More Linear Algebra

Singular Value Decomposition (SVD)

“The highpoint of linear algebra” – Gilbert Strang

Any \(m \times n \) matrix \(A \) can be decomposed into:

\[
A = U \Sigma V^T
\]

- \(U : m \times m \) : columns are left singular vectors
- \(\Sigma : m \times n \) : diagonal : singular values
- \(V : n \times n \) : columns are right singular vectors

\(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0, r = \text{rank}(A) \)

Economy version \(A = U_r \Sigma_r V_r^T \)

\(U, V \) orthogonal : \(U^T U = I_{m \times m}, V^T V = I_{n \times n} \)

Column Space: look at \(Ax \)

\[
Ax = U \Sigma V^T x, \quad \text{and let } y = V^T x
\]

\[
= \begin{bmatrix}
\sigma_1 u_1 & \ldots & \sigma_r u_r & 0 & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & \ldots & 0
\end{bmatrix} y
\]

so \(\text{Col}(A) = \text{Col}(U_r) \). In fact, \(u_1, \ldots, u_r \) form an orthonormal basis for \(\text{Col}(A) \).

Nullspace: look at

\[
Ax = 0
\]

\[
\Rightarrow U_r \Sigma_r V_r^T x = 0
\]
pre-multiply by U_i^\top: $\Sigma_r V_r^\top x = 0$
pre-multiply by Σ_r^{-1}: $V_i^\top x = 0$
i.e. want x to be orthogonal to v_1, \ldots, v_r
That’s precisely v_{r+1}, \ldots, v_n, since V is orthogonal!
Thus, v_{r+1}, \ldots, v_n form an orthonormal basis for $\text{Null}(A)$.

Consider
$$A^\top A = \left(U \Sigma V^\top\right)^\top \left(U \Sigma V^\top\right) = V \Sigma^2 U^\top U \Sigma V^\top = V \Sigma^2 V^\top$$
But this is the eigen-decomposition of $A^\top A$! So V is the eigenvector matrix of $A^\top A$
Σ^2 is the eigenvalue matrix of $A^\top A$ i.e. singular values are positive square roots of eigenvalues.

Similarly, consider
$$AA^\top = U \Sigma V^\top V \Sigma^\top U^\top = U \Sigma^2 U^\top$$
So U is the eigenvector matrix for AA^\top with same eigenvalues.
In general, for $m \times n$ A:
$$Ax = U \Sigma V^\top x$$
$$\quad = (\text{rotate in } \mathbb{R}^m) (\text{scale}) (\text{rotate in } \mathbb{R}^n) x$$

Low-rank approximation

SVD provides the best lower-rank approximation to A, i.e. rank k approx. $A_k = U_k \Sigma_k V_k^\top$.
The idea is to use only the first k singular values/vectors, so that $A_k \approx A$.

Instead of storing A : mn numbers
store u_1, \ldots, u_k : mk numbers
Use SVD for compression: $+ \sigma_1, \ldots, \sigma_k$: k numbers
$+ v_1, \ldots, v_k$: nk numbers
$= (m + n + 1)k$ numbers

Use SVD to filter noise

Typically, small singular values are caused by noise.
using rank k approx ($k < r$), removes noise.

Linear Equations Revisited: $Ax = b$

Key: solution only when $b \in \text{Col}(A)$

Case 1. A $n \times n$ and invertible. Then unique solution : $x = A^{-1}b$
$\text{rank}(A) = n, \text{Col}(A) = \mathbb{R}^n$
Case 2. A \(n \times n \) and singular. \(\text{rank}(A) = r < n \), \(\text{nullity} = n - r \)

Two possibilities:

(a) \(b \in \text{Col}(A) \) : many solutions.

(b) \(b \notin \text{Col}(A) \) : no exact solution, closest solution.

(a) \(b \in \text{Col}(A) \) : SVD gives particular solution \(x_p \) such that \(Ax_p = b \)

But we can add any vector from Nullspace, \(x_n \), since

\[
A(x_p + x_n) = Ax_p + Ax_n = b + 0
\]

\(\therefore \) Infinitely many solutions!

What is the SVD solution? Invert only in rank \(r \) subspace

\(A = U\Sigma V^\top \) (all \(n \times n \))

where \(\Sigma = \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r \end{bmatrix} \)

Let \(A^\dagger = V\Sigma^\dagger U^\top \), where \(\Sigma^\dagger = \begin{bmatrix} \frac{1}{\sigma_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\sigma_r} \end{bmatrix} \)

Then \(x_p = A^\dagger b \). \(A^\dagger \) : pseudoinverse. See Figure 1.

(b) \(b \notin \text{Col}(A) \) : No exact solution, but can find \(b' \in \text{Col}(A) \) closest to \(b \)

Solution \(x' = A^\dagger b = V\Sigma U^\top b \)

Case 3. A \(m \times n \) with \(m < n \) “underconstrained” fewer equations than unknowns.

\(r = \text{rank}(A) \leq \min(m,n) \), i.e. \(r < n \), so Nullspace is not trivial. \(\text{Col}(A) \subseteq \mathbb{R}^m \)

Situation similar to the previous case, either \(b \in \text{Col}(A) \) or \(b \notin \text{col}(A) \)

In practice, usually \(r = m \), so that \(b \in \text{Col}(A) \), i.e. many solutions

Case 4. A \(m \times n \) with \(m > n \) “overconstrained”, more equations than unknowns. rank, \(r \),

is at most, \(n \). Therefore, \(\text{Col}(A) \subset \mathbb{R}^m \)

Again, depends on whether \(b \in \text{col}(A) \), so we can only find “closest” or “least squares” solution. \(x' = A^\dagger b \)

Pseudoinverse

\(A^\dagger \) solves \(Ax = b \) in least squares sense, i.e. \(\|Ax - b\|_2 \) is minimum.
Figure 1: A singular matrix \(A \) has \(\text{Col}(A) \subset \mathbb{R}^n \). This is represented by a plane in the diagram. If \(b \) lies outside of \(\text{Col}(A) \), then the best one can do is to obtain \(b' \), which is the vector in \(\text{Col}(A) \) that is closest to \(b \). This is what the pseudoinverse computes: \(b' = Ax' \), where \(x' = A^\dagger b \).

\[
A^\dagger = V\Sigma^\dagger U^\top \quad \text{(using SVD)}
\]
\[
= (A^\top A)^{-1} A^\top \quad \text{but this requires rank}(A) = n
\]

Note: \(A^\dagger A = (A^\top A)^{-1} A^\top = I \), but \(AA^\dagger = A (A^\top A)^{-1} A^\top \neq I \) in general. Thus, pseudoinverse is only a left inverse, not a right inverse.

If \(A \) invertible, then pseudoinverse = true inverse:

\[
A^\dagger = (A^\top A)^{-1} A^\top
\]
\[
= A^{-1}A^{-\top}A^\top = A^{-1}
\]

In Matlab, always use \(A \backslash b \) to solve \(Ax = b \). "\(\backslash \)" will compute \(A^{-1} \) or \(A^\dagger \) accordingly.

Matrix Inversion Formulas

1. Lemma 1 (Inverse of a Partitioned Matrix)

 Let \(R \) denote the partitioned matrix

 \[
 R = \begin{bmatrix} A & B \\ C & D \end{bmatrix}
 \]

 The inverse of \(R \) is

 \[
 R^{-1} = \begin{bmatrix} E^{-1} & FH^{-1} \\ H^{-1}G & H^{-1} \end{bmatrix}
 \]
\[E = A - BD^{-1}C \]
\[AF = -B \]
\[GA = -C \]
\[H = D - CA^{-1}B \]

All indicated inverses are assumed to exist. The matrix \(E \) is called Schur complement of \(A \), and the matrix \(H \) is called the Schur complement of \(D \).

2. Lemma 2 (Matrix Inversion Lemma)

Let \(E \) denote the Schur complement of \(A \):

\[E = A - BD^{-1}C \]

Then the inverse of \(E \) is

\[E^{-1} = A^{-1} + FH^{-1}G \]
\[AF = -B \]
\[GA = -C \]
\[H = D - CA^{-1}B \]

Lemmas 1 and 2 combine to form the following representation for the inverse of a partitioned matrix.

Theorem (Partitioned Matrix Inverse)

The inverse of the partitioned matrix

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\]

is the matrix

\[
\begin{bmatrix}
A^{-1} & 0 \\
0 & 0
\end{bmatrix} + \begin{bmatrix}
\frac{F}{T} \\
\frac{H}{I}
\end{bmatrix} [H^{-1}] \begin{bmatrix}
G \\
I
\end{bmatrix}
\]

\[AF = -B \]
\[GA = -C \]
\[H = D - CA^{-1}B \]
Corollary: Woodbury’s Identity

The inverse of the matrix

\[R = R_0 + \gamma^2 uu^\top \]

is the matrix

\[R^{-1} = R_0^{-1} - \frac{\gamma^2}{1 + \gamma^2 u^\top R_0^{-1} u} R_0^{-1} uu^\top R_0^{-1} \]

Projections

Often we want to project \(x \) onto some subspace, i.e. find \(y \) in subspace, “closest” to \(x \). Geometrically, this occurs when \(x - y \) is orthogonal to subspace. Often the subspace of interest is \(\text{Col}(A) \). Recall that in the SVD of \(A \), \(U_r \) form an orthogonal basis for \(\text{Col}(A) \).

The projection matrix \(P_A \) that projects any vector onto \(\text{Col}(A) \) is:

\[P_A = U_r U_r^\top \quad \text{(SVD)} \]

\[= A \left(A^\top A \right)^{-1} A^\top \]

e.g. To project onto a line (vector) \(u \), \(P_u = \frac{uu^\top}{u^\top u} \).

In general, a projection matrix \(P \) is one that satisfies:

1. \(P^\top = P \) symmetric
2. \(P^2 = P \) idempotent

What are the eigenvalues of \(P \)?

Derivatives

<table>
<thead>
<tr>
<th>w.r.t</th>
<th>Differentiate</th>
<th>scalar</th>
<th>vector</th>
<th>matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar</td>
<td>scalar</td>
<td>vector</td>
<td>matrix</td>
<td></td>
</tr>
<tr>
<td>vector</td>
<td>vector</td>
<td>matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>matrix</td>
<td>matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

scalar—scalar: e.g. \(\frac{d}{dx} x^2 = 2x \)

vector—scalar: e.g.,

\[y = \begin{bmatrix} \cos \theta & \sin^2 \theta \end{bmatrix}^\top \]

\[\frac{dy}{d\theta} = \begin{bmatrix} -\sin \theta & 2 \sin \theta \cos \theta \end{bmatrix}^\top \]

matrix—scalar: e.g.,

\[A = \begin{bmatrix} x^2 & x \\ 1 & \frac{1}{x} \end{bmatrix} \]

\[\frac{dA}{dx} = \begin{bmatrix} 2x & 1 \\ 0 & -\frac{1}{x^2} \end{bmatrix} \]
scalar—vector: \(f(x) \) scalar function of vector

\[
 x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}
\]

\[
 \frac{df}{dx} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}
\]

vector—vector: \(y(x) \) \(m \times 1 \) vector function of vector \(x \in \mathbb{R}^n \)

Then,

\[
 \frac{dy}{dx} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}
\]

\[
y : m \times 1 \]
\[
x : n \times 1
\]

\[
 \frac{dy}{dx} : n \times m \text{ matrix}
\]

scalar—matrix: \(f(A) \) scalar function of \(m \times n \) \(A \)

Then,

\[
 \frac{df}{dA} = \begin{bmatrix} \frac{\partial f}{\partial a_{11}} & \cdots & \frac{\partial f}{\partial a_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial a_{m1}} & \cdots & \frac{\partial f}{\partial a_{mn}} \end{bmatrix} \quad m \times n \text{ matrix}
\]

Commonly used derivatives

1. \(\frac{d}{dx} (Ax) = A^\top \)

2. \(\frac{dx}{dx} = I \)

3. \(\frac{dy^\top x}{dx} = \frac{dx^\top y}{dx} = y \)

4. \(\frac{d}{dx} (x^\top Ax) = \begin{cases} (A + A^\top) x & \text{if } A \text{ square} \\ 2Ax & \text{if } A \text{ symmetric} \end{cases} \)

5. \(\frac{d}{dx} (u^\top(x) \ v(x)) = \left[\frac{du^\top}{dx} \right] v + \left[\frac{dv^\top}{dx} \right] u \quad \text{“product rule”} \)

6. \(\frac{d}{dA} \text{tr}(A) = I \)
7. \(\frac{d}{dA} \det(A) = \det(A)A^{-\top} \)

Example: to find pseudoinverse. Let \(e = Ax - b \). We want \(x \) such that \(||e||_2 \) smallest., i.e. \(||e||_2^2 \) smallest.

Let \(y = ||e||_2^2 \)
\(= e^\top e \)
\(= (Ax - b)^\top (Ax - b) \)
\(= x^\top A^\top Ax - 2b^\top Ax + b^\top b \)

\(\frac{dy}{dx} = 2A^\top Ax - 2A^\top b = 0 \)
\(\Rightarrow A^\top Ax = A^\top b \)
\(\Rightarrow x = \left(A^\top A \right)^{-1} A^\top b \)

Hessian: 2nd derivative

Let \(f(x) \) be scalar function of \(x \in \mathbb{R}^n \)

Then Hessian:

\[
H = \frac{d^2 f}{dx^2} = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}
\]

Hessian is symmetric.

Positive semi-definite (psd)

A square matrix \(A \) is positive semi-definite if \(x^\top Ax \geq 0 \) for all \(x \neq 0 \). Positive definite \(x^\top Ax > 0 \)

Note: \(A \) is a psd means all eigenvalues \(\geq 0 \).

If a Hessian matrix is psd, then \(f \) has minimum point.

e.g. in the pseudoinverse calculation, \(\frac{dy}{dx} = 2A^\top Ax - 2A^\top b \)

So Hessian, \(H = \frac{d}{dx} \left(\frac{dy}{dx} \right) = 2A^\top A \)

Now, for any \(x \neq 0, x^\top Hx = 2x^\top A^\top Ax = 2||Ax||^2 \geq 0 \) since \(||Ax||^2 \) is the squared norm.

So \(H \) is psd. \(\Rightarrow y \) has minimum point. This justifies taking derivatives to find best \(x \)