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Abstract 

In the absence of powerful supercomputer hardware, grid computing offers 
an alternative avenue by providing a heterogeneous, scalable and reliable 
high performance processing environment to address problems involving 
large computational granularities and enormous datasets. The physical and 
life sciences typically include numerous classes of sophisticated problems 
and the retrieval of information from large volumes of formatted databases. 
This paper reports the development and deployment of a bioinformatics 
problem, Progressive Multiple Sequence Alignment (PMSA), on cluster grids 
using ALiCE, a grid computing middleware. PMSA comprises of three 
consecutive stages: pairwise sequence comparison, guide tree construction 
and sequence profiles alignment. Our implementation of PMSA involves 
parallelizing the first and third stages of the algorithm. Experiments on 
homogeneous and heterogeneous cluster grids demonstrate how performance 
scales with problem size and computational power, illustrating that grid 
computing is a feasible means to approach several categories of problems in 
the life sciences by integrating pooled resources to produce supercomputing 
capabilities.       

 
 
1. Introduction 
 
The popularity and scalability of the Internet has revolutionized traditional computing 

concepts and practices. With the availability of powerful computers and high-speed 

networking technologies as low-cost commodity components, it is possible to cluster or 

couple a wide variety of heterogeneous resources including supercomputers, storage systems, 

data sources and special classes of devices distributed geographically and use them as a single, 

unified resource [3]. This methodology is known as grid computing, and it enables the 

development of virtual organizations [13] sharing core competencies, resources and skills, to 

respond to business opportunities and large-scale application processing requirements more 
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effectively [1]. A computational grid is a hardware and software infrastructure that provides 

dependable, consistent, pervasive and inexpensive access to high-end computational 

capabilities [10]. The pioneer grid efforts spun off as experimental attempts to link 

supercomputing sites in the US, and grid computing has since then evolved to adopt a service-

oriented [12] approach, emphasizing on capability rather than connectivity. 

 

Research in the physical and life sciences characteristically involves the manipulation of 

astronomical volumes of raw scientific data produced in experiments. In the biological and 

biomedical fields, the data takes the form of biosequences flat files, three-dimensional 

structures, motifs and three-dimensional microscopic image files [30]. However, while 

genome projects and DNA arrays technology are constantly and exponentially increasing the 

amount of data available, the capability of a sequential computer can allow only a small 

portion of the huge dataset to be processed in a reasonable response time. Furthermore, 

several well-known bioinformatics problems such as protein folding simulation [28] and 

phylogenetic tree construction [22] encompass numerous sophisticated algorithms that may 

not be readily handled by conventional computers. The use of supercomputer systems may 

not be economically viable. Therefore, the opportunities provided by grid computing offers an 

avenue to address computational problems in the sciences by leveraging available and 

affordable resources to create a virtual scientific environment.  

 

Grid development from scratch is typically tedious, involving numerous issues such as 

resource management and scheduling, efficient and reliable data transfer technologies and 

security in a distributed environment. An increasing number of research groups worldwide 

have implemented middleware, libraries and tools [5] to facilitate the construction of grids. 

The Globus [11] project is a well-established example of a metacomputing abstract machine, 

setting out to provide a collection of fundamental low-level services that can be used to 

develop and integrate higher-level services and capabilities. The key Globus components have 

been successfully deployed in the I-WAY [6] experiment. 

 

ALiCE [ ] is a platform independent, Java-based user-oriented Grid computing middleware 

developed by the School of Computing at the National University of Singapore. It comprises 

of three types of entities: resource broker, producers and consumers.  The resource broker is 

a logical point of control for all ALiCE grid resources and applications running on these 

resources.  It provides system services such as resource management and monitoring.  

Through the producer client, user gives access to share their compute resources to execute 

ALiCE tasks. Submission of ALiCE applications is through the consumer client. The 

27
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underlying communications mechanism between the entities is implemented on Sun 

Microsystems’ Jini and JavaSpaces [15] service, which adopts a distributed-shared memory 

programming model [16]. ALiCE also offers an alternative communications protocol using 

GigaSpacesTM [14], an industrial implementation of JavaSpaces.   shows the ALiCE 

three-layered architecture. 

Figure 1

Figure 1:  ALiCE Three-Layered Architecture 
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The remainder of this paper discusses the development and deployment of the PMSA problem 

on the ALiCE grid. Section 2 presents an overview of PMSA. Section 3 describes the 

parallelization of the PMSA problem and its mapping onto ALiCE. Section 4 discusses the 

performance results on two cluster grids of different natures. Section 5 presents our 

concluding remarks.   

 

2. PMSA Overview 
 
The comparison of a pair of protein or DNA sequences is the most fundamental problem in 

bioinformatics [25]. Frequently, scientists are interested in studying the existence of 

homologies between tens, or hundreds, of sequences, and not just between one specific gene 
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and a collection of existing genes [8]. The simultaneous alignment of multiple sequences is 

now an essential methodology in molecular biology. PMSA is often used to find diagnostic 

patterns to characterise protein families, to detect or demonstrate homology between new 

sequences and existing families of sequences, to help predict the secondary and tertiary 

structures of newly sequenced genes, and to suggest special primers for Polymerase Chain 

Reaction (PCR) [29]. Evolutionary scientists adopt PMSA techniques to conduct evolutionary 

analysis on newly discovered species of living organisms. 

 

The PMSA problem has been addressed in a commercial biomedical research toolkit, 

CLUSTALW [29]. PMSA generally comprises of three successive stages, which will be 

discussed in the subsequent subsections. For the rest of this paper, we assume the following 

notations: 

 s, t  : arbitrary database sequences 

 i : ith residue of s 

 j : jth residue of t 

 D : set of database sequences to be aligned 

                             n   : number of sequences in D 

 

2.1 Stage 1: Pairwise Comparison 
 
This is the preparatory stage of PMSA, and its chief objective is to identify the similarity 

between every pair of biosequences (s, t) to be aligned, so that sequences that are more 

closely related aesthetically can first be aligned together. With this information, we can 

determine the order in which alignments are to take place later. The similarity between s and t 

can be mathematically computed with the function shown in . Figure 2

Figure 2:  Similarity Score Function 

      sim(s[1..i], t[1..j-1]) - 2 
sim(s[1..i], t[1..j])    =  max    sim(s[1..i-1], t[1..j-1]) + p(i, j) 

      sim(s[1..i-1], t[1..j]) – 2 
  

 

This similarity score function basically obtains the similarity score of the sequence pair using 

a dynamic programming mechanism developed by Smith and Waterman [18] to fill up a 

substitution matrix [25]. p(i, j) is an alignment column score function that returns the 

maximum value when i = j, the minimum value when i ≠ j, and a given gap penalty value 

when either i or j is a gap in the corresponding sequence. Similarity scores can alternatively 

be derived using some other more complicated techniques, such as the Linear Space similarity 

algorithm [20], which consumes less memory, and the BLAST [2] algorithm. 
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The reciprocals of the corresponding similarity scores for all sequence pairs are used to fill up 

a distance matrix.  shows an example of such a matrix describing the pairwise 

distances of five globin sequences. It suggests that the species Hbb_Human is likely to be 

most closely related to Hbb_Horse, and that Hba_Human has a significant level of 

similarity with Hba_Horse, because of their respective minimum distance values. 

Figure 3

Figure 3:  Distance Matrix for Five Globin Sequences 

 

 

 

 

 

 

 

 

 

 

 
 
 Hbb_Human       1  -- 
 
 Hbb_Horse       2  0.23 -- 
   
 Hba_Human       3  0.41 0.40 -- 
 
 Hba_Horse       4  0.41 0.41 0.25 -- 
 
 Myg_Phyca       5  0.83 0.33 0.87 0.27 -- 
 
 
      1  2  3  4 5 

 
2.2 Stage 2: Guide Tree Construction 
 
The distance matrix produced during pairwise comparison is used to build a phylogenetic tree 

mapping out the alignment order of the sequences. The tree can be produced efficiently with 

distance matrix algorithms such as Unweighted Pair Group Method using Arithmetic Mean 

(UPGMA) [26], the FITCH Least-Squares Distance method [ ], the Wagner method [7], the 

neighbour-joining method [24] and the minimum evolution method [ , 23]. 
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Figure 4:  Guide Tree Produced from Distance Matrix 
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The general idea of these tree building techniques is to compute the minimum distance value 

in the matrix, group the relevant sequence pair (s, t) to form a new taxonomical unit, and 

repeat this process with the newly formed taxonomical unit and the remaining sequences 

represented in the matrix. The taxonomical units produced in the grouping process correspond 

to the internal nodes in the tree. Complex algorithms such as the Wagner method and the 

neighbour-joining method involve the use of statistical and weight functions to compute the 

tree. Figure 4 illustrates the guide tree constructed for the matrix in Figure 3. 

 

2.3 Stage 3: Profiles Alignment 
 

The goal of this stage is to produce the complete multiple alignment of the sequences, with 

the help of the guide tree manifested in the previous stage. In general, alignment begins, 

pairwise, from the leaves and progresses towards the root of the tree. In the process, 

alignment profiles will be formed, which corresponds to the internal nodes of the tree. 

 

Let us consider the example in  above. According to the pattern of the guide tree, the 

alignment of Hbb_Human and Hbb_Horse to form alignment profile A can proceed 

immediately. Likewise, Hba_Human and Hba_Horse can be aligned to form profile B at 

once. The order in which these two alignments are carried out does not matter, since they are 

mutually independent alignments. Next, profiles A and B will be aligned together to form 

profile C. Finally, C will be aligned with the sequence representing the species Myg_Phyca 

to produce D - the complete multiple alignment of the five sequences. 

Figure 4

 

The major problem with PMSA stems from the assumption that the sequences/profiles align 

well at every node in the guide tree. However, if the initial alignments yield low similarity 

score values, then the anormalies will be disseminated throughout the remaining alignments. 

The common approach adopted is to skip an alignment if it results in a similarity score value 

that is below a specified threshold, and carry it out later. 

 

Figure 5 outlines the entire PMSA algorithm for a given set of database sequences D. Lines 3-

5 performs pairwise comparison (PC) over all sequences in D. Lines 6-16 constructs the guide 

tree (GT) from the distance matrix, M, thus produced. Lines 17-24 perform progressive 

profiles alignment (PA) depthwise bottom-up in the tree. The complete multiple alignments of 

all the sequences in D is returned at the end of the algorithm. 
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  Progressive_Multiple_Sequence_Alignment (D) 

1 n = |D| 
2 M = (n x n) distance matrix 

 
3 for all s ∈ D do 
4     for all t ∈ D – {s} do 
5     M[index(s), index(t)]  sim(s, t) 

 
6   T = guide tree 
7   T  φ  
8   G = number of sequence groups remaining 
9   G  D 
10   while |G| > 1 do 
11     v  minimum value in M 
12      c  sequence group formed by s and t, where M[index(s), index(t)] = v 
13     Recompute values in M that involves s and t 
14    G  G – {s, t} 
15    G  G ∪ {c} 
16   Add c to T, and add edges from c to s and t respectively in T 

 
17   d  depth of T 
18   while d > 0 do 
19    for all s ∈ T, t ∈ T, depth(s) = d, depth(t) = d, parent(s) = parent(t) do 
20     (align_s, align_t)  Align s and t 
21     s  align_s 
22     t  align_t 
23     parent(s)  merge(align_s, align_t)    // creates alignment profile 
24    d  d - 1 

 
25   return T – {c | c is not a leaf of T}      

 

PA 

GT 

PC 

Figure 5:  PMSA Algorithm 

 
With reference to the algorithm, the double loop in PC yields a time complexity of O(n2), but 

overall, the PC stage incurs a complexity of at least O(n3) since the best performing similarity 

algorithm is known to have a linear time complexity. It can even be O(n4) or higher, 

depending on the complexity of sim(s, t).  GT involves searching for the minimum value in 

the distance matrix prior to each grouping of sequence pairs, and thus yields a total 

complexity of O(n3).  PA incurs a linear time complexity of O(n), since there are (n – 1) 

internal nodes in the guide tree and therefore, (n – 1) profiles alignment. As illustrated, the 

complexity of the whole PMSA algorithm is bounded by the PC stage, which has a minimum 

possible complexity of O(n3).  Under such circumstances, the overall execution time of a 

sequential PMSA program will increase exponentially with an increase in the number of 

database sequences. This is undesirable for real-time lab research scenarios, which may 

involve hundreds or even thousands of sequenced proteins.   
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3. Distributed PMSA using ALiCE Grid 
 
SGI has attempted to parallelize the CLUSTALW algorithm in an associated application, 

known as Parallel CLUSTALW [17].  However, Parallel CLUSTALW is problem-specific 

and is unable to handle grid environmental features, such as task scheduling and sequence 

data retrieval from remote databases.  In a typical scenario, a molecular biologist may wish to 

align numerous genes that are sequenced in laboratories worldwide and thus stored in 

geographically distributed databases. This will be a hassle in the absence of an appropriate 

data handling engine.  Here, we describe the parallelization of PMSA using ALiCE, thereby 

enabling the ease of development and deployment of our application on the grid. 

  

3.1 Task Partitioning 
 
ALiCE applications are written using the ALiCE object-based programming template [ ] 

that hides the specific details of the distributed implementation and dynamic code linking 

mechanisms required for execution on the grid.  ALiCE API consists of three Java classes: 

TaskGenerator generates, initializes and submit computational tasks, Task implements the 

Task objects of the application, and ResultCollector implements methods for collecting the 

application’s results. The Java-based template classes can be extended to cater to the 

development of different applications, thereby exploiting task-level parallelism and greatly 

reducing development time. 

27

 

PMSA involves a semi-regular [30] computation pattern, and we can parallelize the pairwise 

comparison and profiles alignment stages separately. Guide tree construction involves little 

independent computations, and the only parallelizable portion is the search for the minimum 

value in the distance matrix before every grouping of sequence pairs. The granularities of 

these search tasks are too small for parallelization to be feasible.  Pairwise comparison can be 

parallelized in a straightforward manner since each comparison is independent of others. 

However, the alignments of profiles are not mutually independent tasks because some 

alignments cannot proceed until the results of other alignments deeper in the guide tree are 

obtained. 

 

Given n sequences, there will be a total of n(n - 1)/2 pairwise comparisons to be made. Hence, 

suppose n = 500, partitioning the comparisons uniformly into independent tasks, where each 

task handles, say, 60 comparisons, there will be a total of 500(500 – 1)/(2 x 60) = 2080 

tasks to be executed in this stage. Assuming that the guide tree built for these 500 sequences 

is well-balanced, then the tree depth will be log2500 = 9. The alignments of sequences or 
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profiles at a given depth are mutually independent, and they can be done simultaneously. 

Therefore, all the sequence pairs at the lowest depth (i.e. the leaves) can be aligned in parallel, 

followed by all the profile pairs at depth = 8, 7, 6, and so on, in successive sweeps. Figure 6 

illustrates this parallelization concept with a portion of a guide tree. The kth sweep comprises 

of eight parallel tasks, the (k+1)th sweep has four tasks and the (k+2)th sweep involves two 

tasks. 

 

 

 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(k+1)th sweep(k+2)th sweep kth sweep 

Profile Alignment Task 
 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
 
. 
 
. 

 

Figure 6:  Grid-based Parallelization of Profiles Alignment Stage 

 
The flow diagram in  highlights the PMSA procedure using ALiCE, with respect to 

the example above. 

Figure 7
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Figure 7:  Grid-based PMSA using ALiCE 

 
The task granularity in the pairwise comparison stage can affect the communications-to-

computations ratio [4] of the distributed execution, and in order to achieve respectable 

performance, there is a need to determine a balance between task size and number of tasks for 

a given amount of processing power and number of ALiCE producers. Another performance 

factor is the shape of the guide tree, which inadvertently determines the number of alignments 

at each depth, and hence, the average sweep size (i.e. the number of parallel tasks generated at 

each depth of the tree). If the tree is heavily skewed, then the sweep sizes at all depths will be 

small, and this results in load imbalance throughout the profiles alignment stage. In general, 
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however, skewed trees are seldom encountered if the sequences to be aligned are somewhat 

related.  

 

3.2 PMSA Implementation in ALiCE 
 
Figure 8

Figure 8:  Class Components of Distributed PMSA Using ALiCE 

 presents the main Java classes of the ALiCE distributed PMSA application. 
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The application is developed using the ALiCE programming template and is composed of five 

modules.  summarizes the functionalities of each of the modules. Table 1

Table 1:  Functionalities of the ALiCE PMSA Modules 

 

Module Functionality 
Algorithms Encompasses the bioinformatics algorithms used in PMSA, including the 

similarity computation mechanisms, alignment techniques and 
phylogenetic tree-building methods. 

Parallelization Handles the distribution and execution of the tasks in the pairwise 
comparison and profiles alignment stages. 

Sequence Retrieval Retrieves the necessary sequences for computation. If the required 
sequences are located on a remote machine, they will be fetched via a TCP 
connection with the data server at the remote computer.   

Statistics Compiles meta-information, such as the sequence count in the databases, 
mean sequence length, task processing times, and the overall response time 
of a given run of the application.  

Visualization Collects and presents the execution results to the user via a GUI.  
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Figure 9

Figure 9:  PMSA Code Skeleton Using ALiCE Programming Template 

 presents the skeletal outline of the PMSA application’s main Java classes that are 

associated with the ALiCE programming template. 

 
PMSA Task Generator 

 
import alice.consumer.*; 
// other miscellaneous import statements. 
 
public class MSATaskGenerator extends TaskGenerator { 
 
    /* ALiCE methods: */ 
     
    public void init() { 
        // Create the statistical module to keep track of task processing time. 
    } 
 
    public void main(String args[]) { 
        // Loop: 
               // Call GetUserInputs(). 
               // Call MSAKernel(). 
    } 
 
    /* Application-specific methods: */ 
     
    private void GetUserInputs() { 
        // Obtain the user-specified PMSA parameters from the result collector. 
    } 
 
    private void MSAKernel() { 
        // Generate and disseminate tasks for pairwise comparison stage. 
        // Wait for call to start profiles alignment stage. 
        // Generate and disseminate tasks for profiles alignment stage. 
   } 
} 

PMSA ResultCollector 
 
import alice.result.*; 
// other miscellaneous import statements. 
 
public class MSAEngine extends ResultCollector { 
     
   /* ALiCE methods: */ 
 
    public void collect() { 
       // Setup the result collector. 
       // Loop: 
              // Send the runtime parameters to the task generator. 
              // Call CollectPairwiseComparisonResults(). 
              // Call BuildGuideTree(). 
              // Call CollectProfilesAlignmentResults(). 
              // Call DisplayResults(). 
    } 
 
    /* Application-specific methods: */ 
 
    private void CollectPairwiseComparisonResults() { 
       // Loop: 
              // Call ALiCE primitive collectResult() to collect pairwise comparison results. 
              // Exit if there are no more pairwise comparison results. 
    } 
 
    private void BuildGuideTree() { 
        // Constructs the guide tree to map out the order of profiles alignment. 
        // Uses either of UPGMA, neighbour-joining, or minimum evolution methods. 
    } 
   
    private void CollectProfilesAlignmentResults() { 
       // Loop: 
              // For each depth of the guide tree, 
              // call ALiCE primitive collectResult() to collect profiles alignment results. 
              // Exit when the tree root is reached. 
    } 
 
    private void DisplayResults() { 
        // Displays the PMSA results for the current run on the visualizer. 
    } 
} 
 

Pairwise Comparison / Profiles Alignment Task 
 

import alice.consumer.*; 
// other miscellaneous import statements. 
 
public class PairwiseCompTask / ProfilesAlignTask extends Task { 
    
   public PairwiseCompTask / ProfilesAlignTask(….) { 
   } 
 
   // ALiCE task execution routine. 
   public Object execute () { 
      // If this is a PairwiseCompTask task, then fetch the required database 
      // sequences from the relevant machine and perform similarity computation. 
      // Otherwise, if this is a ProfilesAlignTask, then align the profile pair 
      // assigned to this task. 
   } 
} 
 

Pairwise Comparison / Profiles Alignment Result 
 
import java.io.*; 
 
public class PairwiseCompResult / ProfilesAlignResult implements Serializable { 
    // data structures to store the results. 
 
    public PairwiseCompResult / ProfilesAlignResult(….) { 
         // create the result object with the respective arguments. This updates the data 
         // structures.    
    } 
} 
 

 
Figure 10 shows the user interface and visualization during the alignment of 700 sequences of 

DNA extracted from various mammal species. The interface on the left provides statistical 

information about these sequences, and enables the user to specify the desired task size for the 

alignment. The one on the right displays the intermediate results obtained in each stage and 

the complete multiple alignments of the DNA sequences. 
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Figure 10:  Multiple Alignments of 700 DNA Sequences 

  

4. Performance Evaluation 
 
We study performance in two approaches, using the ALiCE PMSA application that we have 

developed. Firstly, we compare with ClustalW and investigate how the application execution 

time scales with the number of sequences involved in the multiple alignments. Then, given a 

fixed problem type and size, we determine the effect of varying task size on overhead. Finally, 

we proceed to analyze the effect of varying the number of producers on execution time. 

 

The test environment comprises of a homogeneous cluster grid and a heterogeneous cluster 

grid with all nodes running RedHat Linux OS. The 64-node homogeneous cluster grid (Grid 

I) comprises of dual processors Intel Xeon 1.4GHz processors with 1GB of memory, 

connected by a Myrinet network. The 50-node heterogeneous cluster grid (Grid II) consists of 

nodes connected in two network segments and spread over two physical buildings. The first 

segment composes of twenty-six dual processor nodes Intel Xeon 1.4GHz processors with 

1GB of memory connected by a Myrinet network.  The second segment is made up of sixteen 

nodes Pentium II 400MHz with 256MB of RAM, and eight nodes Pentium III 866MHz with 

256MB of RAM, all connected via a 100Mbps Ethernet switch. The two segments 

communicate via a fast Ethernet LAN. Both grids run GigaSpaces for ALiCE. A 10MB 

FASTA [19] database composed of 25,000 GPCR (G-Protein Coupled Receptor) [31] protein 

sequences provides the dataset used in the experiments. The execution times reported in this 

section are averages for three replications. All experiments involving distributed 

computations on Grid II are conducted with a fair mix of producers from the two segments, 

even for the cases where small numbers of producers are involved. 
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4.1 Problem Scalability 
 
We study the scalability of the problem to obtain an idea of the execution times required for 

different problem sizes on a uniprocessor, and to enable us to select a reasonable problem size 

for the second part of our experiments.  Here, we carry out sequential executions on partitions 

of the GPCR protein database using the CLUSTALW software and a sequential PMSA that 

we implemented in Java.  These sequential runs are conducted on one Intel Xeon 1.4GHz 

node selected from our test environment, and the results are presented in Table 2. The 

breakdown of the execution times for the Java sequential PMSA application, for the three 

stages of the algorithm, is shown in  
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Figure 11

Figure 11:  Sequential Performance for the Three PMSA Stages 

.  The numbers above each bar in the chart refers to the corresponding total 

execution times. 

 

Execution Time (hours)  
n 

 
Size of D (MB) 

 
Mean Seq Length (bytes) ClustalW Java Sequential PMSA 

500 0.2 390 ± 14 2.4 2.2 
1,000 0.4 385 ± 21 17.3 16.9 
2,000 0.8 389 ± 18 40.1 38.2 
4,000 1.5 384 ± 23 103.6 95.3 
8,000 3.2 397 ± 29 267.9 237.6 

Table 2:  Sequential Performance – Varying Problem Size 

 
16.9 38.2 95.3 237.6 2.2 
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The results indicate that doubling n (number of sequences) causes between two- to three-fold 

increased in the sequential execution times for both implementations where n is reasonably 

large. For the case where n = 8,000, it takes around 10 to 11 days to complete the multiple 

alignment. 

 

4.2 Effect of Task Size Variations 
 
We now investigate how the performance of distributed PMSA is affected by task size, using 

the GPCR protein dataset with n = 8,000. ALiCE is setup with eager scheduling of tasks, and 

the dataset is centralized on an NFS. We vary the task size for the pairwise comparison stage 

only, because the tasks generated in the profiles alignment stage are not all mutually 

independent. Table 3 presents the execution times for eight and sixteen producer nodes 

respectively. 

 

Execution Time (hrs)  
Pairwise Comparison Task Size Grid I Grid II 

#seqs (MB) Time/task (mins) 

#tasks 
    n(n-1)_ 
  2(#seqs) 8 prod 16 prod 8 prod 16 prod 

1,000 0.4 0.5 31,996 162.5 113.9 179.8 127.0 
2,000 0.8 0.9 15,998 117.8 80.9 126.2 87.3 
4,000 1.6 1.8 7,999 71.4 47.9 72.9 49.1 
8,000 3.2 3.6 4,000 73.9 48.6 76.6 53.6 

16,000 6.4 7.1 2,000 79.0 50.3 82.4 56.9 

= [             ]

Table 3:  Varying Task Size 

 
As reported, the task computational time is relatively short for smaller task sizes, but the 

corresponding total execution time is long. This is because of the greater number of tasks that 

will be executed in the case of small task sizes, resulting in greater communication overhead 

overwhelming the grid. From the above results, the overall performance is optimal when the 

pairwise comparison task size is 4,000 sequences, because of a fair balance between 

communication and computation overheads. 

 

4.3 Computational Scalability 
 
We now study how the application execution time scales with the number of computational 

producers used. We run the experiments for up to 48 producer nodes, in the case of both grids, 

with a pairwise comparison task size of 4,000 sequences. The results are presented in , 

where PC, GT and PA record the execution times for each of the three PMSA stages 

respectively. 

Table 4
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Execution Time (hrs) 
Grid I Grid II 

 
No. of Producers 

PC GT PA Total PC GT PA Total 
2 148.1 2.6 23.5 174.2 151.9 2.6 25.1 179.6 
4 98.6 2.6 19.7 120.9 106.1 2.6 22.8 131.5 
8 52.2 2.6 16.6 71.4 61.1 2.6 19.5 83.2 

16 32.4 2.6 12.9 47.9 35.6 2.6 17.1 55.3 
32 17.8 2.6 9.8 30.2 22.1 2.6 13.8 38.5 
48 10.2 2.6 8.0 20.8 14.7 2.6 11.7 29.0 

Table 4:  Performance on the Cluster Grids 

 
Figure 12

Figure 12:  Computational Scalability 

 illustrates how the overall execution time scales with the number of producers for 

both cluster grids. 

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 5

Number of Producers

E
xe

cu
tio

n 
T

im
e 

(h
ou

rs
)

0

 

Grid II
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Grid I generally performs better than Grid II, and the difference between the performances of 

both grids becomes more significant as the number of producers used increases. There are two 

major reasons for this behavior. Firstly, Grid II comprises of a mixture of three different types 

of processor platforms, the second segment of the grid consisting of resources that are less 

powerful than the ones in the first segment (Intel Xeon 1.4GHz). Therefore, tasks that are 

being assigned to execute on the producers in the second segment will take a longer time to 

complete. Conversely, Grid I comprises of all Intel Xeon 1.4GHz nodes, and therefore is able 

to derive greater computational power and better performance. Secondly, Grid I is connected 

solely by a Myrinet switch, which is fast and powerful. Conversely, Grid II exists on a LAN 

consisting of a combination of Myrinet and Ethernet connections, resulting in a lower 
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bandwidth. Furthermore, the two cluster segments of Grid II are physically located apart from 

each other, and this means a longer transmission time for tasks, data and computation results 

between the consumer, resource broker and producers.         

 

We also discovered that, in both grids, as we increase the number of producers, the execution 

time for the pairwise comparison stage makes up a smaller fraction of the total execution time, 

but the execution time fraction for the profiles alignment stage is significantly increased 

(Figure 13). This is due to the difference in the parallelization nature of these two stages. The 

pairwise comparison stage involves totally independent tasks which can be executed 

immediately upon generation, as long as there are free producers available. Hence, 

volunteering more producers to the grid will improve the stage’s performance. The profiles 

alignment stage, on the other hand, involves tasks that are dependent on results from the 

lower depths of the guide tree. As we ascend the guide tree, there is lesser room for 

parallelization since the number of nodes at each depth decreases as the tree root is 

approached. Therefore, increasing the number of producers does not have a significant effect 

on the performance of profiles alignment.    
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Figure 13:  Grid Performance for the Three PMSA Stages 

 

5. Conclusions and Further Works 
 
We have successfully developed and deployed the bioinformatics PMSA problem on the grid, 

using the ALiCE grid computing middleware as the implementation tool. We have 

demonstrated how bioinformatics problems with a semi-regular computational pattern can be 

readily parallelized for distributed grid execution. To study how the performance of grid-

based PMSA scales with amount of computational power, we conducted experiments on two 

grids (homogeneous and heterogeneous), and we observed that given a fixed problem and task 
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size, the overall execution time decreases considerably with an increase in the number of 

producer machines used. The heterogeneous cluster grid, mimicking a real-life grid 

environment with variable types of resources and networking speeds, does not perform as 

well as the homogeneous grid, which is more tightly coupled and comprises of uniform 

resources with similar computational abilities. 

 

With the success of the human genome project, the life sciences industry looks set to be a 

promising area of development for the next few decades. Grid computing provides a timely 

catalyst to bridge the gulf between molecular biology and bioinformatics. The next approach 

is to develop a grid programming model for life sciences applications. This potentially 

facilitates the deployment of complicated bioinformatics problems on the grid without re-

implementing commonly used component algorithms that can be very tedious to parallelize. 

Work in this aspect is currently ongoing in the ALiCE research team. 
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