A Distributed Simulation Backbone for Executing HLA-based Simulation over the Internet

Y. Xie¹, Y.M. Teo¹,², W. Cai³ and S.J. Turner³

¹Singapore-MIT Alliance
²Department of Computer Science, National University of Singapore
³School of Computer Engineering, Nanyang Technological University

Outline

- Distributed simulation, Grid and HLA
- Related work
- Design
- Implementation
- Conclusion & future work
Distributed Simulation

Provides a way of linking simulation components (federates) of various types at possibly different locations to create a common virtual environment (federation).

HLA (High Level Architecture)

- The High Level Architecture (HLA) is a general purpose architecture for simulation reuse and interoperability.
- The HLA was developed under the leadership of the Defense Modeling and Simulation Office (DMSO)
- The HLA was approved as IEEE Standard 1516 - in September 2000.
- Terminology: Federations are comprised of federates that exchange information in the form of objects and interactions.
RTI (Run-Time Infrastructure)

- Implements the interface specification and provides services for simulation systems.

- RTI services:
 - Separate simulation and communication
 - Facilitate construction and destruction of federations
 - Support object declaration and management
 - Assist with federation time management
 - Provide efficient communication to logical group of federates
 -

RTI Components

- RtiExec: Manage multiple federations
- FedExec: Inter-Process Communications
- Federate: Manage multiple federates within a federation
- ...: Federate
- Provide HLA services to federates
Cluster/LAN-based HLA Simulation

1. Develop Simulation (DMSO HLA’s API)

2. Execute Simulation (DMSO HLA Implementation)

Grid-based HLA Simulation

1. Develop Simulation

2. Execute Simulation
Related Work

► XMSF (Extensible Modeling and Simulation Framework) – based on web services

► Re-implement all RTI services

► Extend RTI software as backbone over WAN

► Proxy-based approach – wrap RTI services as grid services (this paper)

► ..

Our Approach
Grid-Enabled Distributed Simulation

Main objectives:

- To develop a framework for executing large-scale distributed simulations over Grid environments
- To develop grid services, e.g., resource monitoring and management services, required by the framework
- To develop runtime library to support plug-in HLA-based distributed simulations in the framework
- To develop applications to demonstrate the feasibility and advantages of the framework

HLA (High Level Architecture) for distributed simulation, IEEE Standard 1516, Sep 2000)
Approach: DMSO + Grid Services

1. Develop Simulation

1. Develop Simulation

2. Execute Simulation

2. Execute Simulation

Simulation Code (DMSO HLA API)

Grid Services: deployment, execution, monitoring, load management, fault-tolerance services ...

Grid Middleware e.g. Globus

Design – Proxy-based Approach

Design – Proxy-based Approach
Design

Grid Services
- Grid Services: indexing, discovery, resource management, monitoring services...
- Globus

Client
- Simulation Code
- Grid-enabled DMSO HLA API
- Globus

Proxy
- Grid-enabled API
- DMSO API
- LAN
- Globus
- LAN

Grid Network
- Resource
- Proxies & Federates & RTI
- DMSO HLA API

Why Proxy-based Approach

- separation of client federate & RTI
 - Ensures the security of the simulation model
 - reduced (no) firewall issue
 - Provides user transparency and simulator reusability
 - Easy migration of federates that sit on client and also migration/distribution of simulation backbone
 - Interoperability based on standard interface
 - Backbone implemented in Java – supports interoperability of heterogeneous platforms
-

Disadvantage: Overhead of communication
HLA-Grid Simulation Service API

- Create RTI
- Create Federation
- Join Federation
- Start federate execution
- Leave execution
- Destroy RTI
-

Preliminary Result - Latency

\[
Latency = \frac{(T_{A2} - T_{A1}) - (T_{B2} - T_{B1})}{2}
\]
Conclusion & Future Work

- Design infrastructure to enable distributed simulation using HLA on Grid
- Implement prototype based on Globus Toolkit version 3
- Performance analysis – ongoing NTU-NUS-Birmingham University (UK)
- Research issues - federation dynamic naming, federate migration, fault tolerance, etc.

Grid Computing Research at Computer Systems Lab, NUS

A framework for supporting the development and execution of large-scale collaborative distributed applications.

1. GRAPES (Grid Application Programming Environments & Systems): grid memory abstraction models, code optimizations, mobile code safety, grid application performance, etc.
2. GES3: Grid-Enabled Self-Organizing and Scalable Services
3. Fault-tolerant Consensus in Distributed Systems
4. A Framework for Large-Scale Grid-Enabled Distributed Simulation
Thank you

www.comp.nus.edu.sg/~teoym/alice.htm