Collision Detection and Resolution in Hierarchical Peer-to-Peer Systems

Verdi March1, Yong Meng Teo1,2, Hock Beng Lim2, Peter Eriksson3 and Rassul Ayani3

1Department of Computer Science, National University of Singapore
2Singapore-MIT Alliance, National University of Singapore
3Dept. of Microelectronics and Information Technology, KTH Sweden

Email: \{verdimar,teoym\}@comp.nus.edu.sg

Outline

- Introduction
- Related Works
- Collision Detection and Resolution
- Experimental Results
- Conclusion
Introduction

- Structured P2P is a self-organized overlay network that provides efficient and scalable lookup service even when its membership changes dynamically.

- Two main types of structured P2P: flat and hierarchical.

- Flat structure organizes peer nodes into one overlay network, e.g. CAN, Chord, DKS, Pastry, Tapestry, etc.

Hierarchical P2P

- Hierarchical structure organizes peer nodes into two-level (or more) overlay networks.

 - Each node is assigned a group ID and a node ID.

 - Nodes with the same group ID form a group – second-level overlay.

 - Groups are organized in top-level overlay.

 - Each group has one or more supernodes. Supernodes are gateways to second-level nodes.
Grouping Criteria

- Administrative domain (e.g. comp.nus.edu.sg)
 - Increase administrative autonomy
 - Reduce latency
 - E.g. Brocade, Mislove et. al. 2004, SkipNet

- Physical proximity
 - Reduce network latency
 - E.g. HIERAS, HONet

- Services offered by peer nodes
 - Integration of various services in one system
 - E.g. Diminished Chord

Benefits of Hierarchical P2P

- Shorter lookup path length and better scalability
 - With \(N \) nodes and \(G \) groups, lookup path length is reduced by \(O(\log N/G) \) hops

- Reduce overhead of periodic stabilization overhead in top-level overlay
 - Stabilization refers to routing-table corrections to maintain the topology of overlay network
 - Routing table needs corrections due to membership changes
 - With \(N \) nodes and \(G \) groups, overhead in top-level is reduced by \(\Omega(N/G) \) times
Collision

- What is a collision
 - New node fails to locate existing group because topology of overlay may not be fully updated yet
 - Can result in two or more groups with the same group ID in top-level overlay

- Increase size of top-level overlay by k times
 - Lookup path length increases by $O(\log k)$ hops
 - Stabilization overhead in top-level is also increased by $\Omega(k)$ times

- Proposed scheme: detecting and resolving collisions using Chord as the example

Outline

- Introduction

- Related Works

- Collision Detection and Resolution

- Experimental Results

- Conclusion
Related Works

- Prevent collisions
 - All nodes are supernodes, e.g. HIERAS (Xu et. al., 2003), Diminished Chord (Karger et. al., 2004)
 - Every node in several overlays, including top-level one
 - Hence, stabilization overhead in top-level is not reduced
 - Grouping by admin. domain, e.g. Brocade (Zhao et. al., 2002), Mislove et. al. 2004, SkipNet (Harvey et. al. 2003)

- However, in general, collisions can occur on hierarchical structured P2P, but has not been directly addressed and evaluated, e.g. Garcés-Erice et. al. 2003, HONet (Tian et. al. 2005)
Collision Detection

- Piggyback periodic stabilization

- Reason: successful detection requires correct topology (successor pointers in Chord), and correctness of successor pointers is maintained by stabilization

- Avoid sending extra number of messages just for collision detection

Join

![Diagram of nodes with gid labels and connections]

- g_1
- g_2
- g_3
- g_4

g_1 and g_2 are connected, and g_2 and g_3 are connected, with g_2 being the successor of g_1 and g_3. g_4 is another node with gid g_4. The diagram illustrates the network topology and successor指针 relationships.
Join and Collision

Predecessor pointer
Successor pointer

Collision Detection

Collision is detected
Merged
Collision Resolution

- Merge two colliding groups after collision is detected
- One of the supernodes leaves top-level

Second-level nodes must be merged

Outline

- Introduction
- Related Works
- Collision Detection and Resolution
- **Experimental Results**
- Conclusion
Experimental Settings

- Simulations to compare impact of collisions in hierarchical P2P system without detect & correct and with detect & correct
 - Extend Chord simulator
- Total number of peer nodes: 50,000 and 100,000 nodes
- Number of distinct groups: 1,000 and 2,000 groups
- Periodic stabilization, from every 30 seconds (on average) to 480 seconds (on average)

Impact of Collisions

- Without detecting and resolving collisions, the number of collisions grows to 3 to 12 times the number of groups
- As the impact, size of top-level overlay increases 3 to 12 times the ideal size
 - Lookup path length increases by $O(1/2 \log 12) = 1.8$ hops
 - Stabilization cost at top-level increases by $O(12)$ times
 - $G_C = kG$ denotes size of top-level with collisions
 - $G = \text{ideal size}$

\[
\frac{kG \log^2 kG}{G \log^2 G} = \frac{k \log^2 kG}{\log^2 G} = \Omega(k)
\]
Impact of Collisions (2)

Size of Top-Level Overlay ($N = 50,000$)

Impact of Collisions (3)

Size of Top-Level Overlay ($N = 100,000$)
Efficiency and Effectiveness

- Efficiency of detection is measured by average time to detect a collision
- On average, detecting a collision takes more than 10 stabilization rounds
 - This shows the importance of resolving and reducing collisions
- Effectiveness of collision detection and resolution is measured by ratio of collisions in without detect & resolve and with detect and resolve
- Our scheme reduces collisions 40% up to 98% and is more effective when performed more frequently

Outline

- Introduction
- Related Works
- Collision Detection and Resolution
- Experimental Results
- Conclusion
Conclusion

- Collisions increases size of top-level overlay by k times
 - lookup path length increases by $O(\log k)$ hops
 - stabilization cost increases $\Omega(k)$ times.

- Collision detection piggybacks periodic stabilization
- Collision resolution: supernode initiated and node initiated

- Simulation shows the effectiveness of our scheme in reducing collisions
- Minimize collisions to reduce cost of collision detection and resolution