Experiences in Simulating a Declarative Multiprocessor

Gary S. H. Tan and Y. M. Teo
Dept. of Information Systems and Computer Science
National University of Singapore
Kent Ridge
Singapore 0511.
tel: (65)-772-6276

e-mail: {gtan, teoym}@iscs.nus.sg

Abstract

There has been extensive research into non-
conventional, non-von Neumann parallel computer ar-
chitectures and declarative programming languages.
Dataflow and reduction multiprocessors are examples
of such machines which exhibit novel architectures.
The Flagship Parallel Reduction Machine is one such
multiprocessor using a packet-based graph reduction
model of computation to exploit the parallelism in-
herent in functional languages. A functional simu-
lator for the Flagship Machine has been written for
studying the functional characteristics of the machine.
However, the functional simulator only simulates the
actions of the ezecutional units, with no notion of
time involved. For performance evaluation, the tim-
ing characteristics must be monitored. This paper
describes a technique for introducing an event-driven
timing scheme into the functional simulator. With the
introduction of such a scheme, certain synchronisation
issues arise due to the functionality of the simulator.
This paper also describes ways of resolving these is-
sues. The architecture is MIMD, based on a set of
tightly-coupled processor-store pairs interconnected by
a delta network. This is a commonly used architecture,
so anyone intending to simulate a similar architecture
can draw from the experiences as related in this paper.

1 Introduction

Declarative languages are programming languages
which are based on mathematics. Their use therefore
leads to the development of clear, concise and easily
maintainable programs. It is no wonder then that pro-
ponents of declarative languages argue that they will
be the eventual solution to the software crisis faced by
the computing world.

Many projects were started to develop architectures
to exploit the inherent parallelism in declarative lan-
guages; one of these projects was the Flagship project,
which was a collaborative university and industrial re-
search project with the aim of designing and building
a complete computing system based on a declarative

1080-241X/95 $4.00 © 1995 IEEE

95

style of programming. The collaborators included the
University of Manchester, Imperial College of London
and International Computers Limited (ICL). It was
envisaged that such a machine would be the equivalent
of the so-called Japanese fifth generation computer [4],
with the flexibility and power capable of meeting the
computing needs of the 1990s [3].

To aid in studying the functional characteristics of
the machine, a functional simulator for the Flagship
Machine was written. The functional simulator only
simulates the actions of the executional units, with
no notion of time involved. However, for performance
evaluation, the timing characteristics must be moni-
tored. This paper describes a technique for introduc-
ing an event-driven timing model into the functional
simulator.

Section 2 first describes the Flagship Machine and
its functional simulator, while section 3 discusses how
the concept of time can be incorporated into a func-
tional simulator. The timing model is described in sec-
tion 4. With the introduction of such a model, certain
synchronisation issues appear due to the functionality
of the simulator. These issues, together with ways of
resolving them, are discussed in section 5. This section
also describes a method of improving the efficiency
of the simulator. Section 6 lists out the assumptions
made in the implementation of the simulator and fi-
nally, section 7 provides the conclusions to this paper.

2 The Flagship Machine

The Flagship Machine executes programs using the
technique of graph reduction; a program is first com-
piled into a graph, and the machine transforms this
graph through a series of reductions (or rewrites) un-
til no further reductions are possible. The resulting
graph is then the result of the program.

Graph reduction is implemented on the Flagship
Machine using a Super-Combinator Model of compu-
tation [9], which determines which parts of the pro-
gram graph can be reduced and also specifies the re-
duction rules.

In the machine, the nodes of the graph are rep-
resented as packets. Packets which can be reduced
immediately are said to be active, while those which
are not ready for any reductions are said to be dor-
mant. Packets waiting for arguments which are being
evaluated to be returned are called suspended; a sus-
pended packet will become active once the required
arguments are evaluated and returned.

2.1 Flagship Machine Architecture

The architecture of the Flagship Machine comprises
a set of tightly-coupled processor-store pairs intercon-
nected by a multi-stage delta communication network
as shown in figure 1. Each processor can access its own
local store directly, but access to remote stores is made
by message-passing via the communication network.

[store | | store| [store |
| 1

][]
I

communication network

proc

L |
I

Figure 1: Flagship Machine Architecture

The architecture of each processor is illustrated in
block form in figure 2; each processor comprises four
processing units, a Rewrite Unit (RU), an Active
Packet Scheduler (APS), a Store Management
Unit (SMU) and a Network Interface (NIF).

A program to be executed is first loaded into the Lo-
cal Packet Store, the locations being allocated by the
Store Management Unit. Addresses of active packets
are given to the Active Packet Scheduler, which per-
forms the task of scheduling these packets for rewrit-
ing. Rewriting of the active packets is performed by
the Rewrite Unit. When the RU is free to perform a
rewrite, it signals the APS which selects a packet for
rewriting and passes its address to the RU.

During the course of rewriting, further active pack-
ets may be generated. These are given to the APS
which determines whether to schedule them locally or
export them to other less busy processors to ensure
that the workload is well distributed. Work to be ex-
ported is given to the Network Interface which per-
forms the sending and receiving of messages for the
processor. The NIF also collects information on pro-
cessor activity provided by the network to assist in the
load balancing scheme of the machine.

2.2 The Network and Load Balancing

Communication between processors is provided by
a high performance delta network; figure 3 shows an

96

8 |

e > [EEaTk
Comm
] Network
Ma%é%r?%lem
A
Local |
» Packet
Store.

Figure 2: Flagship processor architecture (simplified)

example of an 8x8 delta network formed using 3 iden-
tical stages of perfect shuffle interconnections [7] using
2x2 crossbar switching elements.

2x2 crossbar

switch processor
0 L >0
1 1
2 -2
3 —3
4 — 4
5 5
6 L6
7 7

Figure 3: An 8x8 Delta Network for 8 processors

The network also provides support for the load bal-
ancing of the machine. For a multiprocessor to operate
efficiently work must be distributed evenly, by static
or dynamic means, among the processors so that max-
imum parallelism can be attained. Because of the dy-
namic nature of graph reduction, Flagship distributes
work dynamically to ‘map’ sub-graphs produced at
run-time over the available processing resources. This
requires a means of ascertaining the global busyness of
the system so that a busy processor can send work to
a less busy processor. This is achieved by propagating

activity level information backwards through the com-
munication network [6]. In the Flagship Machine, the
activity level of a processor is a measure of the number
of active packets awaiting reduction; this is held in a
register termed the local activity level (LAL) register.

Figure 4 illustrates the backward propagation of
this activity level in a 4x4 network connecting 4 pro-
cessors. In the figure, forward flow is from left to
right, and backward flow from right to left. The num-
bers immediately to the right of the rightmost network
switching elements represent the activity levels (local
activity levels) of the processors.

global local
activily level activity*level
1 3
0 — - 5 o
1 1 3
1 — —1
1 3
2 L)
1 1 6
3 — - —3

Figure 4: Activity level Propagation

Each output port (right side) of a switching element
has a register which holds the activity level informa-
tion. At each switching element the two activity levels
are compared and the minimum is transmitted to the
preceding stage. In this way the minimum processor
activity level is progressively propagated backwards
through the switches until it reaches the processors;
here it is stored in the global activity level (GAL) reg-
ister for each processor.

Each processor therefore maintains two registers to
monitor activity levels, the LAL register giving the lo-
cal activity, and the GAL register giving the minimum
activity of the machine. By checking the LAL against
the GAL each processor can determine whether other
processors are less busy than itself and whether to ex-
port work.

2.3 The Flagship Functional Simulator

As part of the Flagship project, a functional sim-
ulator for the Flagship Machine was developed; this
is a program, written in the high-level programming
language C, which models the operation of the execu-
tional units of the Flagship Machine.

The simulation of program execution on the Flag-
ship Machine is achieved by first loading program
packets into the packet store and passing addresses of

97

active packets to the Active Packet Scheduler (APS).
The simulated execution of the program then proceeds
by executing a sequence constituting a lock-step reduc-
tion cycle of the processors where the actions of each
processor is simulated in turn, followed by the sim-
ulation of the communication network; this sequence
is repeated until no active packets remain in the ma-
chine, which signifies the end of the program execu-
tion.

In the reduction cycle for each processor, a check is
first made for any network messages which may have
arrived; these would then be read by the NIF unit
and processed, active packet messages for example are
stored and their addresses passed to the APS. After
the message reading is complete, the processor signals
to the APS for the address of an active packet to be
rewritten and performs its rewrite.

3 Introducing Time into a Functional
Simulator

The Flagship functional simulator simulates only
the actions of the executional units regardless of the
time taken to perform their actions. A detailed in-
vestigation into the executional performance of the
machine inevitably requires the introduction of some
concept of timing.

Furthermore, the functional simulator executed in
a lock-step mode by executing a reduction cycle for
each processing unit followed by the simulation of the
network, repeating until all rewrites had been per-
formed. Performing rewrites in a lock-step simula-
tion constrains rewrites to be of the same length and
therefore take identical execution time. In practice,
rewrites are not generally of the same length and take
different times to execute. An inaccuracy arises be-
cause of this lock-step simulation, where the processor
workload is re-calculated at the end of each rewrite
and, if changed, propagated backwards through the
network. In a real machine however, processors run
asynchronously and workload information will also
propagate asynchronously, and not synchronously as
assumed in the lock-step simulation. The introduction
of time will remove the synchronous nature of the sim-
ulator.

One technique which can be used to introduce time
is the event-driven timing scheme, used previously in
gate-level simulators [1] to model the behaviour of
logic circuit networks. In this scheme, the passage of
time in the network is modelled using an array indexed
by time-quanta, termed a time-wheel. State changes
in a network are represented as events, scheduled on
this time-wheel at the time at which they are to occur.
When simulated time advances to match that corre-
sponding to a state change in the time-wheel, the ef-
fects of this state change may then be evaluated and
again scheduled to take effect at the appropriate future
time. For example, when an inverter’s input signal

changes at time tg, the new output state should oc-
cur at time tg + D, where D is the propagation delay;
an event will therefore be scheduled at time tg + D in
the time-wheel.

The logic networks are usually represented by sets
of tables giving descriptions of individual logic ele-
ments and their interconnections. For each element,
a function is written whose input parameters repre-
sent the inputs of the element and which returns a
value representing the output of the element. The ef-
fects of an element’s state change can be evaluated
by accessing its network table yielding the connected
(fan-out) elements. Functions corresponding to these
connected elements are used to evaluate subsequent
state changes, which are then scheduled at the appro-
priate future time.

The timed simulation proceeds by stepping through
the time-wheel evaluating the events in each time-slot.
Events scheduled in the same time-slot are chained by
a linked-list as shown in figure 5. Figures 6(b) and (c)
show how the time-wheel is traversed for the simula-
tion of the logic circuit shown in figure 6(a). At time
t, the output of element A is changed to logic level
1, event 1 is therefore scheduled as shown in figure
6(b). Since A fans out to B and C both outputs of B
and C will change after a propagation delay of dt (as-
suming identical propagation delays). Hence servicing
event 1 will cause events 2 and 3 to be scheduled at
time t + dt on the time-wheel as two chained events
as shown in figure 6(c).

t events occuring at time t
(event list)

NULL
Valu

time-wheel
Figure 5: The time-wheel and event lists
For the Flagship simulator, events can be used to

represent the actions of the executional units, e.g. a
store access, reading of a network message etc. A tim-

(a) logic circuit

®

1->0 0->1 (t+dy
D(‘r 0->1
1 B

0->1

(b) event 1 scheduled (c) after delay dt,

at time t when output outputs of B & C
of A becomes 1. become 1.
event 1
t A t
T event 2 event 3
—_— S
NULL dt B C
1 1
— i
NULL
Y
time-wheel time-wheel

Figure 6: Simulation of a logic circuit

ing scheme for such simulations must model concur-
rency and contention accurately. Take as a simple
example two independent executional units A and B
sharing a resource R where each unit can operate in-
dependently of the other, an example of concurrency.
Only one unit can access the shared resource at any
one time however; when one unit, say A, tries to access
R while B is in the process of accessing it, contention
is said to have arisen. In this circumstance, A will
have to wait until R is free again before the access
can be made.

The event-driven scheme allows concurrency and
contention to be modelled accurately; concurrency is
modelled implicitly by the use of the time-wheel to
store the events while contention is modelled simply
by re-scheduling the events when resources are busy.
Such a scheme cannot be superimposed on an exist-
ing functional simulator however, but necessitates a
complete re-development. The various executional ac-
tions will have to be partitioned into atomic operations
and represented as events. In the limit, individual ma-

chine instructions will have to be represented as events
scheduled one after the other, and the functionality of
the simulation will be lost. Furthermore, the simula-
tor will run slow due to the overheads of scheduling
and processing of the atomic events.

The scheme proposed in this paper is therefore
event-driven only at the functional level of the reduc-
tion cycle of the functional simulator. This removes
the need for the lock-step nature of the reduction cycle
for the simulator, since it is now event-driven, while
maintaining the functionality of the simulator. It also
models concurrency and enables the processors to run
asynchronously. Furthermore, there is no need for a
complete re-development of the simulator; its struc-
ture remains very much the same, only that part of
the code which simulates the lock-step execution is
replaced by the time-wheel concept. The next section
describes how a timing model based on this ‘modified’
event-driven timing scheme is applied to the functional
simulator.

4 A Timing Model for the Flagship
Simulator

The implementation of an event-driven timing
scheme in conjunction with a functional simulator re-
quires the partitioning of the actions of the executional
units of the machine into events. Since the simulation
is to be driven at the level of the reduction cycle, it
would prima facie be logical to represent the reduction
cycle of a processor as an event. Care must be taken to
ensure the atomicity of events as far as possible how-
ever, so that events interact correctly. As outlined in
section 2.3, a reduction cycle comprises the reading
of network messages followed by the rewriting phase.
It would therefore be better to reduce the granular-
ity of the reduction cycle event by dividing it further
into smaller events, where each reading of a single net-
work message will constitute a separate event, a Read
Message event, and the rewriting of a packet will con-
stitute another event, a Rewrite event. If this was not
done, the reduction cycle event will be processed as a
single block of functional code, and messages arriving
at a processor while it was performing the reading of
messages will not be read as their events will not be
processed until the reduction cycle event is processed.

To simulate the actions of the Network Interface,
two events are used, one for transmitting (Transmit
Message event) and another for receiving (Receive
Message event) a network message. An event is also
needed to represent the backward propagation of ac-
tivity level through the network to update the global
activity levels of the processors (Update Activity Level
event).

Events are represented by a record structure as
shown in figure 7. Events occurring in the same time
interval are chained in a linked list, through the use
of the ‘Chain’ field of the record.

99

Event type

Processor Event record

Pointer
Chain

Event type: type of event
Processor: processor no.

Pointer: pointer to Network
message
Chain: used for chaining events

Figure 7: Structure of an Event record

How the above five events, i.e. Rewrite, Read Mes-
sage, Transmit Message, Receive Message and Update
Activity Level event, simulate the execution of the ma-
chine is illustrated by example in figure 8, which shows
the events scheduled for two processors on the time-
wheel during a passage of timed-simulation. The time-
wheel is organised as a 1-dimensional array, indexed
by the time-interval or time-step of the simula-
tion. A single time-wheel is used for scheduling events
generated by all the processors, thus facilitating the
modelling of concurrency (in figure 8, the events are
shown separated by processor for clarity). Each pro-
cessor maintains a variable which represents its timer,
to keep track of its own execution time as the func-
tional code of each event is executed.

The actions of the executional units of the machine
are simulated by functional blocks of C code; the ac-
tions taken during the evaluation of an event are there-
fore calls to the appropriate functional block. As the
function code for a processor is executed, its timer
keeps track of the machine time corresponding to the
code executed in terms of the machine cycle time, i.e.
processor clock time (see assumption 4 in section 6).
This timer specifies the future time at which a conse-
quent event should be scheduled.

For processor 0, when a Read Message event at the
start of a reduction cycle is evaluated at time ty, the
function code which reads a network message from the
Network Interface buffer is executed, followed by the
scheduling of another Read Message event at the ap-
propriate future time (tg). If no messages are present,
then a Rewrite event can be scheduled (tz). When
the Rewrite event is serviced, the code which obtains
an active packet address and the subsequent rewriting
of the packet is executed. During the course of the
rewrite, packets may be created and scheduled by the
Active Packet Scheduler for running; this increases the
activity level of the processor, which must be propa-

time-wheel

events for
_ processor 0
3
tl -+ Read Message
2 4 |Read Messaéel
t3 - | Rewrite I
reduction
cycle \
4 - [Update Activity Level l
\
t5 [Transmit Message |
t7 — . Read Message
t8 1
next reduction
* cycle

idle

Read Message

reduction
cycle

Figure 8: Events scheduled during passage of time through time-wheel

gated to the other processors by scheduling an Up-
date Activity Level event (t4). A created packet may
also be exported in which case a Transmit Message
event is scheduled to simulate the transmission of the
packet message (ts). When this event is evaluated,
the code for encapsulation and sending of a message
is executed. A Receive Message event is then sched-
uled for the destination processor 1 at the time tg
when the message should arrive there. At the end
of the code execution, a Read Message event is again
scheduled (at time t7) to start off the next reduction
cycle.

For processor 1, at time t{, there are no messages
or active packets for rewriting and the processor is
effectively idle. When a Read Message is evaluated,
on finding no messages, it schedules a Rewrite event.
When this Rewrite event is evaluated, a check is made
to see if there are any packets for rewriting; since there
are no packets available, it schedules a Read Message.
This process of repeated scheduling of Read Message
and Rewrite events is continued until a Receive Mes-
sage event is evaluated (tg), which places the message
into the Network Interface buffer. The next Read Mes-
sage event will then start a reduction cycle by reading
this message.

100

4.1 Simulation Algorithm

Initially, program packets belonging to the user pro-
grams are loaded into the packet store and addresses of
active packets are passed to the Active Packet Sched-
uler. A Rewrite event is then scheduled for each pro-
cessor at the beginning of the time-wheel, i.e. at the
first time-step, to initiate the simulation.

Simulation commences at the first time-step and
steps through the time-wheel. At each time-step, a
check is made to see if the time-slot contains a list of
events for servicing. If no list is present, simulation
progresses to the next time-step; if a list is present, its
events are evaluated or serviced in list sequence un-
til exhausted. Processing an event may lead to the
creation of other events which are scheduled to take
effect at appropriate later time-steps. The driver mod-
ule of the simulator performs the function of stepping
through the time-wheel, and records the number of
time-wheel cycles; its algorithm is shown in figure 9.

The driver is a while loop which increments the
time-step of the time-wheel, servicing events present
in each time-step. Once the event list corresponding to
the last time-step of the time-wheel has been serviced,
the driver ‘wraps’ round to the start of the wheel again
and increments a variable, COUNTER, which records
the number of full cycles of the wheel traversed. Con-

COUNTER = 0; slot = 0;
/* driver loop */
while (Events still present in time-wheel)
{ /* search for next event in time-wheel */
while (t_wheel[slot]l == NULL)
{
slot++; /* go to next time-step */
if (slot == TIMEWHEELSIZE)
{ /* increment timewheel counter */
COUNTER++;
/* jump to start of time-wheel */
slot = 0;
}
}
while (t_wheel[slot] != NULL)
{ /* get event %/
EventPtr = t_wheel[slot];
/* next event in current time-step */
t_wheel[slot] = t_wheel[slot]->Chain;
/* Service the event */
ServiceEvent (EventPtr);
}

} /* end of time-wheel driver loop */

Figure 9: Time-wheel driver module

trol is passed out of the loop only when there are no
scheduled events present in the time-wheel, indicating
that all programs have terminated.

4.2 Servicing Events

The simulator driver services events by calling a
function ServiceEvent, which takes the appropriate
actions. In summary, the actions taken and functional
code executed upon encountering the respective events
are:

Read Message event:

if (Network messages present)

{
Read Network Message from NIF
Schedule next Read Message event

}

else Schedule Rewrite event

Rewrite event:

if (active packet address present)
{

Get Active Packet Address

Process Active Packet (perform rewrite)
}
if (processors > 1) Schedule Read Message
else Schedule next Rewrite event

Transmit Message event:

Propagate message through Network
(however, message is not put in NIF buffer
of destination (dest) processor)
Schedule Receive Message event for dest

at time (current time + Network latency)

Receive Message event:

Put Network message into NIF buffer of dest

Update Activity Level event:

Call Propagate Activity Level function
(This event is called whenever the activity
of the processor is changed)

4.3 Scheduling Events

The scheduling of events on the time-wheel is per-
formed by invoking the ScheduleEvent function.
The necessary information, viz. type of event, proces-
sor, pointer and offset time ¢ from the current time-
step, is passed to the function.

The function takes the time ¢ (in terms of machine
cycles) and calculates the offset from the current time-
step in terms of time-step of the time-wheel using the
formulae:

of fset = z'nteyer(t1 + 0.5)

where ¢, is the time-step of the time-wheel.

The offset is thus rounded to the nearest time-step
and the event is then scheduled on the time-wheel. In
the simulator described, the size of the time-wheel is
chosen such that the time-span is longer than the max-
imum possible offset, i.e. no event can take longer than
the time-span of the time-wheel. Thus, an event gener-
ated during the servicing of an event can be scheduled
on the time-wheel without the possibility of overflow.
The scheduling is thus straightforward; if n is the size
of the time-wheel, and ¢ the current time-step, the
algorithm would be:

if (offset < (n - ¢))
then
schedule at (¢ + offset)
/* scheduling forward on the wheel */
else
schedule at (¢ + offset - n)
/* wrap around the wheel */

At any time during the simulation, the absolute
execution time will be given by the formulae:

(COUNTER % n + c) * timestep + timer

where timer is the number of machine cycles exe-
cuted in the current time-step.

101

5 Synchronisation & Efficiency Issues
5.1 Synchronisation of Events

The level of granularity of an event must be chosen
so that it is as atomic as possible, so that its exe-
cution can be performed correctly and independently
without being affected by any other events. For exam-
ple, consider an event A of large granularity which at
time 5 units accesses information stored in a register,
and an event B, scheduled 2 time units after event A,
which updates this register. Due to the functional-
ity of event A, event B cannot be serviced until event
A has finished; this causes event A to access an un-
updated register and hence leads to inaccuracy in the
simulation.

Reducing the granularity of events for the simula-
tor was for example achieved by splitting the reduc-
tion cycle into a series of Read Message events and a
Rewrite event. This was possible because the reading
of a message and the rewriting of an active packet were
written as two separate functions in the original func-
tional simulator. There are cases however where the
reduction of the granularity of an event is not possible;
an example is the Rewrite event, where the execution
of the Super-Combinator code is written as a single
C function in the simulator. During the execution of
the Super-Combinator code, packets may be created
and given to the APS, which must decide whether to
export or keep them based on the local and global ac-
tivity levels. However, because of the functionality of
the Super-Combinator code execution, checking of the
global activity level is made in the current time-step
of the Rewrite event and does not take into account
the time elapsed while performing the rewrite, imply-
ing that the global activity level may have not been
updated yet at the time of the check, as illustrated in
figure 10.

In the figure, the horizontal line to the right of each
Rewrite event represents the duration of the functional
Rewrite event. At time t1, Rewrite event (a) is started
for processor 0 and the functional code for the rewrite
is executed; five time-steps into the rewrite, a packet
is created and put into the queue (shown as APScall
in the figure). Accordingly, an Update Activity Level
event is scheduled on the time-wheel to signify that
at time tg, five time-steps later, a packet address is
added onto the queue and the change in activity level
must be broadcast to the other processors. At time
to, however, processor 1 starts Rewrite event (b) and
3 time-steps into the rewrite, a packet is generated
and given to the APS which at this stage makes a
check on the global activity level; this check is made
at time tog, since the simulation is at this time-step
servicing Rewrite event (b), and not at the correct
time of t9 + 3. Event (c) is therefore not serviced yet
and thus the un-updated global activity will be read.

The approach to be adopted here is therefore one of
synchronisation of the actions. If an action is depen-

102

5 time-steps
tl — ewrite } |
APScal endof
rewrite
3 time-steps
' APScall
3 T ’| Update Activity J
time-wheel

Figure 10: Checking un-updated activity level at to

dent on another, then clearly this can only be correct if
they have been synchronised in simulation time. The
calling of the APS must therefore be represented as
a new event (APSput event) to be scheduled at the
correct time so that when the global activity level is
checked, the correct information will be given.

Now that the APS call is separated from the main
rewrite function, future events generated during the
rest of the Rewrite event, e.g. the sending of a mes-
sage, will not have taken into account the time taken
to execute the APS function code. An event which
represents the sending of a network message (NIFput
event) is therefore also necessary to allow the sending
of a message to occur at the appropriate time.

The scheduling of the first delayed event of the
rewrite is straightforward; the scheduling of subse-
quent delayed events on the time-wheel is not, since
the times at which these events are to be scheduled
depend on the execution times of previous delayed
APSput or NIFput events. What is required is an
additional list, a PendingEventsList, to hold these
events together with their function invocation times
as the servicing of the Rewrite event progresses. Af-
ter the Rewrite event is serviced, the events of this
list can then be scheduled and processed one at a
time. Thus, during a rewrite, each time an APS call
or Network Interface function is encountered, instead
of immediately executing the code, their events are
appended to the PendingEventsList, e.g. figure 11(a)
shows 3 delayed events generated during the servicing
of a Rewrite event, the times shown are those at which
the function calls are encountered during the servicing
of the event. At the end of the functional rewrite, a
Read Message event (or Rewrite event if simulating
only 1 processor) is appended as the last event to the
PendingEventsList so that the next reduction cycle

can be scheduled.

The scheduling and execution of these delayed
events on the list can now proceed; the first step is
to time the occurrence of each event as an offset from
the previous event to simplify the scheduling (figure
11(b)). Next, the first event on the list (APSput in
the example) is extracted and scheduled at a time 10
units later than the current time-step. When simu-
lation has progressed to that time-step, the APSput
event is processed. Once this event is completed, the
next event on the list can be scheduled at time offset
+ time taken to process previous event from this time-
step. In this example, it is assumed that each APSput
event takes 5 units and each NIFput event 10 units.
Therefore the second APSput event will be scheduled
at time (15 + 5 = 20) units from time-step 10. This
whole process is repeated until all events on the list
have been processed. Figure 12 shows how each event
is scheduled one after another. In this way, active
packets are scheduled, and messages are also sent off,
at the right times.

(a) events with their occurrence times

—s APSpuf APSpu NIFpu Read ™
10 25 f 30 f 45
(b) occurrence of each event as offset
of previous event
—»| APSpu APSpuf NlIFput Re o
10 f 15 f 5 f 15

Figure 11: Events on the PendingEventsList

5.2 Busy-poll vs. Interrupt Simulation

This section describes a technique to increase the
efficiency of running the simulator in terms of saving
memory usage.

In the implementation of the timing model de-
scribed above, the driving of events on the time-wheel
is based on a polling concept, i.e. when a processor is
idle, Read Message and Rewrite events are alternately
scheduled for that processor until a message arrives
for processing (see processor 1 in figure 8). This is
wasteful since for each idle processor, events have to
be scheduled in each time-step until a message arrives
to be read.

A more efficient method would be to use an
interrupt-driven concept; here, when a processor be-
comes idle, no more events are scheduled for it and
simulation re-commences only when it becomes busy

103

10 APSpu{ takes 5 units

[

20 -

30 takes 5 units

;

40 - takes 10 units
50 4+
60 T

- for next rewrite
07T

\

Figure 12: Scheduling events of the PendingEventsList

again due to the arrival of a network message. To
implement this, an extra Idle event is needed. When
a processor becomes idle, it schedules an Idle event
which sets a Busy flag to FALSE. When a network
message arrives at this processor, a Receive Message
event will be scheduled. Servicing this event will re-
activate the idle processor by scheduling a Read Mes-
sage event and setting the Busy flag to TRUE. Using
this scheme reduces the number of events generated in
the simulation and also allows the monitoring of pro-
cessor idle times, given by the times between Idle and
Read Message events.

6 Assumptions of the Simulation

Several assumptions were made in the implemen-
tation of the Flagship Machine timed-simulator de-
scribed in this paper. These are:

1. A uniprocessor architecture is assumed for each
processing element, i.e. the actions of the Rewrite
Unit, Active Packet Scheduler, Network Interface
and Store Management Unit are all performed by
one microprocessor.

2. Processors are assumed to have a machine in-
struction cycle time of 100 ns.

3. The network transmits information at a rate of 1
byte/100 ns. (i.e. 10 Mbytes per sec).

4. Timing the machine execution was achieved by
translating the C code of the simulator into as-
sembly code for a RISC architecture {5] instruc-
tion set, e.g. the AMD29300 chip family [2],
and then counting the instructions. This yields
greater accuracy than just counting the C lan-
guage statements, which was reported in [10].

This assembly code is assumed to be stored as
microcode held in a separate ROM in the proces-
Sor.

7 Conclusion and Further Work

In this paper, we have described a simulation tool
developed for investigating the workings of a declara-
tive multiprocessor. This tool was evolved from build-
ing a timing model on top of an existing functional
simulator. However, with the introduction of this tim-
ing scheme, certain synchronisation issues arose due
to the functionality of the simulator. The paper also
described ways of resolving these issues and also de-
scribed a way to improve the efficiency of the simulator
tool.

Although the timing scheme introduced above en-
ables concurrency to be modelled accurately, the over-
all accuracy of the simulation depends on the choice
of the time-step of the time-wheel. It also depends
on how closely the processing actions carried out in
the simulator resemble those of the real machine. The
actions may also differ in an implementation of the
machine; they may be re-arranged for performance,
or may contain additional error trapping code for di-
agnostic purposes.

Related to this is the assignment of timing to the
various actions to be performed in the firmware of the
real machine. There is, however, good confidence in
the assignment of timing, since it is translated from as-
sembly code. All the various sequences of operations,
e.g. sending of network messages, rewriting of packets
etc., have been properly timed, tested out and verified
to be correct. Furthermore, the test programs exe-
cuted on the simulator produce the results expected,
showing that the simulator is functionally correct.

This simulation tool has already been successfully
developed and implemented, and has provided the au-
thor with a useful research tool for providing insights
into the workings of a declarative multiprocessor. In-
vestigations using this simulation tool have already
been carried out [8], and are still ongoing, on the mul-
tiprogramming, load balancing and scheduling aspects
of the Flagship Machine.

104

References

(1]
(2]

&)

(4]

(6]

[

(8]

9]

(10]

M.d’Abreu, “Gate-Level Simulation”, IEEE De-
sign and Test, pg. 6371, Dec 1985.

Am29300 Family Handbook, High Performance
32-bit Building Block, Advanced Micro Devices
Incorporated, Apr 1985.

R.Dettmer, “Flagship - A fifth-generation ma-
chine”, Electronics and Power, Mar 1986.

Murakami K et al. 1985, “Research on Parallel
Machine Architecture for Fifth-Generation Com-
puter Systems”, IEEE Computer, Vol. 18, No. 6,
pg. 76-92, Jun 1985.

D.Patterson, “Reduced Instruction Set Comput-
ers”, Communications of the ACM, Vol. 28, No.
1, pg. 8-21, Jan 1985.

J.Sargeant, “Load balancing, Locality and Paral-
lelism Control in Fine-Grain Parallel Machines”,
Internal Report, Flagship Project, Department of
Computer Science, University of Manchester, Apr
1987.

H.Stone, “Parallel Processing with the Perfect
Shuffle”, IEEE Transactions on Computers, Vol.
C-20, No. 2, pg. 153-161, Feb 1971.

G.S.H.Tan, “An Investigation into Multipro-
gramming Aspects of a Declarative Multiproces-
sor”, Ph.D Thesis, Dept. of Computer Science,
Univ. of Manchester, U.K., Nov 1992.

P.Watson, “Evaluating Functional Programs on
the Flagship Machine”, Proceedings of Confer-
ence on Functional Programming Languages and
Comp. Architecture. Portland, Oregon, edited by
G.Kahn, Springer-Verlag, LNCS, Vol 274, pg.80-
97, Sep. 1987.

P.S.Wong, “Evaluation of a Proposed Architec-
ture of a Rewrite-rule Machine”, M.Sc Thesis,
Department of Computer Science, University of
Manchester, Jan 1987.

