A Practical Approach for Performance Analysis of Shared-Memory Programs

Bogdan Marius Tudor and Yong Meng Teo
Department of Computer Science
National University of Singapore

18 May 2011
25th IEEE International Parallel & Distributed Processing Symposium, Anchorage, USA
Motivation

Objective

Model Overview
 – Data Dependency
 – Memory Contention
 – Limitations

Evaluation

Related Work

Conclusions
Motivation

• Understanding impact of parallel programming choices
 – Many languages, models and methodologies for shared-memory programs

• Trade-offs in existing approaches

<table>
<thead>
<tr>
<th></th>
<th>Intrusiveness</th>
<th>Accuracy</th>
<th>Difficult to Apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Models</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Instrumentation and Trace-driven Analysis</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Empirical Approaches</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Objective

A practical model for estimating speedup and speedup loss due to data dependency and memory contention in shared-memory programs.

Practical:

- Independent of language and threading implementation
- No instrumentation of source or binary code
Contributions

1. Analytical model for speedup and speedup loss for shared-memory programs on multi-socket UMA and NUMA machines

2. Analysis of speedup and speedup loss for six dwarfs from NPB 3.3 benchmark
Motivation
Objective
Model Overview
 - Data Dependency
 - Memory Contention
 - Limitations
Evaluation
Related Work
Conclusions
Model Overview

Shared Memory Program: \(m \) threads, \(n \) cores

- Useful Work
- Memory Contention
- Data Dependency

Number of Threads: \(m \)
Active Threads: \(A(m, n) \)
Data dep: \(m - A(m, \infty) \)

Useful Work: \(U(n) \)
Contention: \(M(n) \)
\[\omega(n) = \frac{M(n)}{U(n)} \]

\[S(m, n) = \frac{A(m, n)}{1 + \omega(n)} \]
Data Dependency Model

- Objective: derive $A(m, n)$
- Run the program with m threads on b cores $m > b$, which leads to threads queueing

$$A(m, \infty, t) = x(m, t) + q(m, t)$$

- Determine $A(m, n)$ as time weighted average from trace of run-queue
Objective: $\omega(n)$

Focus is memory contention among cores

$$C(n) = W + B + M(n)$$

#work cycles

#stall cycles due to contention

#stall cycles unrelated to contention

$$\omega(n) = \frac{M(n)}{W + B} = \frac{C(n) - C(1)}{C(1)}$$

$C(n) = ?$
Memory Contention Model

- M/M/1 model for $C(n)$
- Single-socket: $C(n) = \frac{r(n)}{\mu - n\lambda}$
- Multi-socket
 - UMA: $C(n) = C(c) + C(n-c) + \Delta C$
 - NUMA: $C(n) = C(c) + r(n)\delta(n-c)$
- Linear regression for λ, μ, δ and ΔC
 - Two values of $C(n)$ for single-socket
 - Three values of $C(n)$ for multi-socket
Model Summary

\[S(n) = \frac{A(m, n)}{1 + \omega(n)} \]

- Derived from a trace of the OS run-queue on a single baseline run
- Derived from HW counters measurement using two or three runs

- Practical
 - No instrumentation
 - Independent of programming language
 - Independent of threading package
 - Requires \(\leq 3 \) runs
Limitations

- Data-dependency model
 - Programs with programming language tasks
 - Programs with busy-waiting synchronization
 - Programs with significant I/O

- Memory contention model
 - Programs with very low memory contention
 - Heterogeneous memory affinity among threads
 - Heterogeneous cores or memory nodes
Outline

• Motivation
• Objective
• Model Overview
 – Data Dependency
 – Memory Contention
 – Limitations
• Evaluation
• Related Work
• Conclusions
Evaluation Setup

• Workload: NPB 3.3

<table>
<thead>
<tr>
<th>Name</th>
<th>Description of Parallel Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP</td>
<td>Embarrassingly parallel: low data dependency</td>
</tr>
<tr>
<td>IS</td>
<td>Parallel sorting: bucket sort on Integers</td>
</tr>
<tr>
<td>FT</td>
<td>Spectral methods: fast Fourier transform</td>
</tr>
<tr>
<td>BT</td>
<td>Dense linear algebra: use matrix to store data</td>
</tr>
<tr>
<td>CG</td>
<td>Sparse linear algebra: matrix with many 0 values</td>
</tr>
<tr>
<td>SP</td>
<td>Structured grid: pentadiagonal solver</td>
</tr>
</tbody>
</table>

– GCC 4.2 with full optimizations

• Systems:
 – UMA: 8 cores Intel E5320, 1.87 GHz, 4 GB DDR2
 – NUMA: 16 cores Intel E5520, 2.27 GHz, 24 GB DDR3
The growth in the #cycles is correlated with the stall cycles.

The ratio of work cycles to last level cache misses is constant.

Increase in #cycles is caused by contention among cores.
Validation

A(m,n): baseline run on 1 core
ω(n): runs on 1, 8 and 9 cores

More validation results in paper. Overall average relative error is 9% for UMA and 11% for NUMA
Effect of Problem Size

With increasing problem size:
- Data dependency decreases
- Memory contention increases

SP, m=8 threads
Predicting Optimal #Cores

- Optimum n is $\max \{ S(m,n) \}$ from the range

$$\frac{d\omega(n)}{dn} < S(m,n) \frac{\partial A(m,n)}{\partial n}$$

- SP on UMA
 - $n_W = 12$
 - $n_A = 8$
 - $n_B = 2$
 - $n_C = 2$
Outline

• Motivation
• Objective
• Model Overview
 – Data Dependency
 – Memory Contention
 – Limitations
• Evaluation
• Related Work
• Conclusions
Related Work

• Instrumentation: OPARI, PMPI, PIN
• Empirical methods:
 – Regression: Barnes et al. (2008), Curtis-Maury et al. (2008)
 – Machine learning: Ghanapathi et al. (2009)
 – Neural networks: Singh et al. (2010)
• Analytical models:
 – Amdahl’s law (1967)
• Run-queue size used for capacity planning of web-servers: Kelly et al. (2008)
Conclusions

• Analytical model for speedup and speedup loss due to data dependency and memory contention in shared-memory programs
 – Inputs derived from at most 3 runs
 – UMA and NUMA systems
 – Practical
• Measurement validation of 9%, 11% error
• Application of the model is determining the number of cores that optimizes speedup
Q&A

Thank you!

[teoym,bogdanma]@comp.nus.edu.sg