems such as protein folding simulation [28] and

phylogenetic tree construction [22] encompass numerous sophisticated algorithms that may

not be readily handled by conventional computers. The use of supercomputer systems may

not be economically viable. Therefore, the opportunities provided by grid computing offers an

avenue to address computational problems in the sciences by leveraging available and

affordable resources to create a virtual scientific environment.

Grid development from scratch is typically tedious, involving numerous issues such as

resource management and scheduling, efficient and reliable data transfer technologies and

security in a distributed environment. An increasing number of research groups worldwide

have implemented middleware, libraries and tools [5] to facilitate the construction of grids.

The Globus [11] project is a well-established example of a metacomputing abstract machine,

setting out to provide a collection of fundamental low-level services that can be used to

develop and integrate higher-level services and capabilities. The key Globus components have

been successfully deployed in the I-WAY [6] experiment.

ALiCE [] is a platform independent, Java-based user-oriented Grid computing middleware

developed by the School of Computing at the National University of Singapore. It comprises

of three types of entities: resource broker, producers and consumers. The resource broker is

a logical point of control for all ALiCE grid resources and applications running on these

resources. It provides system services such as resource management and monitoring.

Through the producer client, user gives access to share their compute resources to execute

ALiCE tasks. Submission of ALiCE applications is through the consumer client. The

27

submitted to ICPP 2003 2

underlying communications mechanism between the entities is implemented on Sun

Microsystems’ Jini and JavaSpaces [15] service, which adopts a distributed-shared memory

programming model [16]. ALiCE also offers an alternative communications protocol using

GigaSpacesTM [14], an industrial implementation of JavaSpaces. shows the ALiCE

three-layered architecture.

Figure 1

Figure 1: ALiCE Three-Layered Architecture

ALiCE
Applications
and
Toolkits

ALiCE
Extensions

ALiCE
Core

Biosequence
Comparison

Satellite Image
Processing

Ray
Tracer

DES
Key
Search

Java
Technologies

Data Services Runtime
Support

Programming
Templates

Security
Infrastructure

Object Network
Transport Architecture

Monitoring and
Accounting

Data Grid
Services

Compute Grid
Services

JVM, JiniTM, JavaSpacesTM, JNI, RMI

Grid Fabric

The remainder of this paper discusses the development and deployment of the PMSA problem

on the ALiCE grid. Section 2 presents an overview of PMSA. Section 3 describes the

parallelization of the PMSA problem and its mapping onto ALiCE. Section 4 discusses the

performance results on two cluster grids of different natures. Section 5 presents our

concluding remarks.

2. PMSA Overview

The comparison of a pair of protein or DNA sequences is the most fundamental problem in

bioinformatics [25]. Frequently, scientists are interested in studying the existence of

homologies between tens, or hundreds, of sequences, and not just between one specific gene

submitted to ICPP 2003 3

and a collection of existing genes [8]. The simultaneous alignment of multiple sequences is

now an essential methodology in molecular biology. PMSA is often used to find diagnostic

patterns to characterise protein families, to detect or demonstrate homology between new

sequences and existing families of sequences, to help predict the secondary and tertiary

structures of newly sequenced genes, and to suggest special primers for Polymerase Chain

Reaction (PCR) [29]. Evolutionary scientists adopt PMSA techniques to conduct evolutionary

analysis on newly discovered species of living organisms.

The PMSA problem has been addressed in a commercial biomedical research toolkit,

CLUSTALW [29]. PMSA generally comprises of three successive stages, which will be

discussed in the subsequent subsections. For the rest of this paper, we assume the following

notations:

 s, t : arbitrary database sequences

 i : ith residue of s

 j : jth residue of t

 D : set of database sequences to be aligned

 n : number of sequences in D

2.1 Stage 1: Pairwise Comparison

This is the preparatory stage of PMSA, and its chief objective is to identify the similarity

between every pair of biosequences (s, t) to be aligned, so that sequences that are more

closely related aesthetically can first be aligned together. With this information, we can

determine the order in which alignments are to take place later. The similarity between s and t

can be mathematically computed with the function shown in . Figure 2

Figure 2: Similarity Score Function

 sim(s[1..i], t[1..j-1]) - 2
sim(s[1..i], t[1..j]) = max sim(s[1..i-1], t[1..j-1]) + p(i, j)

 sim(s[1..i-1], t[1..j]) – 2

This similarity score function basically obtains the similarity score of the sequence pair using

a dynamic programming mechanism developed by Smith and Waterman [18] to fill up a

substitution matrix [25]. p(i, j) is an alignment column score function that returns the

maximum value when i = j, the minimum value when i ≠ j, and a given gap penalty value

when either i or j is a gap in the corresponding sequence. Similarity scores can alternatively

be derived using some other more complicated techniques, such as the Linear Space similarity

algorithm [20], which consumes less memory, and the BLAST [2] algorithm.

submitted to ICPP 2003 4

The reciprocals of the corresponding similarity scores for all sequence pairs are used to fill up

a distance matrix. shows an example of such a matrix describing the pairwise

distances of five globin sequences. It suggests that the species Hbb_Human is likely to be

most closely related to Hbb_Horse, and that Hba_Human has a significant level of

similarity with Hba_Horse, because of their respective minimum distance values.

Figure 3

Figure 3: Distance Matrix for Five Globin Sequences

 Hbb_Human 1 --

 Hbb_Horse 2 0.23 --

 Hba_Human 3 0.41 0.40 --

 Hba_Horse 4 0.41 0.41 0.25 --

 Myg_Phyca 5 0.83 0.33 0.87 0.27 --

 1 2 3 4 5

2.2 Stage 2: Guide Tree Construction

The distance matrix produced during pairwise comparison is used to build a phylogenetic tree

mapping out the alignment order of the sequences. The tree can be produced efficiently with

distance matrix algorithms such as Unweighted Pair Group Method using Arithmetic Mean

(UPGMA) [26], the FITCH Least-Squares Distance method [], the Wagner method [7], the

neighbour-joining method [24] and the minimum evolution method [, 23].

9

21

D

C

B

A

0.32

0.15

0.25

0.23

Hbb_Human

Hbb_Horse

Hba_Human

Hba_Horse

Myg_Phyca

Figure 4: Guide Tree Produced from Distance Matrix

submitted to ICPP 2003 5

The general idea of these tree building techniques is to compute the minimum distance value

in the matrix, group the relevant sequence pair (s, t) to form a new taxonomical unit, and

repeat this process with the newly formed taxonomical unit and the remaining sequences

represented in the matrix. The taxonomical units produced in the grouping process correspond

to the internal nodes in the tree. Complex algorithms such as the Wagner method and the

neighbour-joining method involve the use of statistical and weight functions to compute the

tree. Figure 4 illustrates the guide tree constructed for the matrix in Figure 3.

2.3 Stage 3: Profiles Alignment

The goal of this stage is to produce the complete multiple alignment of the sequences, with

the help of the guide tree manifested in the previous stage. In general, alignment begins,

pairwise, from the leaves and progresses towards the root of the tree. In the process,

alignment profiles will be formed, which corresponds to the internal nodes of the tree.

Let us consider the example in above. According to the pattern of the guide tree, the

alignment of Hbb_Human and Hbb_Horse to form alignment profile A can proceed

immediately. Likewise, Hba_Human and Hba_Horse can be aligned to form profile B at

once. The order in which these two alignments are carried out does not matter, since they are

mutually independent alignments. Next, profiles A and B will be aligned together to form

profile C. Finally, C will be aligned with the sequence representing the species Myg_Phyca

to produce D - the complete multiple alignment of the five sequences.

Figure 4

The major problem with PMSA stems from the assumption that the sequences/profiles align

well at every node in the guide tree. However, if the initial alignments yield low similarity

score values, then the anormalies will be disseminated throughout the remaining alignments.

The common approach adopted is to skip an alignment if it results in a similarity score value

that is below a specified threshold, and carry it out later.

Figure 5 outlines the entire PMSA algorithm for a given set of database sequences D. Lines 3-

5 performs pairwise comparison (PC) over all sequences in D. Lines 6-16 constructs the guide

tree (GT) from the distance matrix, M, thus produced. Lines 17-24 perform progressive

profiles alignment (PA) depthwise bottom-up in the tree. The complete multiple alignments of

all the sequences in D is returned at the end of the algorithm.

submitted to ICPP 2003 6

 Progressive_Multiple_Sequence_Alignment (D)

1 n = |D|
2 M = (n x n) distance matrix

3 for all s ∈ D do
4 for all t ∈ D – {s} do
5 M[index(s), index(t)] sim(s, t)

6 T = guide tree
7 T φ
8 G = number of sequence groups remaining
9 G D
10 while |G| > 1 do
11 v minimum value in M
12 c sequence group formed by s and t, where M[index(s), index(t)] = v
13 Recompute values in M that involves s and t
14 G G – {s, t}
15 G G ∪ {c}
16 Add c to T, and add edges from c to s and t respectively in T

17 d depth of T
18 while d > 0 do
19 for all s ∈ T, t ∈ T, depth(s) = d, depth(t) = d, parent(s) = parent(t) do
20 (align_s, align_t) Align s and t
21 s align_s
22 t align_t
23 parent(s) merge(align_s, align_t) // creates alignment profile
24 d d - 1

25 return T – {c | c is not a leaf of T}

PA

GT

PC

Figure 5: PMSA Algorithm

With reference to the algorithm, the double loop in PC yields a time complexity of O(n2), but

overall, the PC stage incurs a complexity of at least O(n3) since the best performing similarity

algorithm is known to have a linear time complexity. It can even be O(n4) or higher,

depending on the complexity of sim(s, t). GT involves searching for the minimum value in

the distance matrix prior to each grouping of sequence pairs, and thus yields a total

complexity of O(n3). PA incurs a linear time complexity of O(n), since there are (n – 1)

internal nodes in the guide tree and therefore, (n – 1) profiles alignment. As illustrated, the

complexity of the whole PMSA algorithm is bounded by the PC stage, which has a minimum

possible complexity of O(n3). Under such circumstances, the overall execution time of a

sequential PMSA program will increase exponentially with an increase in the number of

database sequences. This is undesirable for real-time lab research scenarios, which may

involve hundreds or even thousands of sequenced proteins.

submitted to ICPP 2003 7

3. Distributed PMSA using ALiCE Grid

SGI has attempted to parallelize the CLUSTALW algorithm in an associated application,

known as Parallel CLUSTALW [17]. However, Parallel CLUSTALW is problem-specific

and is unable to handle grid environmental features, such as task scheduling and sequence

data retrieval from remote databases. In a typical scenario, a molecular biologist may wish to

align numerous genes that are sequenced in laboratories worldwide and thus stored in

geographically distributed databases. This will be a hassle in the absence of an appropriate

data handling engine. Here, we describe the parallelization of PMSA using ALiCE, thereby

enabling the ease of development and deployment of our application on the grid.

3.1 Task Partitioning

ALiCE applications are written using the ALiCE object-based programming template []

that hides the specific details of the distributed implementation and dynamic code linking

mechanisms required for execution on the grid. ALiCE API consists of three Java classes:

TaskGenerator generates, initializes and submit computational tasks, Task implements the

Task objects of the application, and ResultCollector implements methods for collecting the

application’s results. The Java-based template classes can be extended to cater to the

development of different applications, thereby exploiting task-level parallelism and greatly

reducing development time.

27

PMSA involves a semi-regular [30] computation pattern, and we can parallelize the pairwise

comparison and profiles alignment stages separately. Guide tree construction involves little

independent computations, and the only parallelizable portion is the search for the minimum

value in the distance matrix before every grouping of sequence pairs. The granularities of

these search tasks are too small for parallelization to be feasible. Pairwise comparison can be

parallelized in a straightforward manner since each comparison is independent of others.

However, the alignments of profiles are not mutually independent tasks because some

alignments cannot proceed until the results of other alignments deeper in the guide tree are

obtained.

Given n sequences, there will be a total of n(n - 1)/2 pairwise comparisons to be made. Hence,

suppose n = 500, partitioning the comparisons uniformly into independent tasks, where each

task handles, say, 60 comparisons, there will be a total of 500(500 – 1)/(2 x 60) = 2080

tasks to be executed in this stage. Assuming that the guide tree built for these 500 sequences

is well-balanced, then the tree depth will be log2500 = 9. The alignments of sequences or

submitted to ICPP 2003 8

profiles at a given depth are mutually independent, and they can be done simultaneously.

Therefore, all the sequence pairs at the lowest depth (i.e. the leaves) can be aligned in parallel,

followed by all the profile pairs at depth = 8, 7, 6, and so on, in successive sweeps. Figure 6

illustrates this parallelization concept with a portion of a guide tree. The kth sweep comprises

of eight parallel tasks, the (k+1)th sweep has four tasks and the (k+2)th sweep involves two

tasks.

(k+1)th sweep(k+2)th sweep kth sweep

Profile Alignment Task

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 6: Grid-based Parallelization of Profiles Alignment Stage

The flow diagram in highlights the PMSA procedure using ALiCE, with respect to

the example above.

Figure 7

submitted to ICPP 2003 9

.

. Task 2080
Comparisons

124741-124750

Visualization
Display final multiple sequence
alignment (ResultCollextor)

d = 0

d > 0
Result 2d-1

Profile alignment

Result 2
Profile alignment

Result 1
Profile alignment

Task 2d-1

Last profile pair at depth d

Task 2
2nd profile pair at depth d

Task 1
1st profile pair at depth d

Set d = depth of T. Disseminate
each pairwise alignment for the
nodes along depth d as individual
tasks.
Wait for results.
Set d = d – 1.
(TaskGenerator)

Stage 3

Stage 2

Result 2080
Similarity scores for
comparisons
124741-124750

Result 2
Similarity scores for
comparisons 61-120

Task 2
Comparisons 61-120

Result 1
Similarity scores for
comparisons 1-60

Task 1
Comparisons 1-60

Fill up distance matrix M.
Use M to build guide tree T.
(ResultCollector)

Stage 1

Decompose the 500 sequences
into tasks of size 60 each
(TaskGenerator)

Figure 7: Grid-based PMSA using ALiCE

The task granularity in the pairwise comparison stage can affect the communications-to-

computations ratio [4] of the distributed execution, and in order to achieve respectable

performance, there is a need to determine a balance between task size and number of tasks for

a given amount of processing power and number of ALiCE producers. Another performance

factor is the shape of the guide tree, which inadvertently determines the number of alignments

at each depth, and hence, the average sweep size (i.e. the number of parallel tasks generated at

each depth of the tree). If the tree is heavily skewed, then the sweep sizes at all depths will be

small, and this results in load imbalance throughout the profiles alignment stage. In general,

submitted to ICPP 2003 10

however, skewed trees are seldom encountered if the sequences to be aligned are somewhat

related.

3.2 PMSA Implementation in ALiCE

Figure 8

Figure 8: Class Components of Distributed PMSA Using ALiCE

 presents the main Java classes of the ALiCE distributed PMSA application.

PairwiseCompResult

MSAEngine

ProfilesAlignResult
ProfilesAlignTask

PairwiseCompTask

MSATaskGenerator

Parallelization Module

LinearSpace

Statistics Module

Statistics FileParser

Sequence Retrieval Module

SequencesProcesser

DataServer DataClient

Algorithms Module

SmithWaterman

Phylogeny

Visualization Module

MSAVisualizer

ALiCE
Task ResultCollector TaskGenerator

The application is developed using the ALiCE programming template and is composed of five

modules. summarizes the functionalities of each of the modules. Table 1

Table 1: Functionalities of the ALiCE PMSA Modules

Module Functionality
Algorithms Encompasses the bioinformatics algorithms used in PMSA, including the

similarity computation mechanisms, alignment techniques and
phylogenetic tree-building methods.

Parallelization Handles the distribution and execution of the tasks in the pairwise
comparison and profiles alignment stages.

Sequence Retrieval Retrieves the necessary sequences for computation. If the required
sequences are located on a remote machine, they will be fetched via a TCP
connection with the data server at the remote computer.

Statistics Compiles meta-information, such as the sequence count in the databases,
mean sequence length, task processing times, and the overall response time
of a given run of the application.

Visualization Collects and presents the execution results to the user via a GUI.

submitted to ICPP 2003 11

Figure 9

Figure 9: PMSA Code Skeleton Using ALiCE Programming Template

 presents the skeletal outline of the PMSA application’s main Java classes that are

associated with the ALiCE programming template.

PMSA Task Generator

import alice.consumer.*;
// other miscellaneous import statements.

public class MSATaskGenerator extends TaskGenerator {

 /* ALiCE methods: */

 public void init() {
 // Create the statistical module to keep track of task processing time.
 }

 public void main(String args[]) {
 // Loop:
 // Call GetUserInputs().
 // Call MSAKernel().
 }

 /* Application-specific methods: */

 private void GetUserInputs() {
 // Obtain the user-specified PMSA parameters from the result collector.
 }

 private void MSAKernel() {
 // Generate and disseminate tasks for pairwise comparison stage.
 // Wait for call to start profiles alignment stage.
 // Generate and disseminate tasks for profiles alignment stage.
 }
}

PMSA ResultCollector

import alice.result.*;
// other miscellaneous import statements.

public class MSAEngine extends ResultCollector {

 /* ALiCE methods: */

 public void collect() {
 // Setup the result collector.
 // Loop:
 // Send the runtime parameters to the task generator.
 // Call CollectPairwiseComparisonResults().
 // Call BuildGuideTree().
 // Call CollectProfilesAlignmentResults().
 // Call DisplayResults().
 }

 /* Application-specific methods: */

 private void CollectPairwiseComparisonResults() {
 // Loop:
 // Call ALiCE primitive collectResult() to collect pairwise comparison results.
 // Exit if there are no more pairwise comparison results.
 }

 private void BuildGuideTree() {
 // Constructs the guide tree to map out the order of profiles alignment.
 // Uses either of UPGMA, neighbour-joining, or minimum evolution methods.
 }

 private void CollectProfilesAlignmentResults() {
 // Loop:
 // For each depth of the guide tree,
 // call ALiCE primitive collectResult() to collect profiles alignment results.
 // Exit when the tree root is reached.
 }

 private void DisplayResults() {
 // Displays the PMSA results for the current run on the visualizer.
 }
}

Pairwise Comparison / Profiles Alignment Task

import alice.consumer.*;
// other miscellaneous import statements.

public class PairwiseCompTask / ProfilesAlignTask extends Task {

 public PairwiseCompTask / ProfilesAlignTask(….) {
 }

 // ALiCE task execution routine.
 public Object execute () {
 // If this is a PairwiseCompTask task, then fetch the required database
 // sequences from the relevant machine and perform similarity computation.
 // Otherwise, if this is a ProfilesAlignTask, then align the profile pair
 // assigned to this task.
 }
}

Pairwise Comparison / Profiles Alignment Result

import java.io.*;

public class PairwiseCompResult / ProfilesAlignResult implements Serializable {
 // data structures to store the results.

 public PairwiseCompResult / ProfilesAlignResult(….) {
 // create the result object with the respective arguments. This updates the data
 // structures.
 }
}

Figure 10 shows the user interface and visualization during the alignment of 700 sequences of

DNA extracted from various mammal species. The interface on the left provides statistical

information about these sequences, and enables the user to specify the desired task size for the

alignment. The one on the right displays the intermediate results obtained in each stage and

the complete multiple alignments of the DNA sequences.

submitted to ICPP 2003 12

Figure 10: Multiple Alignments of 700 DNA Sequences

4. Performance Evaluation

We study performance in two approaches, using the ALiCE PMSA application that we have

developed. Firstly, we compare with ClustalW and investigate how the application execution

time scales with the number of sequences involved in the multiple alignments. Then, given a

fixed problem type and size, we determine the effect of varying task size on overhead. Finally,

we proceed to analyze the effect of varying the number of producers on execution time.

The test environment comprises of a homogeneous cluster grid and a heterogeneous cluster

grid with all nodes running RedHat Linux OS. The 64-node homogeneous cluster grid (Grid

I) comprises of dual processors Intel Xeon 1.4GHz processors with 1GB of memory,

connected by a Myrinet network. The 50-node heterogeneous cluster grid (Grid II) consists of

nodes connected in two network segments and spread over two physical buildings. The first

segment composes of twenty-six dual processor nodes Intel Xeon 1.4GHz processors with

1GB of memory connected by a Myrinet network. The second segment is made up of sixteen

nodes Pentium II 400MHz with 256MB of RAM, and eight nodes Pentium III 866MHz with

256MB of RAM, all connected via a 100Mbps Ethernet switch. The two segments

communicate via a fast Ethernet LAN. Both grids run GigaSpaces for ALiCE. A 10MB

FASTA [19] database composed of 25,000 GPCR (G-Protein Coupled Receptor) [31] protein

sequences provides the dataset used in the experiments. The execution times reported in this

section are averages for three replications. All experiments involving distributed

computations on Grid II are conducted with a fair mix of producers from the two segments,

even for the cases where small numbers of producers are involved.

submitted to ICPP 2003 13

4.1 Problem Scalability

We study the scalability of the problem to obtain an idea of the execution times required for

different problem sizes on a uniprocessor, and to enable us to select a reasonable problem size

for the second part of our experiments. Here, we carry out sequential executions on partitions

of the GPCR protein database using the CLUSTALW software and a sequential PMSA that

we implemented in Java. These sequential runs are conducted on one Intel Xeon 1.4GHz

node selected from our test environment, and the results are presented in Table 2. The

breakdown of the execution times for the Java sequential PMSA application, for the three

stages of the algorithm, is shown in

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 2000 4000 8000
No. of Database Sequences, n

E
xe

cu
tio

n
T

im
e

PA

GT

PC

Figure 11

Figure 11: Sequential Performance for the Three PMSA Stages

. The numbers above each bar in the chart refers to the corresponding total

execution times.

Execution Time (hours)
n

Size of D (MB)

Mean Seq Length (bytes) ClustalW Java Sequential PMSA

500 0.2 390 ± 14 2.4 2.2
1,000 0.4 385 ± 21 17.3 16.9
2,000 0.8 389 ± 18 40.1 38.2
4,000 1.5 384 ± 23 103.6 95.3
8,000 3.2 397 ± 29 267.9 237.6

Table 2: Sequential Performance – Varying Problem Size

16.9 38.2 95.3 237.6 2.2

submitted to ICPP 2003 14

The results indicate that doubling n (number of sequences) causes between two- to three-fold

increased in the sequential execution times for both implementations where n is reasonably

large. For the case where n = 8,000, it takes around 10 to 11 days to complete the multiple

alignment.

4.2 Effect of Task Size Variations

We now investigate how the performance of distributed PMSA is affected by task size, using

the GPCR protein dataset with n = 8,000. ALiCE is setup with eager scheduling of tasks, and

the dataset is centralized on an NFS. We vary the task size for the pairwise comparison stage

only, because the tasks generated in the profiles alignment stage are not all mutually

independent. Table 3 presents the execution times for eight and sixteen producer nodes

respectively.

Execution Time (hrs)
Pairwise Comparison Task Size Grid I Grid II

#seqs (MB) Time/task (mins)

#tasks
 n(n-1)_
 2(#seqs) 8 prod 16 prod 8 prod 16 prod

1,000 0.4 0.5 31,996 162.5 113.9 179.8 127.0
2,000 0.8 0.9 15,998 117.8 80.9 126.2 87.3
4,000 1.6 1.8 7,999 71.4 47.9 72.9 49.1
8,000 3.2 3.6 4,000 73.9 48.6 76.6 53.6

16,000 6.4 7.1 2,000 79.0 50.3 82.4 56.9

= []

Table 3: Varying Task Size

As reported, the task computational time is relatively short for smaller task sizes, but the

corresponding total execution time is long. This is because of the greater number of tasks that

will be executed in the case of small task sizes, resulting in greater communication overhead

overwhelming the grid. From the above results, the overall performance is optimal when the

pairwise comparison task size is 4,000 sequences, because of a fair balance between

communication and computation overheads.

4.3 Computational Scalability

We now study how the application execution time scales with the number of computational

producers used. We run the experiments for up to 48 producer nodes, in the case of both grids,

with a pairwise comparison task size of 4,000 sequences. The results are presented in ,

where PC, GT and PA record the execution times for each of the three PMSA stages

respectively.

Table 4

submitted to ICPP 2003 15

Execution Time (hrs)
Grid I Grid II

No. of Producers

PC GT PA Total PC GT PA Total
2 148.1 2.6 23.5 174.2 151.9 2.6 25.1 179.6
4 98.6 2.6 19.7 120.9 106.1 2.6 22.8 131.5
8 52.2 2.6 16.6 71.4 61.1 2.6 19.5 83.2

16 32.4 2.6 12.9 47.9 35.6 2.6 17.1 55.3
32 17.8 2.6 9.8 30.2 22.1 2.6 13.8 38.5
48 10.2 2.6 8.0 20.8 14.7 2.6 11.7 29.0

Table 4: Performance on the Cluster Grids

Figure 12

Figure 12: Computational Scalability

 illustrates how the overall execution time scales with the number of producers for

both cluster grids.

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 5

Number of Producers

E
xe

cu
tio

n
T

im
e

(h
ou

rs
)

0

Grid II

Grid I

Grid I generally performs better than Grid II, and the difference between the performances of

both grids becomes more significant as the number of producers used increases. There are two

major reasons for this behavior. Firstly, Grid II comprises of a mixture of three different types

of processor platforms, the second segment of the grid consisting of resources that are less

powerful than the ones in the first segment (Intel Xeon 1.4GHz). Therefore, tasks that are

being assigned to execute on the producers in the second segment will take a longer time to

complete. Conversely, Grid I comprises of all Intel Xeon 1.4GHz nodes, and therefore is able

to derive greater computational power and better performance. Secondly, Grid I is connected

solely by a Myrinet switch, which is fast and powerful. Conversely, Grid II exists on a LAN

consisting of a combination of Myrinet and Ethernet connections, resulting in a lower

submitted to ICPP 2003 16

bandwidth. Furthermore, the two cluster segments of Grid II are physically located apart from

each other, and this means a longer transmission time for tasks, data and computation results

between the consumer, resource broker and producers.

We also discovered that, in both grids, as we increase the number of producers, the execution

time for the pairwise comparison stage makes up a smaller fraction of the total execution time,

but the execution time fraction for the profiles alignment stage is significantly increased

(Figure 13). This is due to the difference in the parallelization nature of these two stages. The

pairwise comparison stage involves totally independent tasks which can be executed

immediately upon generation, as long as there are free producers available. Hence,

volunteering more producers to the grid will improve the stage’s performance. The profiles

alignment stage, on the other hand, involves tasks that are dependent on results from the

lower depths of the guide tree. As we ascend the guide tree, there is lesser room for

parallelization since the number of nodes at each depth decreases as the tree root is

approached. Therefore, increasing the number of producers does not have a significant effect

on the performance of profiles alignment.

Grid I

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 4 8 16 32 48

Number of Producers

E
xe

cu
tio

n
T

im
e

Fr
ac

tio
n

Grid II

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 4 8 16 32 48

Number of Producers

E
xe

cu
tio

n
T

im
e

Fr
ac

tio
n

Figure 13: Grid Performance for the Three PMSA Stages

5. Conclusions and Further Works

We have successfully developed and deployed the bioinformatics PMSA problem on the grid,

using the ALiCE grid computing middleware as the implementation tool. We have

demonstrated how bioinformatics problems with a semi-regular computational pattern can be

readily parallelized for distributed grid execution. To study how the performance of grid-

based PMSA scales with amount of computational power, we conducted experiments on two

grids (homogeneous and heterogeneous), and we observed that given a fixed problem and task

submitted to ICPP 2003 17

size, the overall execution time decreases considerably with an increase in the number of

producer machines used. The heterogeneous cluster grid, mimicking a real-life grid

environment with variable types of resources and networking speeds, does not perform as

well as the homogeneous grid, which is more tightly coupled and comprises of uniform

resources with similar computational abilities.

With the success of the human genome project, the life sciences industry looks set to be a

promising area of development for the next few decades. Grid computing provides a timely

catalyst to bridge the gulf between molecular biology and bioinformatics. The next approach

is to develop a grid programming model for life sciences applications. This potentially

facilitates the deployment of complicated bioinformatics problems on the grid without re-

implementing commonly used component algorithms that can be very tedious to parallelize.

Work in this aspect is currently ongoing in the ALiCE research team.

Acknowledgements

This work has been supported by the Singapore-MIT Alliance program. Special thanks to the

Bioinformatics Institute of Singapore for providing the application domain knowledge.

References

1. Baker, M., Buyya, R. and Laforenza, D., Grids and Grid Technologies for Wide-Area

Distributed Computing, International Journal of Software: Practice and Experience
(SPE), 32(15), Wiley Press, USA, November 2002.

2. Bottu, G., Algorithms for Multiple Sequence Alignments,
http://www.hgmp.mrc.ac.uk/embnet.news/vol2_1/align.html.

3. Buyya R., Abramson D., and Giddy J., Nimrod, G., An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid, Proceedings of
the 4th International Conference and Exhibition on High-Performance computing in
the Asia-Pacific Region (HPCASIA’2000), China, IEEE CS Press, USA, 2000.

4. Culler, D. E., Singh, J. P. and Gupta, A., Parallel Computer Architecture: A
Hardware/Software Approach, 3, Morgan Kaufmann Publishers, San Francisco,
California, August 1998.

5. De Roure, D., Baker, M. A., Jennings, N. R. and Shadbolt, N. R., The Evolution of
the Grid, Research Agenda, UK National eScience Center, 2002.

6. DeFanti, T., Foster, I., Papka, M., Stevens, R. and Kuhfuss, T., Overview of the I-
WAY: Wide Area Visual Supercomputing, International Journal of Supercomputer
Applications, 10, pp. 123-130, 1996.

7. Farris, J. S., Methods for Computing Wagner Trees, Systematic Zoology, 38(4), pp.
83-92, 1970.

8. Feng, D. F. and Doolittle, R. F., Progressive Alignment of Amino Acid Sequences
and Construction of Phylogenetic Trees from Them, Methods in Enzymology,
266(21), pp. 368-382, 1996.

9. Fitch, W. M. and Margoliash, E., Construction of Phylogenetic Trees, Science, 155,
pp. 279-284, January 1967.

submitted to ICPP 2003 18

submitted to ICPP 2003 19

10. Foster, I. and Kesselman, C., Computational Grids, Morgan Kaufmann Publishers,
1998.

11. Foster, I. and Kesselman, C., Globus: A Metacomputing Infrastructure Toolkit,
International Journal of Supercomputer Applications, 11(2), pp. 115-128, 1997.

12. Foster, I., Kesselman, C., Nick, J. M. and Tuecke, S., The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Proceedings of
CGF4, February 2002, http://www.globus.org/research/papers/ogsa.pdf.

13. Foster, I., Kesselman, C. and Tuecke, S., The Anatomy of the Grid: Enabling
Scalable Virtual Organizations, International Journal of Supercomputer Applications,
2001.

14. GigaSpaces Platform White Paper, GigaSpaces Technologies, Ltd., February 2002.
15. Hupfer, S., The Nuts and Bolts of Compiling and Running JavaSpaces Programs,

Java Developer Connection, Sun Microsystems, Inc., 2000.
16. Itzkovitz, A. and Schuster, A., Distributed Shared Memory: Bridging the Granularity

Gap, Proceedings of the First ACM Workshop on Software Distributed Shared
Memory (WSDSM), Greece, June 1999.

17. Mikhailov, D., Cofer, H. and Gomperts, R., Performance Optimization of Clustal W:
Parallel Clustal W, HT Clustal, and MULTICLUSTAL, white paper, SGI Life and
Chemical Sciences, 2001.

18. Monge, A. and Elkan, C., The Field-matching Problem: Algorithm and Applications,
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, pp. 267-270, August 1996.

19. National Center for Biotechnology Information (NCBI) Homepage, National Library
of Medicine, Maryland, United States of America, http://ncbi.nlm.nih.gov.

20. Pearson, W. R. and Miller, W., Dynamic Programming Algorithms for Biological
Sequence Comparison, Methods in Enzymology, 183, pp. 575—601, 1992.

21. Rzhetsky, A. and Nei, M., A Simple Method for Estimating and Testing Minimum-
Evolution Trees, Molecular Biology and Evolution, 9(13), pp. 945-967, 1992.

22. Saitou, N., Reconstruction of Gene Trees from Sequence Data, Methods in
Enzymology, 266(25), pp. 427-449, 1996.

23. Saitou N. and Imanishi T., Relative Efficiencies of the Fitch-Margoliash, Maximum-
Parsimony, Maximum-Likelihood, Minimum-Evolution, and Neighbor-Joining
Methods of Phylogenetic Tree Construction in Obtaining the Correct Tree, Molecular
Biology and Evolution, 6(5), pp. 514-525, 1989.

24. Saitou N. and Nei, M., The Neighbor-joining Method: A New Method for
Reconstructing Phylogenetic Trees, Molecular Biology and Evolution, 4(4), pp. 406-
425, 1987.

25. Setubal, J. and Meldanis, J., Introduction to Computational Molecular Biology, PWS
Publishing Company, 3, pp. 47-104, 2000.

26. Sneath, P. H. P. and Sokal, R., Numerical Taxonomy, W. H. Freeman, San Francisco,
1977.

27. Teo, Y. M., Tay, S. C. and Gozali, J. P., Geo-rectification of Satellite Images using
Grid Computing, Proceedings of the International Parallel & Distributed Processing
Symposium, IEEE Computer Society Press, Nice, France, April 2003.

28. Thomasson, W. A., Unraveling the Mystery of Protein Folding, Breakthroughs in
Bioscience, FASEB Journal, January 2002.

29. Thompson, J. D., Higgins, D. G. and Gibson, T. J., CLUSTALW: Improving the
Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting,
Position-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res.,
222(4673), 1994.

30. Trelles, O., On the Parallelization of Bioinformatics Applications, Briefing in
Bioinformatics, Henry Stewart Publications, 2(2), pp. 181-194, May 2001.

31. Wess, J., Structure/Function Analysis of G-Protein Coupled Receptors, John Wiley,
New York, 1999.

	T ((
	d (depth of T
	With reference to the algorithm, the double loop in PC yields a time complexity of O(n2), but overall, the PC stage incurs a complexity of at least O(n3) since the best performing similarity algorithm is known to have a linear time complexity. It can
	
	Module
	
	
	
	
	PMSA Task Generator

