Structured Parallel Simulation Modeling and Programming

Yong Meng TEO, Seng Chuan TAY and Siew Theng KONG

Department of Information Systems & Computer Science

National University of Singapore
Lower Kent Ridge Road
SINGAPORE 119260

email: teoym@iscs.nus.edu.sg

Abstract

Parallel discrete-event simulation research has fo-
cused mainly on designing efficient parallel simulation
protocols. However, the exploitation of parallel simu-
lation technology in real-life applications has been hin-
dered mainly by the lack of simulation support tools.
This paper describes the design of SPaDES (Structured
Parallel Discrete-Event Simulation), a parallel simu-
lation environment for developing portable simulation
models, and a platform for design experimentation of
parallel simulation synchronization protocols. An im-
plementation of the environment, SPaDES/C++, cleanly
separates simulation modeling and programming from
the details of parallelization such as parallel simulation
synchronization and parallel programming. For ease of
portability and modular design, SPaDES/C++ 1s imple-
mented as a parallel simulation library. A comparison
of SPaDES/C++ with CSim and Simscript using two ap-
plication examples is discussed.

Keywords: structured parallel simulation, simula-
tion environment, process-oriented modeling, simula-
tion programming

1 Introduction

Parallel simulation is an important technology that
exploits compute intensive simulation using parallel
computers. Parallel discrete-event simulation (PDES),
also called distributed simulation, refers to the execu-
tion of a single discrete-event simulation program on
a parallel computer [6, 11]. As parallel simulation is a
hard synchronization problem, automatic paralleliza-
tion of the sequential simulation program does not ex-
pose enough concurrency. In PDES, synchronization
refers to the action necessary to ensure that simulated
events are processed in a non-decreasing simulation
time sequence. Time synchronization, however, is com-
plicated by many factors such as processor capability,
communication latency and load balancing.

0-8186-8418-6/98 $10.00 © 1998 IEEE

Research in the last fifteen years focuses on develop-
ing efficient parallel algorithms for synchronizing paral-
lel activities [5, 9]. However, inadequate attention has
been devoted to the programmability problem in par-
allel simulation, i.e., to reduce the effort and expertise
required to develop efficient parallel simulation mod-
els [7]. Typically, in developing a parallel simulator
the simulationist is confronted with two main prob-
lems in translating the conceptual model of the real
world system (hereafter call the physical system) into
a simulation program: the program must adhere to
the programming model of the particular parallel com-
puter, and to incorporate the selected parallel simula-
tion synchronization protocol. Our objective 1s to pro-
vide a structured parallel simulation environment that
facilitates simulation modeling and programming.

The rest of the paper is divided into seven sec-
tions. Section 2 discusses modeling and parallel simu-
lation programming. Section 3 presents an overview of
SPaDES design including its process-oriented model-
ing methodology, set of simulation primitives, simula-
tor structure, etc. Section 4 discusses an implementa-
tion of SPaDES called SPaDES/C++. In section 5, we
compare the performance of SPaDES with CSim and
Simscript. Section 6 gives an overview of related work,
and section 7 presents the concluding remarks.

2 Modeling and Programming

Simulation is the process of modeling a proposed or
real dynamic system and observing its behavior over
time. A model is a representation of the real system
that includes entities of the system, and the behavior
and interactions of those entities. A simulation envi-
ronment must support some type of modeling frame-
work to facilitate development and implementation of
the simulator. The world view supported in a paral-
lel simulation language should provide a framework for
modeling the physical system. In addition, the world
view should also be independent of the parallel simula-

tion synchronization scheme, and the parallel program-
ming model used in the underlying parallel computer.
This paper adopts a modified process-interaction mod-
ehng view called process-oriented world view for struc-
tured parallel simulation modeling and programming.

Programming effort incurred in PDES is demand-
ing. The programmers not only have to write codes to
mimic a real-world applications, but also to program
parallel simulation mechanisms to ensure the causality
correctness of simulation result. To help the program-
mers concentrate on the problem domain only, a com-
prehensive parallel simulation environment is required.
SPaDES provides a set of modeling primitives imple-
mented as library routines to support parallel simu-
lation and programming. In this paper, we illustrate

this extension using C++; a favorite choice due to its -

object-oriented characteristics in addition to the effi-
cient implementation of C. The major advantages of
our SPaDES environment are that a new compiler is
not required, thus increasing its portability, and the
programming environment of the existing sequential
language such as debuggers, graphical tools, etc. is
readily available to the language designers as well as
the programmers.

3 SPaDES Simulation Environment

The main objective of the SPaDES environment is
to permit the users to develop a parallel stmulator with-
out being overly concerned with the execution environ-
ment, and achieve acceptable performance on a paral-
lel machine. SPaDES exploits the similarity of pro-
cesses in the process-interaction world view, objects in
object-oriented programming, and logical process view
in PDES by providing a consistent process-oriented
modeling world view.

3.1

The general structure of SPaDES is divided into
three layers. The first layer consists of a conceptual
model of the real-world problem being modeled that is
constructed based on the process-oriented methodol-
ogy. Entities and servers in the real-world are modeled
as Processes and Resources respectively. For simplic-
ity, we will term these as simulation processes (SPs).
In the operational layer which is hidden from the user,
these SPs are in turn mapped onto logical processes
{or LPs) and messages on which the parallel simula-
tion mechanism is based. LPs are mapped onto phys-
ical processes (PPs) that are then mapped onto the
processors for execution. Each PP represents an inde-
pendent thread of execution analogous to a run-time
process.

General Structure

136

Given a real world problem, a simulationist will for-
mulate a conceptual model using the process-oriented
methodology. Each of the SPs in the conceptual model
has a direct mapping onto a logical process (see figure
1). SPaDES also provides mapping schemes to allow
user to control the granularity of a physical process by
allowing several LPs to be clustered in a PP. Similarly,
several PPs may also be mapped onto the same proces-
sor to improve the processor utilization, and to reduce
communication overhead.

SPL SP2 SP3 SP4 SPS

SP6 SPT SP§

Simulation Processes

1-1 mapping

Logical Processes

N-1 mapping
Physical Processes
- - @ Physical IProccsses
N-1 mapping
Processors
PS1 PS2 Processors

Figure 1: General Structure of SPaDES

SPaDES also places great emphasis on structured
modeling and programming in the development of par-
allel simulators by providing the users with a set of
well-defined modeling primitives, object classes and a
programming template.

3.2 Process-Oriented Modeling

We categorize real-world entities into permanent
and temporary entities. This is similar to the process-
interaction world view adopted in Simscript and DE-
MOS that distinguish between active and passive com-
ponents. A temporary entity does not exist throughout
the simulation duration. Temporary entities are mod-
eled as a set of processes. For example, customersin a
queuing model are temporary entities. A SPaDES pro-
cess routine models the sequence of events carried out
by a temporary entity during its lifetime. Permanent
entities correspond to-entities that exist throughout
the simulation duration. SPaDES simplifies the mod-
eling of permanent entities through “resources”. An
example of a permanent entities is a server.

3.3 Processes and Resources

A process models an active entity in the real-world
system encompassing both the actions of the events

and the passage of simulation time between events.
In a typical simulation, many instances of a process
are created, e.g., different customers that interact with
each other in some way and eventually leave the sys-
tem. A parallel simulation language (PSL) must pro-
vide basic primitives for manipulating processes such
as creating and terminating processes, sending mes-
sages to processes, and waiting for messages and/or
simulation time to elapse.

Figure 2 summarizes the possible states of a
SPaDES process and the operations that trigger a tran-

created

existent

Figure 2: State Transition of a SPaDES Process

sition from one state to another. The states include:

pending - process is awaiting execution in the
event list

active - process is executing its process-routine

blocked - process is waiting for resource in the cur-
rent event list (CEL)

created - process is not in any of the above three

states

non-existent - process is no longer in existence

Permanent entities that provide services are mod-
eled as resources, i.e., they represent servers that can
be acquired by temporary entities. Real-world exam-
ples of resources are checkout counters in a supermar-
ket, tables in a restaurant or physicians in a health
clinic. The functions that a resource performs are rou-
tine: examine its queue; if a process is available, service
process otherwise set state of resource to idle. A new
resource is modeled by giving it a name, and specifying
the number of server units available.

3.4 Synchronization Protocols

To support the concurrent execution of simulation
events, parallel simulation requires additional synchro-
nization protocols to ensure the causality correctness of

137

event execution. The current implementation uses the
optimistic, also called Time Warp [9], mechanism to co-
ordinate parallel event execution. A throttling scheme
that better manage speculative event execution is also
implemented [18]. In SPaDES, such a coordination is
transparent to users.

3.5 Parallel Simulation Primitives

SPaDES provides two categories of primitives,
namely (i) process manipulation primitives and (ii)
simulation configuration primitives.

3.5.1 Primitives for Manipulating Processes

The modeling of processes and its state transitions is
supported by siz basic primitives: activate, work,
wait, suspend, reactivate and terminate.

An activate primitive creates a new process instance
and schedule it for execution at the specified server. It
has the following form:

activate(process, time, phase)
where process represents the process to be activated,
time is the activation time of the process, and phase
specifies the starting phase with which the process is
to execute upon activation. For example,
activate(job, exponential(5), 1)
creates a new process instance called job, schedules
it for activation at a time equal to the current clock
time plus the value returned by the exponential ran-
dom variate generator, and start execution at the first
phase of the process routine.

A work primitive performs three functions associ-
ated with a resource: request for resource, acquire a
resource for service time, and release the resource on
service completion. It is of the following form:

work(resource, time, units)
where resource denotes the type of resource re-
quested, time represents the service time required,
and units indicates the number of service units of
resource requested. For example,

work{(cpu, exponential(5), 1)
represents a request for one unit of a resource called
cpu, for a service period sampled from an exponential
distribution with a mean of 5. If the requested re-
source is unavailable (i.e. servicing another process),
the process concerned is automatically placed into the
queue associated with the resource. That process is
suspended from execution and waits in the queue for
the resource. The resource on completing service picks
up the next waiting process in the queue for execution.

The next primitive called wait models the passage
of time. It 1s used to suspend a process for a specified
duration of simulated time. It has the following form:

wait(time)
where time models the amount of time. This primitive
is used to model interarrival time of processes arriving
at the system. For example,

wait(exponential(8))
suspends a process for a time period sampled from an
exponential distribution with a mean of 8.

The suspend primitive is used to delay a process for
an unknown amount of time. It has the following form:

suspend ()
The process that is suspended must be reactivated ex-
plicitly by calling reactivate primitive.

The reactivate primitive is used to reactivate a sus-
pended process. It has the following form:

reactivate(process, time)
where process is the process to be reactivated, and
time is the time at which the process is to be acti-
vated. » k

A termanate primitive destroys a process that has
completed execution. It has the following form:

terminate()

3.5.2 Primitives for Configuring Simulation

SPaDES permits users to control the mapping of
SPs, LPs, and PPs onto processors via the primitives:
mapNode, mapHost and mapProcess. A default
mapping is provided but these primitives allow fine-
tuning of the simulator to further improve its perfor-
mance.

The mapNode primitives allows several 1.Ps to be
mapped onto a physical process. As LPs grouped to-
gether on the same physical process have direct access
to the input queues of one another, communication
overhead can be reduced. 1t has the following forms:

mapNode (nunlPs, Process, PP)

mapNode (numlPs, PO, [P1, P2, ...] PP)
where numLPs indicates the number of LPs mapped to
the physical process, and Process is an array contain-
ing a corresponding number of LPs, and PO, Pi, P2

. are individual LPs, and PP is the physical process
itself.

The next primitive, mapHost allows one to control
the location of the physical processes. That is, the
physical processes can be spawned onto any particu-
lar processor as desired. However, this feature is only
available if the SPaDES library is implemented with a
message passing package that allows dynamic creation
of processes during execution. The primitive has the
form:

mapHost (numPPs, PP1, [PP2, ...] hostname)
where numPPs indicates the number physical processes,
PP1i, PP2, are the physical processes and host-

138

name specifies the name of the machine where the pro-
cesses are to be spawned.

As mentioned in section 3.1, each SP 1s an LP that is
capable of autonomous execution. Each LP has it own
input queue, local clock etc. Thus each SP is capable
of starting its own thread of execution at simulation
startup if there is already an event message present in
the input queue.. The third primitive mapProcess al-
lows user to initialize a SP with a starting event mes-
sage. It is of the form: mapProcess(process, SP)
where process is an event message and SP is the simu-
lation process whose input queue with which the event
message is to initialize.

The set of primitives introduced is independent of
the base language, and can be easily implemented as a
library extension to general-purpose programming lan-
guages.

3.6 Simulator Structure

The conceptual structure of a SPaDES simulator
and its relationship with the simulation library is
shown in figure 3. The application program supplied

Main

1

Executive

Simulation Simulation Simulation Simulation

main program

executive
manages several SPs

simulation processes

Process Process Process Process execules process routings
Process Process Process Process process toutines
Routine Routine Routine Routine * * makes calls to primitives

primitives invokes
message passing

P) \

activaie work wal

Figure 3: Structure of a SPaDES Simulator

by the user initializes and starts the simulation by pass-
ing control to the parallel simulation kernel. The sim-
ulation kernel consists of an -Executive that manages
several SPs (or LPs at the operational layer). Each of
the SP is in turn scheduled for execution, i.e., executes
the corresponding SP process routine. The execution
of the process routines will generate calls to the prim-

itives which results in messages being passed between
each of the LPs.

4 Implementation of SPaDES/C,.

The SPaDES/C.4 library is structured as a hierar-
chy of classes, where the basic functionality is defined

in low-level classes, while layers of more specific func-
tionality are defined in derived classes. The function-
ality of the SPaDES library mainly comes from three
basic classes, namely Process, Executive and Resource
classes.

The Process class is for modeling entities in the
physical system (see figure 4). A new process can

class Process

{
public:

// constructor of process
Process(int size, int priority=0);
virtual "Process(){}

// main body of a process, to be overrided
// in a derived class
virtual void executeProcess() {}

// primitives
// activate() and reativate() are macros for
// _activate() and _reactivate()
public:
void _activate(double, int);
void _reactivate(double);
protected:
void work(Resource*, double, int=1);
void wait(double);
void suspend();
void terminate();

protected:
// current phase of execution
int phase;

}s

Figure 4: SPaDES/C++ Process Class Interface

be mtroduced by deriving from the base process class
or from other derived class of the base class. Addi-
tional methods and attributes in the newly derived
class can also be defined. The virtual method exe-
cuteProcess() defines the main body of the process en-
tity. This method contains the sequence of activities or
events to be executed pertaining to a particular type of
process entity, and is invoked by the simulation kernel
each time an instance of this entity is active. There-
fore, each time a new process type is to be constructed,
the method executeProcess() must be redefined for that
new process type. Polymorphism allows the simula-
tion kernel to execute different types of process rou-
tines by invoking the same virtual method executePro-
cess(). The primitives activate, work, wait, suspend.
reactivate and terminate supplied by the Process
class works in the same way as described earlier.

The Ezecutive class provides the interface between
the simulation application and the parallel simulation

139

kernel (see figure 5). It manages several tasks such as
the initialization of the simulator, schedules the next
process for execution, controls the routing of messages
and also to generate simulation output at the end of the
simulation. However, users need only to concern them-
selves with the initialization of the simulator which are
provided via interface functions in the Ezecutive class.

class Executive
{
public:
Executive();
// simulation initialization functions
void initialize(int, char*x);
void init();
void startSimulation(double);
void resetSimulation();

// configuration functions

void mapNode(int, Process##, int);
void mapNode(int, ..., int);

void mapHost(int, ..., charx);

void mapProcess(Process*, Resourcex);

};

Figure 5: SPaDES/C++ Executive Class Interface

The initialize() performs general initialization of the
simulator that consists of operations that are hidden
from the user. These include spawning of all the paral-
lel processes and sending initialization information to
them, etc. The init() method is left blank so as to al-
low user to fill in their own initialization of the starting
state of the simulator. An example of init():

for (int i=0; i<15; i++)
{
activate(terminal[il, 0, 1);

}

This example activates 15 terminal processes.

The routines startSimulation() and resetSimula-
tion() are used to start the simulation and to reset
the simulation respectively. The configuration func-
tions are used to control the configuration of the sim-
ulator and functions in the same way as described in
section 3.5.2.

The Resource class is used to model service stations
of the real-world systems. It provides several features
to help simplify the modeling of the service stations.
They include: implicit queuing for single queues which
are by default FCFS) and also a set of pre-defined
statistics which will be automatically output to a file
at the end of the simulation. The set of statistics in-
clude: utilization, average queue length, average re-
sponse time etc.

A SPaDES/C4+ programming template is divided
into two main parts: the declaration part and the tm-
plementation part as with all C4+ programs. The decla-
ration part consists of the header file “spades.h” which
contains all the declarations of the SPaDES simulation
library. This 1s followed by declaration of all Process
and Resource classes needed in the simulation derived
from the base classes provided in the library.

The implementation contains the global variable
declaration of the simulation processes involved in the
simulation and all implementations of the methods in
the declaration part. The method ezecuteProcess() de-
fines the sequence of events belonging to each Process.
Next, the user needs to define his own nitialization of
the simulation using the énit() method.

In the main program, initialization of the simula-
tion is performed by invoking the initialize() method
passing argc and argv as the arguments. Next, the
startSimulation() statement starts the simulation, and
the argument allows the simulationist to specify the
duration of the simulation run. :

5 Performance Evaluation

The SPaDES workbench is currently implemented
on a network of workstations and on a 32-node Fujitsu
AP3000 parallel computer using PVM for message-
passing. For purpose of comparison, we have con-
structed the simulators for two examples: (i) time-
shared computer system (8] (figure 6), and (ii) cafe-
teria chain (figure 7). In figure 7 each number shown
in a server station indicates the number of servers po-
sitioned in the station.

The sequential simmulators are programmed in CSim
[19] and Simscript [14], while their parallel versions in
SPaDES/C++. Due to space constraint, we present the
performance obtained from the Fujitsu AP3000 parallel
computer only.

Let p denotes the number of nodes used in parallel
simulation. As shown in table 1, the source program
code sizes required by SPaDES are the least among the
three implementations for both examples. In terms of
the executable file size, however, SPaDES requires the
largest size due to its linkage to the libraries used for
process synchronization and communication. The run-
time of SPaDES implementations, not surprisingly, is
muchlarger than the other two sequential implementa-
tions. The poor performance is due mainly to the fine
granularity of simulation events which is application
dependent. In both example applications, the work-
load of each event primarily consists of updating of
queue length, server status (idle/busy), and the num-
ber of arrivals or departures, thus giving a small event
grain size.

140

——— . COMPUTER -

F— !

' |

TERMINALS | ‘

1 ! |

! DISK |

! a

| |

| TAPE :

a N N J
FINISHED JOBS

Figure 6: Time-shared Computer Simulation Model

REGULAR LINE

TO~-10-110~
ENTREE DESSERT BEVERAGE
3l One

CUSTOMER SALAD
POOL

6 CASHIER

SELF SERVICE LINE

Figure 7: Cafeteria Chain Simulation Model

It is well known that coarse-grain process is neces-
sary to exploit process-based parallelism. In a sepa-
rate experiment we mimic coarse-grain events by in-
creasing the workload of each simulation event to ob-
serve its effect. Let # be the additional workload per
event. In this investigation 7 is simulated by a spin
loop with runtime ranging from 1k to 8k, where k =
5 milliseconds. Table 2 shows the runtime incurred
by each example where the duration of simulation for
the first example is 25,000 time units while that of the
second example is 100,000. As the event granularity
is increased, we observe a better elapsed time perfor-
mance in SPaDES as compared to CSim and Simscript.
This experimentation shows that SPaDES is scalable
for coarse simulation event.

6 Related Work

Many sequential simulation programming languages
(SSL) such as GPSS/H [15], Simscript [14], Simula [4]
and ModSIM III [1] are available. For developing se-
quential simulators application specific packages such
as SES/Workbench [16], AutoMod [13] and ProModel
[3] are increasingly used. These packages promote ease
of use through user-friendly graphical interface for in-
putting the model, and provide high-level modeling
components. However, the development of parallel

measure

program || implementation | line of code | exec. size | comp/link time | exec. time
time- CSim 296 49,385 4.8 2.0
shared Simscript 114 475,168 12.6 1.6
computer || SPaDES (p = 4) 77 770,372 8.1 165.5
CSim 3i2 53,756 5.1 2.8
cafeteria || Simscript 119 529,024 13.7 1.8
chain SPaDES (p = 7) 100 770,548 6.3 14.3

Table 1: Performance Comparison

7 (where k=5 milliseconds)
program || implementation | k | 2k | 4k | 8k
time- CSim 2114 | 421.8 | 846.4 | 1687.9
shared Simscript 191.9 | 381.7 | 761.5 | 1520.1
computer || SPaDES 180.7 | 202.9 | 250.2 | 3584

CSim 149.9 | 278.5 | 456.0 | 800.2
cafeteria = || Simscript 111.2 | 236.6 | 4274 | 758.2
chain SPaDES 20.3 275 | 389 64.2

Table 2: Varying Event Grain Size

simulation languages is confined mainly to academia
and lacks behind that of the SSL. To the best of our
knowledge, current popular commercial simulation lan-
guages and packages have yet to extend their imple-
mentation to exploit parallel simulation and parallel
computing technology. Table 3 compares SPaDES with
six experimental parallel simulation languages namely
TWOS [10], SPEEDES [17], SIMA [12], Maisie [2],
MOOSE [20], and APOSTLE [21].

Five typical PSL features are included. The im-
plementation column denotes whether the set of sim-
ulation primitives is implemented through OS calls, a
compiler or as a simulation library. The last column
distinguishes between implementations where message-
passing is managed by the simulationist against those
that is transparent. SPaDES supports the process-
oriented world view while the other PSLs support ei-
ther the event-scheduling or process-interaction view.
With the exception of APOSTLE which is a new PSL,
SPaDES uses the same design philosophy as most of
the other PSLs by extending C or C44. A notable
difference of SPaDES is that message-passing is fully
transparent to the simulationist; this is in line with
our objective of achieving total parallelism and syn-
chronization transparency. All the other PSLs listed
provide message-passing primitives accessible to the
simulationists. While achieving total transparency im-
poses a higher performance penalty, it is a necessary
trade-off to encourage wider scale adoption of parallel

141

simulation technology. The historical development of
SSLs bear evidence to our believe that this trade-off is
essential.

7 Conclusions

While paralle]l hardware promised to speed simu-
lation, parallel simulation has not achieved popular-
ity. Research and development of modeling support
tools and languages for parallel simulation lacks be-
hind that of the plethora of sequential simulation lan-
guages and packages available. Another aggravating
factor is that parallel programming is still very much
an area of research. This paper introduces a struc-
tured parallel simulation modeling and programming
methodology that relieve the simulationist from the in-
tricacies of parallel programming and simulation paral-
lelization. The consistence process view adopted from
modeling to implementation allows a simulationist to
concentrate on describing the process flow in terms
of high level blocks or network constructs, while the
interactions among processes and its implementation
are handled automatically. Our examples application
show that SPaDES requires fewer lines of code. One of
the few widely accepted axioms of software engineer-
ing is that coding takes longer if you write more lines
of code. Moreover, the reuse of libraries of pre-built
objects holds out promise of real productivity gain in
simulator development. The preliminary result shows
that SPaDES is scalable if the grain size of simulation

PSL world view language | synchronization | implementation | message-passing
TWOS event-oriented C optimistic OS8 calls user-defined
SPEEDES || event/data object | Ci+ both O3 calls - user-defined
SIMA event-scheduling C conservative library user-defined
Maisie process-interaction | C both compiler user-defined
MOOSE process-interaction | C4+ both compiler user-defined
APOSTLE || process-interaction | new PSL optimistic compiler user-defined
SPaDES process-oriented Ct+ both library transparent

Table 3: Typical Features of Parallel Simulation Languages

event is larger than the overheads incurred.

A visual graphical interface to support the develop-
ment of parallel simulators including visualization and
debugging, and a facility for automatic generation of
SPaDES program codes are currently being developed.
Performance loss in parallel simulation is an important
issue. Ongoing works include parallel-event instrumen-
tation and profiling in SPaDES, analytic performance
model, process partitioning and mapping, etc. Under-
standing the parallelism profile of a parallel simulator
is crucial to optimizing its runtime performance, and
in popularizing the exploitation of parallel simulation
technology.

References

(1]
2]

US Army, “ModSim Reference Manual,” Version 3,
October 1989.

R. L. Bagrodia and W. Liao, “Maisie: A Language
for the Design of Efficient Discrete-Event Simula-
tions,” IEEE Transactions on Software Engineering,
Vol. 20(4), pp. 225-238, April 1994.

S.P. Baird and J.J. Leavy, “Simulation Modeling using
ProModel for Windows,” Proc. of Winter Simulation
Conference, pp. 527-532, 1994.

O. J. Dahl and K. Nygaard, “SIMULA - An Algol
Based Simulation Language,” CACM, Vol 9. pp. 671~
678, 1966.

A. Ferscha, “Parallel and Distributed Simulation of
Discrete Event Systems,” in Handbook of Parallel and
Distributed Computing, McGraw-Hill, 1995.

R. M. Fujimoto, “Parallel Discrete Event Simulation,
Communications of the ACM,” Vol 23, No. 10, pp.
31-53, October 1990.

R. M. Fujimoto, “Parallel Discrete Fvent Simulation:
Will the Field Survive?,” ORSA Journal of Comput-
ing, Vol. 5, No. 3, pp. 213-230, Summer 1993.

S. V. Hoover and R. F. Perry, “Simulation - A

Problem-Solving Approach,” Addison-Wesley Publish-
ing Company, 1989.

142

0]

10]

[11]

[13]

[14]

(18]
[16]

[17]

D. R. Jefferson, “Virtual Time,” ACM Transactions
on Programming Languages and Systems, Vol. 7, No.
3, pp. 404-425, July 1985.

D. R. Jefferson, et al., “Distributed Simulation and
the Time Warp Operating System,” ACM Operating
Systems Review, Vol. 21(5), pp. 77-93, 1987.

D. Nicol and R. M. Fujimoto, “Parallel Simulation
Today,” Annals of Operations Research, Vol. 53, pp.
249-286, December 1994.

Rajaer H., “SIMA: An FEnvironment for Parallel
Discrete- Event Simulation,” Proceedings of the 25th
Annual Simulation Symposium, pp. 147-155, April
1992.

M. Rohrer, “AutoMod,” Proc. of Winter Simulation
Conference, pp. 487-492, 1994.

E.C. Russell, “SIMSCRIPT IL.5 and SIMGRAPHICS
Tutorial,” Proc. of Winter Simulation Conference, pp.
223-227, 1993.

T.J. Schriber, “An Introduction to Simulation using
GPSS/H,” John Wiley, 1991.

SES/Workbench - Sim Language Reference, Release
3.0, SES, 1995.

J. Steinman, “SPEEDES: A Multiple-Synchronization
Environment for Parallel Discrete- Event Simulation,”

International Journal in Computer Simulation, pp.
251-286, 1992.

S.C. Tay, Y.M. Teo and S.T. Kong “Speculative Par-
allel Stmulation with an Adaptive Throttle Scheme,”
11th ACM/IEEE/SCS Workshop on Parallel and Dis-
tributed Simulation, pp. 116-123, Austria, June 1997.
K. Watkins, “Discrete Fuvent Simulation in C,”
McGraw-Hill Book Company, 1993.

J. Waldorf and R. Bagrodia, “MOOSE: A Concur-
rent Object-Oriented Language for Simulation,” Inter-
national Journal in Computer Simulation, Vol. 4(2),
pp. 235-257, 1994.

P. Wonnacott and D. Bruce, “The APOSTLE Simula-
tion Language: Granularity Control and Performance
Data,” Proceedings of 10th Workshop on Parallel and
Distributed Simulation, pp. 114-123, USA, May 1996.

