
26 May 2002 Teo Yong Meng, NUS 1

ALiCEALiCE: A Lightweight: A Lightweight
Grid MiddlewareGrid Middleware

Teo Yong Meng
Department of Computer Science
National University of Singapore

teoym@comp.nus.edu.sg
http://www.comp.nus.edu.sg/~teoym

26 May 2002 Teo Yong Meng, NUS 2

SETI@Home

26 May 2002 Teo Yong Meng, NUS 3

Cost of Idle Computing Cycles

Desktop Processor Utilisation
 $ / processor

(desktop)

$ / used
$ / used

processor
cost of

unused cycles
one desktop $1200 $300 $150 $1050
1000 desktops $1,200,000 $300,000 $150,000 $1,050,000

Source: Adapted from Internet Infrastructure & Services by Bear, Stearns & Co., May
2001. Based on IDA tender price, the cost of a Pentium PC desktop is estimated to be
$1200.

Assumptions:

1. Desktop utilization is 25%; 8 hrs/24 hrs = 33%; factoring in lunch,
restroom, etc. a desktop can be idle up to 90%

2. When a processor is in used, assume a peak utilization of 50%

26 May 2002 Teo Yong Meng, NUS 4

Outline
!Grid computing overview
!Overview of Globus
!ALiCE Middleware

!Key features
!Producer-consumer model
!Template-based grid programming
!ALiCE applications
!ALiCE vs Globus

!Supercomputer, Physical and Virtual
Cluster

26 May 2002 Teo Yong Meng, NUS 5

Grid Computing (1)

Client/Server Model
Grid Model

26 May 2002 Teo Yong Meng, NUS 6

Grid Computing (2)
• Flexible, secure, coordinated resource sharing among

dynamic collections of individuals, institutions, and
resource

From “The Anatomy of the Grid: Enabling Scalable Virtual Organizations”

• Enable communities (“virtual organizations”) to share
geographically distributed resources as they pursue
common goals -- assuming the absence of…
– central location,
– central control,
– omniscience,
– existing trust relationships

26 May 2002 Teo Yong Meng, NUS 7

Grid Computing (3)
• Resource sharing

– Computers, storage, sensors, networks,
databases, …

– Sharing always conditional: issues of trust, policy,
negotiation, payment, …

• Coordinated problem solving
– Beyond client-server: distributed data analysis,

computation, collaboration, …

• Dynamic, multi-institutional virtual orgs
– Community overlays on classic org structures
– Large or small, static or dynamic

26 May 2002 Teo Yong Meng, NUS 8

Grid Computing (4)

Advantages
• sharing and aggregation

of resources
• leveraging on resources

you don’t own
• “computing on demand”

- focus on business rather than
technology

- reduce business costs
• remote access to expensive

resources (proprietary data
sets,..)

•• capability and scalability
• fault tolerance
• …..

Challenges
• heterogeneity
• distributed ownership
• dynamic behavior – internet

based on best effort packet
delivery

• security
• ease of use
• …….

26 May 2002 Teo Yong Meng, NUS 9

Design Complexities

consistency Grid
System

performance

shared data

maintainability

security

scalability

ease of use decentr
aliz

ati
on

availability

atomicity

mobility

Too many
objectives

Not enough
principles!

26 May 2002 Teo Yong Meng, NUS 10

Three Main Obstacles
in Grid Computing

1) New approaches to problem solving
– Data Grids, distributed computing, peer-to-peer,

collaboration grids, …

2) Structuring and writing programs
– Abstractions, tools

3) Enabling resource sharing across distinct
institutions
– Resource discovery, access, reservation, allocation;

authentication, authorization, policy; communication; fault
detection and notification; …

Programming Problem

Systems Problem

26 May 2002 Teo Yong Meng, NUS 11

Globus Layered Grid Architecture

“Controlling things locally”:
Access to, & control of, resources

“Talking to things”:
communication (Internet protocols)
& security

“Sharing single resources”:
negotiating access, controlling use

“Coordinating multiple resources”:
ubiquitous infrastructure services, app-
specific distributed services

Resource

Fabric

Connectivity

Collective

Application

Internet
Transport

Application

Link

In
te

rn
e
t P

ro
to

co
l A

rch
ite

ctu
re

26 May 2002 Teo Yong Meng, NUS 12

Globus Layered Grid Architecture

Applications

Core Services
Metacomputing

Directory
Service

GRAM
Globus
Security
Interface

Replica
Catalog

GASS

GridFTP

Local
Services

LSF

Condor MPI

NQEPBS

TCP

AIXLinux

UDP

High-level Services and Tools

Cactus Condor-GMPI Nimrod/Gglobusrun PUNCH

Grid Status

I/O

Solaris

DRM

26 May 2002 Teo Yong Meng, NUS 13

Globus Toolkit

• Software toolkit
– defines a set of services (grid protocols and APIs)
– (partially) implemented as of a collection of tools

• Focus is on inter-domain issues, not clustering
– supports collaborative resource use spanning multiple

organizations
– integrates with intra-domain services

26 May 2002 Teo Yong Meng, NUS 14

• Key features

• Producer-consumer model

• Template-based programming

• ALiCE Applications

• Globus vs ALiCE

• Supercomputer, physical and virtual grid

26 May 2002 Teo Yong Meng, NUS 15

What is ALiCE (Adaptive and scaLable
Internet-based Computing Engine)?

Client/Server Model

Grid Model

Brokered Grid Model
ALiCE

server

26 May 2002 Teo Yong Meng, NUS 16

ALiCE (Adaptive and scaLable
internet-based Computing Engine)

" Support for development and deployment of grid
applications

" Template-based programming to mask complexity of grid
infrastructure

" Job-parallelism to maximize throughput
" (Java) object-parallelism to maximize performance
" Distributed load-balancing algorithm
" Task replications for fault-tolerant and meeting

performance deadline
" Differentiated levels of security (code, data and result) at

varying costs
" Implemented in Java and Java Jini™/JavaSpaces™

26 May 2002 Teo Yong Meng, NUS 17

ALiCE Producer-Consumer Model

Consumers (C)
"interface to users
"launch point for applications
"collection point for results
(visualization)

Resource Broker (RB)
"authentication
"application execution control
"resource management

"scheduling
"load balancing

"…

Producers (P)
"provide computing power
"executes tasks

26 May 2002 Teo Yong Meng, NUS 18
ConsumerConsumer

Java SDK 1.3
Java Jini 1.1/

JavaSpaces
Java Reflection

API
Swing

ProducerProducer

Resource BrokerResource Broker

task result Task PoolTask Pool

Java SDK 1.3
Java Jini 1.1/

JavaSpaces
Swing

Java SDK 1.3
Java Jini

1.1/JavaSpaces

ALiCE IMPLEMENTATION

26 May 2002 Teo Yong Meng, NUS 19

ALiCEALiCE Consumer GUIConsumer GUI

ControlControl
PanelPanel

MessagesMessages

ResourceResource
Broker InfoBroker Info

UserUser
RequirementsRequirements

Task InputTask Input

26 May 2002 Teo Yong Meng, NUS 20

ALiCEALiCE Producer GUIProducer GUI

Control PanelControl Panel

MessagesMessages

PerformancePerformance

TaskTask
InformationInformation

26 May 2002 Teo Yong Meng, NUS 21

Job Execution

1. JobLauncher
sends jar file via TCP

26 May 2002 Teo Yong Meng, NUS 22

Types of Applications Supported
1. Sequential Jobs (parametric computation)

– supports single-tasking programs with well-
defined methods like main() or run()

2. Parallel Jobs - Object-level Parallelism
– supports various parallel programming models

via programming templates
– allows task and result objects to be

exchanged between consumers and producers
through resource broker

26 May 2002 Teo Yong Meng, NUS 23

Template-based Programming

• Interface for producer to instantiate
and return result

Result

• Specify functions to execute at
producer

• Return a Result object

Task

• Visualizer to be invoke at consumer
• Method to retrieve results

ResultCollector

• Invoked at resource broker
• Method to send tasks to producer

TaskGenerator
FunctionTemplate

26 May 2002 Teo Yong Meng, NUS 24

Job Execution

process()

collectResult()

Result

26 May 2002 Teo Yong Meng, NUS 25

Task Generator TemplateTask Generator Template
// Task Generator Template
import alice.application.*; // import the templates

public class CLASSNAME extends TaskGenerator {

// place your variables here

// Constructor
public CLASSNAME(){};

// The no parameter constructor is a MUST.

public void init() {
// place your initialization code here

}// init()

/**
* generateTasks() - generates tasks
*
**/

public void generateTasks() {

// This is where the tasks are generated
// Usually tasks are generated in a loop,
// and in this loop each task is sent for
// processing by calling the
//
// “public void process(Task t)” method

} // generateTasks()

/**
* main method
**/

public static void main(String args[]) {
CLASSNAME m = new CLASSNAME();
m.init();
m.generateTasks();

}

} // end class

26 May 2002 Teo Yong Meng, NUS 26

Result Collector TemplateResult Collector Template
// Template for ResultCollector
//
import alice.application.*; // import the
templates

public class CLASSNAME extends
ResultCollector {

// place your variables here
//

public static void main(String args[])
{

CLASSNAME MV = new CLASSNAME();
MV.init();
MV.collectAllResults();

}

// the no argument constructor MUST exist
public CLASSNAME() {
}

public void init() {
// place your init codes here
//

}

public void collectAllResults() {

// Here is the result handling code.
// Usually result handling involves a loop
// that repeatedly calls the collectResult()
// method of the ResultCollector superclass.
//
// This method returns a Result Object.
//
// The contents of this Result Object can be
// inspected for result handling/processing.

}
}

26 May 2002 Teo Yong Meng, NUS 27

Task TemplateTask Template

// Template for Task

import alice.application.*; // import the templates

public class CLASSNAME implements Task {

 // place your variables here
 //
 public CLASSNAME() {}
 public Result execute() {

 // This is where you do your calculation
 // The results are stored in the Result class
 // which functions as a datastructure
 // with which you can store results of any Object type
 }

public String toString() {

 // returns a String that can be used to ID your task
}
}

26 May 2002 Teo Yong Meng, NUS 28

ALiCE Applications

distributed ray tracing

georectification of
satellite images (CRISP)

mandelbrot set
N-body problem

distributed
equation solver

protein alignment
and matching (BII)

Primer Search in
Chromosome Sequences
(Nanyang Polytechnics)

26 May 2002 Teo Yong Meng, NUS 29

GeorectificationGeorectification of Satellite Imagesof Satellite Images

26 May 2002 Teo Yong Meng, NUS 30

GeorectificationGeorectification –– ALiCEALiCE ProgramProgram

26 May 2002 Teo Yong Meng, NUS 31

ALiCEALiCE ApplicationsApplications
Protein Alignment and Matching – 50 MB
chromosome database, swissprot (NCBI BLAST d/b
server), P2, 450MHz, 256MB memory

- Sequential ~ 2 hours

- ALiCE with 8 producers, 4000 sequences/task

~1400 seconds

N-body problem (n=20,000 bodies) – predicting the
motion of astronomical bodies in space. - Sequential –
9428 seconds

- ALiCE: 2 producers = 1109 sec, 8 produces = 457
sec

26 May 2002 Teo Yong Meng, NUS 32

Globus vs ALiCE
• Globus

– is a Grid Toolkit (provides set of services)

– Is an open system (users can develop higher-
level services on top of basic services)

Adv: modularity & reusability of services
Dis: Grid Infrastructure setup is complex

app development/deployment is complex

- is largely platform dependent (mostly UNIX)

- Resource Management (via GRAM) at Job Level

26 May 2002 Teo Yong Meng, NUS 33

Globus vs ALiCE
• ALiCE

– User-Oriented Grid Computing Engine
• Integrates all services (basic+higher level)

to facilitate:
– Ease of installation, deployment and administration
– Ease of Grid App Development/Deployment using object

programming template

- Platform Independent (core services implemented in
Java)

- Resource Management at Object-level (fine-grain
control)

26 May 2002 Teo Yong Meng, NUS 34

Supercomputers

June 29, 2000 IBM ASCI White
• 8192 RS/6000 processors, 12.3 TFLOPS
• 6 TB memory, 160 TB disk storage
• US$110m, 106 tons, 28 tractor-trailer

trucks

April 20, 2002 NY Times –
Japanese Computer is World’s
Fastest

• NEC

• US$350m, occupies 4 tennis-
court

• 640 specialized nodes, 5104
processors

• achieved 35.6 TFLOPS versus
7 TFLOPS in ASCI White

26 May 2002 Teo Yong Meng, NUS 35

Cost of a Supercomputing, a Physical Cluster
and a Virtual Grid of 100,000 PCs

" IBM ASCI White (2000) – US$110m

" NEC (2002) – US$350m

" Physical cluster of 100K Intel P4 ~ US$200m + US$13m

(electricity)

" Virtual cluster – cost is distributed and absorbed by PC owners

26 May 2002 Teo Yong Meng, NUS 36

Acknowledgements

Collaborators:
" Centre for Remote Imaging, Sensing and Processing (CRISP)
" BioInformatics Institute
" Nanyang Polytechnic (School of Life Sciences)
" The Royal Institute of Technology, Sweden

Acknowledgement: Sun Microsystems

26 May 2002 Teo Yong Meng, NUS 37

Thank you.
Questions & Answers

