CS5239 Computer System Performance Evaluation

2016/17 – Semester I www.comp.nus.edu.sg/~teoym/cs5239-16

Teo Yong Meng

Room: COM2, #04-39
Department of Computer Science
National University of Singapore
E-mail: teoym@comp.nus.edu.sg

Tel: 6516 2830

What I do

Teach

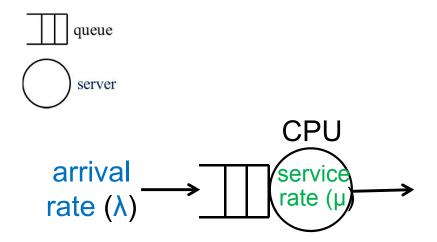
- Parallel Computing
- Cloud Computing
- Systems Modeling & Simulation
- Distributed Systems
- Applied Parallel Computing (joint teaching with MIT)
- Computer Systems Engineering (joint teaching with MIT)
- •

Research - parallel & distributed computing

- Performance evaluation
- Heterogeneous, Cloud Computing
- Modeling and Simulation

Faster is better

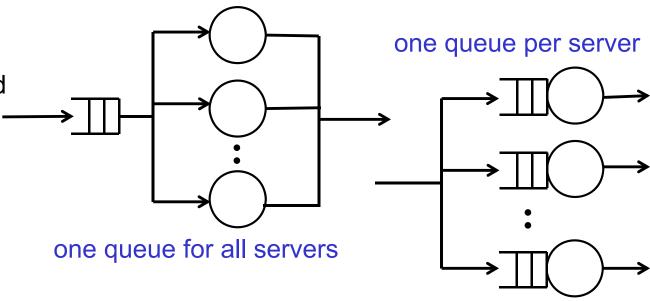
Outline


- What, why and how
- Learning objective
- What we cover
- Module Assessment
- Course Schedule & Webpage
- Resources

What is Performance

- Concept of work
 - Latency (time)
 - Bandwidth (rate)
- How well a computer system performs a given job or activity?
- Why do we care about computer performance?
- What is hard?
 - Performance of a computer system is multidimensional
 - Complex component interactions
 - Hard to predict how it will scale

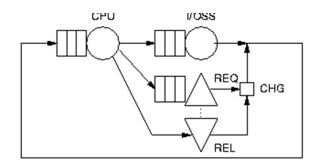
• ...


Performance

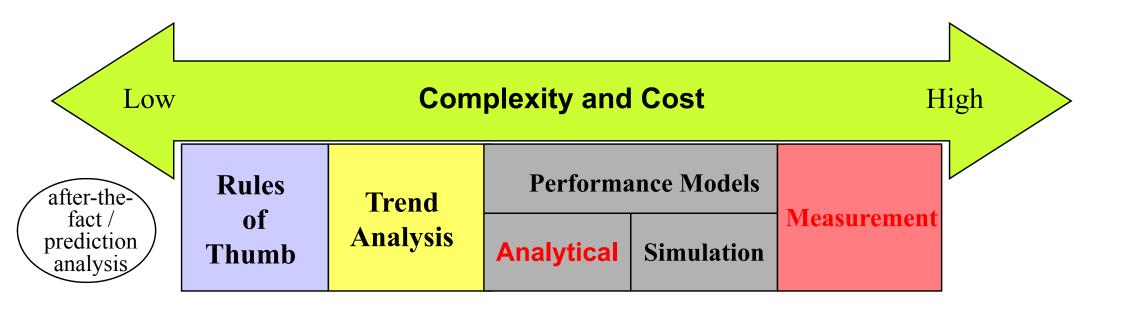
- 1. What is the average time it takes a job to complete service?
- 2. What is the throughput of the system (number of jobs completed per unit time)?
- 3. If arrival rate is doubled ($\lambda \rightarrow 2\lambda$), how much should μ increase? Do we do nothing or do we need another CPU?

If we need more server capacity, what are our options?

- a. buy a new server with the needed capacity
- b. buy a few smaller servers that adds up to the required capacity
 - a. one queue for all servers
 - b. one queue for each server
 - c. does it matters?


Performance Evaluation: How

Measurements of actual systems


Simulations using software models

 Mathematical modeling using techniques as queuing analysis

Performance Evaluation: How

CS5239 Computer System Performance Evaluation

CS5271 Performance Analysis of Embedded Systems CS6211 Analytical Performance Modelling for Computer Systems

CS5233 Simulation and Modelling Techniques CS6205 Advanced Modelling and Simulation

Course Catalogue CS5239 Computer System Performance Analysis

Modular Credits: 4

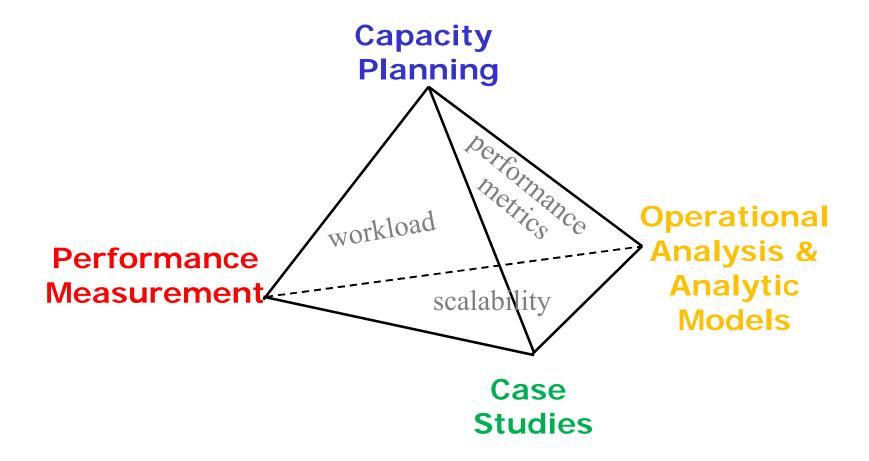
Workload: 2-1-0-3-4

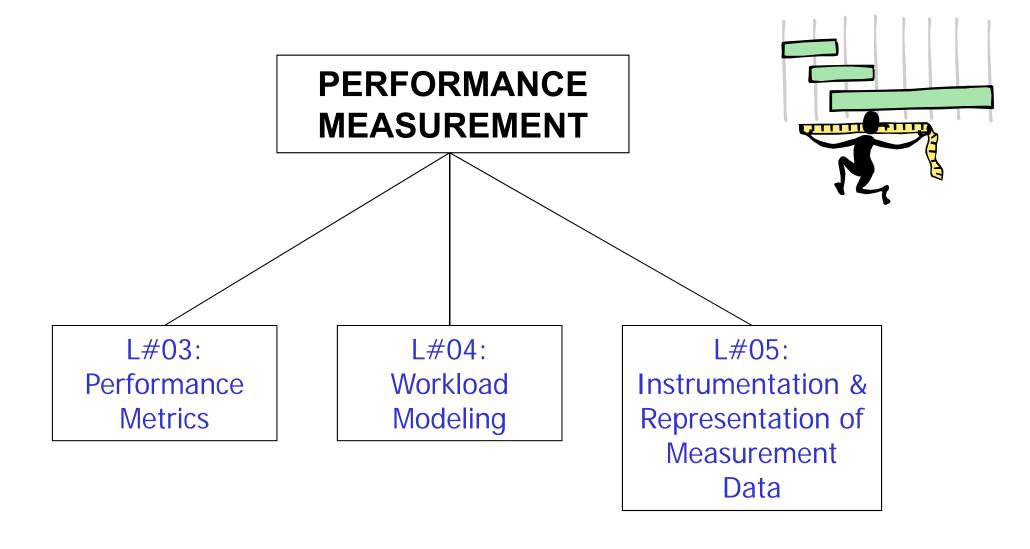
Prerequisite(s): CS1020 or its equivalent

The objective of this module is to provide students a working knowledge of computer performance evaluation and capacity planning. Students will be able to identify performance bottlenecks, to predict when performance limits of a system will be exceeded, and to characterise present and future workload to perform capacity planning activities. Topics include: performance analysis overview; measurement techniques and tools including workload characterisation, instrumentation, benchmarking, analytical modelling techniques including operational analysis, stochastic queuing network analysis; performance of client-server architectures; capacity planning; case studies.

Prerequisites

CS1020 Data Structures and Algorithms I or its equivalent


ST2334 Probability and Statistics (preferred)


16 August 2016 CS5239 L0: Overview 10

Learning Objective

- performance analysis of computer systems
 - capacity planning
 - bottleneck and modification analyses
 - measurement and analytic model analyses
 - scalability analysis

What we cover

"Measurements are not to provide numbers but insights." *Ingrid Bucher*

OPERATIONAL ANALYSIS & ANALYTIC MODELS

L#06: Introduction & Notation L#07-09: Techniques L#10:
Performance Laws
& Scalability

L#11-12
Case Studies

L#07: Operational Analysis

L#08: Analysis of Single Queue

L#09: Analysis of Queuing Networks / Multiple Classes

- bottleneck analysis
- performance bounds

System - open, closed, hybrid

Component - fixed capacity, delay,

load-dependent

Workload - single, multiple classes

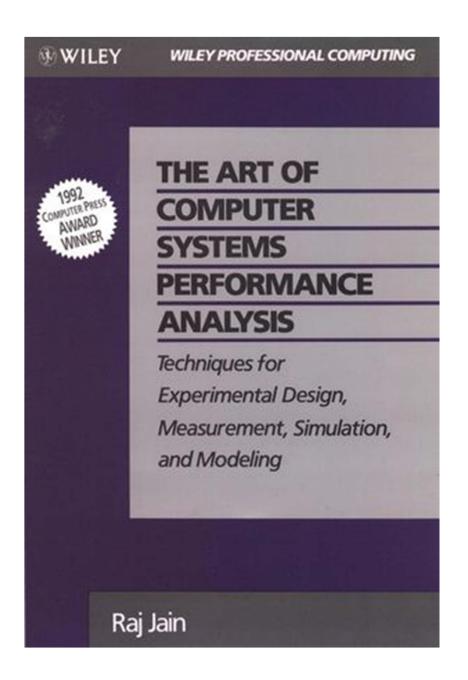
Module Assessment

- 1. Continuous Assessment (60%)
 - Test (20%)
 - Assignment 1 (20%)
 - Assignment 2 (20%)
- 2. Open Book Exam (40%)
 - 2 hrs

Course Schedule & Webpage

- Lecture: Tue, 6.30-8.30pm, Com1, 02-02
- Tutor: Sunimal Rathnayake (Com2, #B1-01)
- Consultation: Wed, 10-12am

- Webpage:
 - IVLE for course announcement
 - www.comp.nus.edu.sg/~teoym/cs5239-16 for lecture slides, assignments, etc


Resources

Main Textbooks

- ◆ The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modeling, R. Jain, John-Wiley, 1991.
- Quantitative System Performance, E.D. Lazowska et al., Prentice-Hall, 1984, http://www.cs.washington.edu/homes/lazowska/qsp/.
- ◆ Measuring Computer Performance A Practitioner's Guide, D.J. Lilja, Cambridge University Press, 2000.

Reference Books

- ◆ Capacity Planning and Performance Modeling From Mainframes to Client-Server Systems, Daniel A. Menasce, et al., Prentice-Hall, 1994.
- ◆ Capacity Planning for Web Performance Metrics, Models and Methods, D.A. Menasce, et al., Prentice-Hall, 1998.
- ◆ Simulation Modeling and Analysis, A.M. Law and W.D. Kelton, McGraw Hill, 3rd edition, 2000.
- Introduction to Parallel Computing, A. Grama, et al., Addison-Wesley, 2nd Edition, 2003.

The Art of Computer Systems
Performance Analysis: Techniques for
Experimental Design, Measurement,
Simulation, and Modeling

Raj Jain

ISBN: 978-0-471-50336-1

720 pages

April 1991

If you're not sure, don't guess...ASK!

Wrong guesses are COSTLY!

• consultation hours – Wed, 10-12, catch me after lectures, email