
SINGAPORE-MIT ALLIANCE (COMPUTER SCIENCE)

SMA5505 / 6.338J/ 18.337J – Applied Parallel Computing

Department of Computer Science, National University of Singapore (NUS) Spring 2004 (updated: 20 April 2004)

Lecture Slides

<u>L0 – Course Admin</u>

<u>L1 – Introduction</u>

- What, Why, How
- Classical (Modern) Science
- Definitions
- Evolution of Supercomputing
- Limits of Serial Computing
- Programming Parallel Computers
- Computing in the Internet Age
- Summary

<u>L2 – Parallel Architectures and Programming Models</u>

- Architectures von Neumann, Flynn's taxonomy, memory model, interconnect
- Parallel Programming Models Shared, Distributed and Hybrid
- Designing Parallel Programs
- Overheads of Parallelism
- Summary

L3 – Message Passing Computing

- Overview
- What is MPI?
 - Six Basic functions
 - Basic Program Structure
 - Basic Send and Receive
 - Types of Program
- Summary

L4 – Shared- Memory Programming

- OpenMP
- Data Parallelism
 - Shared memory Model
 - Parallel for Loops
 - Declaring Private Variables
 - Critical Sections
 - Reductions
 - Performance Improvements
 - More General Data Parallelism
- Functional Parallelism
- Summary

<u>L5 – Parallel Algorithm Design</u>

- Motivation
- Task/Channel Model
- Algorithm Design Methodology
 - Partitioning
 - Communication
 - Agglomeration
 - Mapping
- Examples
 - Finding the Maximum
 - N-Body Problem
- Summary

Lx – Parallel Algorithms (see Edelman's slides)

<u>L6 – Principles of Scalable Performance</u>

- Arguments against the Merit of Parallelism
- Performance Metrics
 - Average Program Parallelism
 - Harmonic Mean Performance
 - Efficiency, Utilization and Quality of Computation
- Applications / Algorithms
 - Application Models
 - Scalability of Parallel Algorithms
- Speedup Performance Laws
 - Fixed Workload Amdahl's Law (1967)
 - Scaled Problems Gustafson's Law (1987)
 - Memory-bounded Speedup Model Sun and Ni (1993)
- Scalability Analysis and Approaches
- Summary

L7 – Grid Computing

- Internet 3 Generations
- The Grid Problem
- Why Grid and Why Now?
- What is Grid Computing?

- Types of Grid and Grid Computing Models
- Main Grid Computing Problems
 - Systems Problem
 - Programming Problem
- Where are we today?
 - Global Grid Forum
 - OGSA
 - OGSI
 - Globus Project, GT2, GT3
- GT3 Implementation & Terminology
- Summary

L8 – Case Study of ALiCE Grid

- Cost of Idle Computing Cycles
- What and Why ALiCE?
- ALiCE
 - Design
 - Implementation
 - Grid Programming
 - Some Applications
- What's next?
 - Coping with System Complexities and Challenges
 - Desirable Properties of Large Distributed Systems
 - Ongoing Works
- Grid Computing Activities Worldwide and in Singapore
- References

<u>L9 – Conclusions</u>

- Supercomputing today
- Cost Comparison Supercomputer vs a Physical Cluster and a Virtual Grid of 100.000 PCs
- Distributed Computing Economics
- Petaflop Computing
 - Parallel Architectures
 - Application Requirements
- Predictions
- What have we covered?
- References

Reference Texts

- 1. Fundamentals of Parallel Processing, Harry Jordan, Gita Alaghband, Prentice-Hall, 2003.
- 2. Parallel Programming in C with MPI and OpenMP, Michael J. Quinn, Mc-Graw Hill. 2003.
- 3. Parallel Scientific Computing, Alan Edelman, Spring 2002 (draft).
- 4. Edelman's Notes