
Neural Nets Can Learn Function Type Signatures From Binaries

Zheng Leong Chua∗ Shiqi Shen∗ Prateek Saxena Zhenkai Liang
National University of Singapore

{chuazl, shiqi04, prateeks, liangzk}@comp.nus.edu.sg

Abstract
Function type signatures are important for binary analy-
sis, but they are not available in COTS binaries. In this
paper, we present a new system called EKLAVYA which
trains a recurrent neural network to recover function type
signatures from disassembled binary code. EKLAVYA
assumes no knowledge of the target instruction set se-
mantics to make such inference. More importantly,
EKLAVYA results are “explicable”: we find by analyz-
ing its model that it auto-learns relationships between in-
structions, compiler conventions, stack frame setup in-
structions, use-before-write patterns, and operations rel-
evant to identifying types directly from binaries. In
our evaluation on Linux binaries compiled with clang
and gcc, for two different architectures (x86 and x64),
EKLAVYA exhibits accuracy of around 84% and 81% for
function argument count and type recovery tasks respec-
tively. EKLAVYA generalizes well across the compilers
tested on two different instruction sets with various opti-
mization levels, without any specialized prior knowledge
of the instruction set, compiler or optimization level.

1 Introduction

Binary analysis of executable code is a classical problem
in computer security. Source code is often unavailable
for COTS binaries. As the compiler does not preserve a
lot of language-level information, such as types, in the
process of compilation, reverse engineering is needed
to recover the semantic information about the original
source code from binaries. Recovering semantics of ma-
chine code is important for applications such as code
hardening [54, 34, 53, 26, 52], bug-finding [39, 47, 10],
clone detection [18, 38], patching/repair [17, 16, 41] and
analysis [12, 22, 21]. Binary analysis tasks can vary
from reliable disassembly of instructions to recovery of
control-flow, data structures or full functional semantics.
∗Lead authors are alphabetically ordered.

The higher the level of semantics desired, the more spe-
cialized the analysis, requiring more expert knowledge.

Commercial binary analysis tools widely used in the
industry rely on domain-specific knowledge of compiler
conventions and specialized analysis techniques for bi-
nary analysis. Identifying idioms common in binary code
and designing analysis procedures, both principled and
heuristic-based, have been an area that is reliant on hu-
man expertise, often engaging years of specialized bi-
nary analysts. Analysis engines need to be continuously
updated as compilers evolve or newer architectures are
targeted. In this work, we investigate an alternative line
of research, which asks whether we can train machines
to learn features from binary code directly, without spec-
ifying compiler idioms and instruction semantics explic-
itly. Specifically, we investigate the problem of recov-
ering function types / signatures from binary code — a
problem with wide applications to control-flow harden-
ing [54, 34, 53] and data-dependency analysis [31, 40]
on binaries — using techniques from deep learning.

The problem of function type recovery has two sub-
problems: recovering the number of arguments a func-
tion takes / produces and their types. In this work, we
are interested in recovering argument counts and C-style
primitive data types .1 Our starting point is a list of func-
tions (bodies), disassembled from machine code, which
can be obtained using standard commercial tools or us-
ing machine learning techniques [7, 43]. Our goal is to
perform type recovery without explicitly encoding any
semantics specific to the instruction set being analyzed
or the conventions of the compiler used to produce the
binary. We restrict our study to Linux x86 and x64 ap-
plications in this work, though the techniques presented
extend naturally to other OS platforms.

Approach. We use a recurrent neural network (RNN)
architecture to learn function types from disassembled

1int, float, char, pointers, enum, union, struct

binary code of functions. The goal is to ascertain if
neural networks can effectively learn such types with-
out prior knowledge of the compiler or the instruction
set (beyond that implied by disassembly). Admittedly,
the process of designing such a system has been experi-
mental or ad-hoc (in our experience), fraught with trial-
and-error, requiring sifting through the choice of archi-
tectures and their parameters. For instance, we consid-
ered designs wherein disassembled code was directly fed
as text input, as one-hot encoded inputs, and with vari-
ous training epoch sizes and network depth. In several
cases, the results were unimpressive. In others, while the
results were positive, we had little insight into what the
model learnt from inputs.

Our guiding principle in selecting a final architecture
is its explicability: to find evidence whether the learning
network could learn something “explainable” or “compa-
rable” to conventions we know which experts and other
analysis tools use. To gather evidence on the correct-
ness of a learning network’s outputs, we employ tech-
niques to measure its explicability using analogical rea-
soning, dimensionality reduction (t-SNE visualization
plots), and saliency maps. Using these techniques, we
select network architectures that exhibit consistent evi-
dence of learning meaningful artifacts. Our resulting sys-
tem called EKLAVYA automatically learns several pat-
terns arising in binary analysis in general, and function
type recovery specifically. At the same time, its construc-
tional design is modular, such that its instruction set spe-
cific dependencies are separated from its type recovery
tasks. EKLAVYA is the first neural network based sys-
tems that targets function signature recovery tasks, and
our methodology for explaining its learnt outcomes is
more generally useful for debugging and designing such
systems for binary analysis tasks.

Results. We have tested EKLAVYA on a testing set con-
sisting of a large number of Linux x86 and x64 bina-
ries, compiled at various optimization levels. EKLAVYA
demonstrates several promising results. First, EKLAVYA
achieves high accuracy of around 84% for count recov-
ery and has accuracy around 81% for type recovery. Sec-
ond, EKLAVYA generalizes in a compiler-agnostic man-
ner over code generated from clang and gcc, and
works for the x86 and x64 binaries, with a modest re-
duction of accuracy with increase in optimization levels.
In comparison to previous methods which use knowl-
edge of instruction sets and compiler conventions in their
analysis, EKLAVYA has comparable accuracy. Third,
EKLAVYA’s learnt model is largely “explicable”. We
show through several analytical techniques which input
features the model emphasizes in its decisions. These
features match many patterns that are familiar to human
analysts and used in existing tools as rules, such as iden-

tifying calling conventions, caller- and callee- save regis-
ters, stack-based arguments, “use- before-write” instruc-
tions, function stack allocation idioms, and many more.
All these are derived automatically without any explicit
knowledge of the instruction semantics or compiler used.

EKLAVYA’s architecture bears resemblance to other
neural network architectures that have been successful
in natural language processing (NLP) problems such
as machine translation, automatic summarization, and
sentence-generation. Specifically, we find the use of
word-embedding of instructions has been particularly
useful in our problem, which is used in NLP problems
too. We hypothesize a deeper similarity between (prob-
lems arising in) natural language and the language of ma-
chine instructions, and consider it worthy of future work.

Contributions. We present EKLAVYA, a novel RNN-
based engine that recovers functions types from x86/x64
machine code of a given function. We find in our exper-
imental evaluation that EKLAVYA is compiler-agnostic
and the same architecture can be used to train for dif-
ferent instruction sets (x86 and x64) without any spec-
ification of its semantics. On our x86 and x64 datasets,
EKLAVYA exhibits comparable accuracy with traditional
heuristics-based methods. Finally, we demonstrate that
EKLAVYA’s learning methods are explicable. Our analy-
sis exhibits consistent evidence of identifying instruction
patterns that are relevant to the task of analyzing func-
tion argument counts and types, lending confidence that
it does not overfit to its training datasets or learn un-
explained decision criteria. To our knowledge, ours is
the first use of techniques such as t-SNE plots, saliency
maps, and analogical reasoning to explain neural net-
work models for binary analysis tasks.

2 Problem Overview

Function type recovery involves identifying the number
and primitive types of the arguments of a function from
its binary code. This is often a sub-step in construct-
ing control-flow graphs and inter-procedural data depen-
dency analysis, which is widely used in binary analysis
and hardening tools.

Traditional solutions for function type recovery use
such conventions as heuristics for function type recov-
ery, which encode the semantics of all instructions, ABI
conventions, compiler idioms, and so on. These are spec-
ified apriori in the analysis procedure by human analysts.
Consider the example of a function in x64 binary code
shown in Figure 1. The example illustrates several con-
ventions that the compiler used to generate the code, such
as:

Figure 1: Example assembly code with several idioms
and conventions. (a) refers to the push/pop instruc-
tions for register save-restore; (b) refers to the instruc-
tion using rsp as a special stack pointer register; (c)
refers to arithmetic instructions to allocate stack space;
(d) refers to instructions passing the arguments using
specific registers; (e) refers to the subsequent use of
integer-typed data in arithmetic operations.

(a) the use of push/pop instructions for register save-
restore;

(b) the knowledge of rsp as a special stack pointer reg-
ister which allocates space for the local frame be-
fore accessing arguments;

(c) the use of arithmetic instructions to allocate stack
space;

(d) the calling convention (use of specific register,
stacks offset for argument passing); and

(e) subsequent use of integer-typed data in arithmetic
operations only.

Such conventions or rules are often needed for tradi-
tional analysis to be able to locate arguments. Looking
one step deeper, the semantics of instructions have to be
specified in such analysis explicitly. For instance, recog-
nizing that a particular byte represents a push instruc-
tion and that it can operate on any register argument. As
compilers evolve, or existing analyses are retargeted to
binaries from newer instructions sets, analysis tools need
to be constantly updated with new rules or target back-
ends. An ideal solution will minimize the use of spe-
cialized knowledge or rules in solving the problem. For
instance, we desire a mechanism that could be trained to
work on any instruction set, and handle a large variety of
standard compilers and optimization supported therein.

In this work, we address the problem of function type
recovery using a stacked neural network architecture. We
aim to develop a system that automatically learns the
rules to identify function types directly from binary code,
with minimal supervision. Meanwhile, we design tech-
niques to ensure that the learnt model produces explica-

ble results that match our domain knowledge.
Problem Definition. We assume to have the following
knowledge of a binary: (a) the boundaries of a function,
(b) the boundary of instructions in a function, and (c) the
instruction representing a function dispatch (e.g. direct
calls). All of these steps are readily available from dis-
assemblers, and step (a) has been shown to be learnable
directly from binaries using a neural network architec-
ture similar to ours [43]. Step (b) on architectures with
fixed-length instructions (e.g. ARM) requires knowing
only the instruction length. For variable-length architec-
tures (e.g. x64/x86), it requires the knowledge of instruc-
tion encoding sufficient to recover instruction sizes (but
nothing about their semantics). Step (c) is a minimal-
istic but simplifying assumption we have made; in con-
cept, identifying which byte-sequences represent call
instruction may be automatically learnable as well.

The input to our final model M is a target function
for which we are recovering the type signature, and set
of functions that call into it. Functions are represented
in disassembled form, such that each function is a se-
quence of instructions, and each instruction is a sequence
of bytes. The bytes do not carry any semantic meaning
with them explicitly. We define this clearly before giving
our precise problem definition.

Let Ta and Ta[i] respectively denote the disassembled
code and the ith bytes of a target function a. Then, the kth

instruction of function a can be defined as:

Ia[k] :=< Ta[m],Ta[m+1], ...,Ta[m+ l]>

where m is the index to the start byte of instruction Ia[k]
and l is the number of bytes in Ia[k]. The disassembled
form of function a consisting of p instructions is defined
as:

Ta :=< Ia[1], Ia[2], ..., Ia[p]>

With the knowledge of a call instruction, we deter-
mine the set of functions that call the target function a. If
a function b has a direct call to function a, we take all2

the instructions in b preceding the call instruction. We
call this a caller snippet Cb,a[j], defined as:

Cb,a[j] :=< Ib[0], Ib[1]...Ib[j−1]>

where Ib[j] is a direct call to a. If Ib[j] is not a direct
call to a, Cb,a[j] := /0. We collect all caller snippets
calling a, and thus the input Da is defined as:

Da := Ta∪
(⋃

b∈Sa

(⋃
0≤ j≤|Tb|

Ca,b[j]
))

where Sa is the set of functions that call a.

2In our implementation, we limit the number of instructions to 500
for large functions.

Figure 2: EKLAVYA Architecture. It takes in the binaries
as input and performs a pre-processing step on it. Then
it performs instruction embedding to produce embedded
vectors for train and test dataset. The argument recovery
module trains 4 RNN models M1,M2,M3,M4to recover
the function argument count and types.

With the above definitions, we are now ready to state
our problem definition. Our goal is to learn a model M ,
which is used to decide two properties for a target func-
tion a, from given data Da, stated below:

Definition. (Arguments Counts) The number of argu-
ments passed to function a.

Definition. (Argument Types) For each argument of
function a, the C-style types defined as:

τ ::=int|char|float|void∗|enum|union|struct

Note that the above definition gives the inputs and out-
puts of the model M , which can be queried for a tar-
get function. This is called the test set. For training the
model M , the training set has a similar representation. It
consists of the disassembled functions input Da as well
as labels (the desired outputs) that represent the ground
truth, namely the true number and types of each argu-
ment. For the training set, we extract the ground truth
from the debug symbols generated from source code.

3 Design

EKLAVYA employs neural network to recover argument
counts and types from binaries. The overall architecture
is shown in Figure 2. EKLAVYA has two primary mod-
ules: a) instruction embedding module and an b) argu-
ment recovery module. The instruction embedding mod-
ule learns the semantics of instructions by observing their
use in our dataset of binaries (from one instruction set). It
is possible to have one neural network that does not treat
these as two separate substeps. However, in this case, the

instruction semantics learnt may well be very specialized
to the task of argument recovery. In our design, we train
to extract semantics of the instruction set from binaries
separately, independent to the task of further analysis at
hand. This makes the design modular and allows reusing
the embedding module in multiple binary analysis tasks.
In addition, instead of keeping the semantics as an im-
plicit internal state, explicitly outputting the semantics
allows us to verify the correctness of each step indepen-
dently. This makes the process of designing and debug-
ging the architecture easier, thus motivating our choice
of two modules.

The instruction embedding module takes as input a
stream of instructions, represented as symbols. It out-
puts a vector representation of each instruction in a 256-
dimensional space, hence embedding the instructions in
a vector space. The objective is to map symbol into vec-
tors, such that distances between vectors capture inter-
instruction relationships.

Given the instructions represented as vectors,
EKLAVYA trains a recurrent neural network (RNN) over
the sequence of vectors corresponding to the function
body. This is done in the argument recovery module.
In some cases, EKLAVYA may only have the target
of the function body to analyze, and in others it may
have access to a set of callers to the target function.
For generality, EKLAVYA trains models for four tasks
defined below:

(a) Task1: Counting arguments for each function based
on instructions from the caller;

(b) Task2: Counting arguments for each function based
on instructions from the callee;

(c) Task3: Recovering the type of arguments based on
instructions from the caller;

(d) Task4: Recovering the type of arguments based on
instructions from the callee;

We train one model for each task, over the same out-
puts of the instruction embedding module. For each in-
struction set, we learn a different instruction embedding
and RNN set. For a function to be tested, the user can
use the predictions of any or all of these tasks; our de-
fault is to report the output of Task2 for argument counts
and Task4 for types since this is analyzable from just the
callee’s function body (without knowing callers).

3.1 Instruction Embedding Module

The first key step in EKLAVYA is to uncover the semantic
information of each instruction through learning. Note
that the inputs to our learning algorithm are functions
represented as raw binaries, with known boundaries of
functions and instructions. In this representation, the

learning algorithm does not have access to any high-
level semantics of an instruction. Intuitively, the goal is
to infer the semantics of instructions from their contex-
tual use in the binary, such as by analyzing which group
appears sequentially together or in certain contexts rela-
tive to other groups. One general approach to extracting
contextual relationships is to employ a technique called
word embedding [8]. Word embedding in EKLAVYA con-
verts each instruction’s raw symbol into a vector. All
instructions are thus represented in a high-dimensional
space (256 dimensions in our case). Intuitively, the dis-
tance between instructions encodes relationships. For
instance, the relative distance between the vectors for
push %edi and pop %edi is similar to distance be-
tween push %esi and pop %esi. We demonstrate
the kinds of relationships this module learns in Section 5
through examples. In summary, the output of this module
is a map from instructions to a 256-dimensional vector.

There are other alternatives to word embedding, which
we have considered. One can employ one-hot encod-
ing analogous to a previous work on identifying func-
tion boundaries [43]. One could represent the ith instruc-
tion by a vector with its ith element as 1 and all other
elements set to 0. For example, if there are 5 differ-
ent instructions, the second instruction is represented as
[0,1,0,0,0]. However, this technique is computationally
inefficient if we expect to learn instruction semantics us-
able for many different binary analysis tasks, since a sep-
arate sub-network will likely be needed to re-learn the
relationship between one-hot-encoded vectors for each
new analysis task.

For word embedding, we use the skip-gram nega-
tive sampling method outlined in the paper that intro-
duces word2vec technique for computing word em-
beddings [27]. The skip-gram is a shallow neural net-
work using the current instruction to predict the instruc-
tions around it. Compared to other approaches like
continuous bag-of-words (CBOW) technique [27], skip-
gram shows better performance on the large-scale dataset
and extracts more semantics for each instruction in our
experience. To train the word embedding model, we
tokenize the hexadecimal value of each instruction and
use them as the training input to the embedding model.
For example, the symbol or token for the instruction
push %ebp is its hexadecimal opcode 0x55. Note
that the hexadecimal opcode is used just as a name much
like ‘john’ or ’apple’ and bears no numerical effects on
the embedding. We train the embedding model for 100
epochs with the learning rate of 0.001.

3.2 Arguments Recovery Module

The function arguments recovery module trains four neu-
ral networks, one for each task related to count and type

inference. To achieve each task outlined, we train a re-
current neural network (RNN). The input for training the
model is the sequence of vectors (each representing an
instruction) produced by word embedding, together with
labels denoting the number of arguments and types (the
ground truth). For argument type recovery, we have sev-
eral design choices. We could learn one RNN for the
first argument, one RNN for the second argument, and so
on. Alternatively, we can have one RNN that predicts the
type tuple for all the arguments of a function. Presently,
we have implemented the first choice, since it alleviates
any dependency on counting the number of arguments.

Recurrent Neural Networks. To design the argu-
ments recovery module, we have considered various ar-
chitectures, like a multilayer perceptron (MLP), a con-
volutional neural network (CNN) and a recurrent neural
network (RNN). We find that an RNN is a suitable choice
because it handles variable-length inputs gracefully, and
has a notion of “memory”. A key difference between
feedforward neural networks like a multi-layer percep-
tron (MLP) and a recurrent neural network (RNN) is that
an RNN incorporates the state of the previous input as
an additional input to the current time. Effectively, this
input represents an internal state that can accumulate the
effects of the past inputs, forming a memory for the net-
work. The recurrent structure of the network allows it to
handle variable-length input sequences naturally.

In order to deal with the exploding and vanishing gra-
dients during training [9], there are few commonly de-
sign options. One could use an LSTM network or use
an RNN model with gated recurrent units (GRUs). We
use GRUs since it has the control of whether to save or
discard previous information and may train faster due to
the fewer parameters. We find that an RNN with 3 layers
using GRUs is sufficient for our problem.

To avoid overfitting, we use the dropout mechanism,
which de-activates the output of a set of randomly cho-
sen RNN cells [48]. This mechanism acts as a stochastic
regularization technique. In our design, we experimented
with various dropout rates between 0.1 to 0.8. We exper-
imentally find the dropout rate of 0.8, corresponding to
randomly dropping 20% of the cell’s output, leads to a
good result. Our models appeared to overfit with higher
dropout rates.

3.3 Data Preprocessing & Implementation
We briefly discuss the remaining details related to prepa-
ration of the inputs to EKLAVYA, and its implementation.

The input for EKLAVYA is the disassembly binary
code of the target function. To obtain this data, the
first step is to identify the function boundaries. Func-
tion boundaries identification with minimal reliance of

instruction set semantics is an independent problem of
interest. Previous approaches range from traditional ma-
chine learning techniques [7] to neural networks [43]
to applying function interface verification [35]. In this
work, we assume the availability and the correctness of
function boundaries for recovering function arguments.
To implement this step, we downloaded the dataset Linux
packages and compiled them with both clang and gcc
with debugging symbols. The function boundaries, ar-
gument counts and types are obtained by parsing the
DWARF entries from the binary. Our implementation
uses the pyelftools which parses the DWARF infor-
mation [2]; additionally, to extract the argument counts
and types, we implemented a Python module with 179
lines of code. We extract the start and end of func-
tion boundaries using the standard Linux objdump util-
ity [1]. According to Dennis et al. [6], modern disassem-
blers are highly accurate at performing instruction level
recovery for non-obfuscated binaries, especially for bi-
naries generated by gcc and clang. Thus we use this as
the ground truth, ignoring the marginal noise that errors
may create in the dataset. After disassembly, we iden-
tify call sites and the caller snippets. Our total additional
code implementation to perform these steps consists of
1273 lines of Python code.

To train the instruction embedding model and RNNs,
we use Google Tensorflow [4]. Our implementation for
the instruction embedding and RNN learning is a total of
714 lines of Python code.

4 Explicability of Models

Our guiding principle is to create models that exhibit
learning of reasonable decision criteria. To explain what
the models learn, we use a different set of techniques for
the two parts of EKLAVYA: the instruction embedding
model and the learnt RNNs.

4.1 Instruction Embedding

Recall the instruction embedding module learns a map-
ping between instructions of an architecture to a high-
dimensional vector space. Visualizing such large dimen-
sionality vector space is a difficult challenge. To under-
stand these vectors, two common techniques are used —
t-SNE [25] plots and analogical reasoning of vectors.

t-SNE Plots. t-SNE is a way to project high-
dimensional vectors into a lower dimension one while
preserving any neighborhood structures that might ex-
ist in the original vector space. Once projected, these
can be visualized with scatter plots. Methods such as
principal component analysis (PCA) [19] and classical

multidimensional scaling [50] use linear transformations
to project onto the low dimension space. Though pow-
erful, these techniques often miss important non-linear
structure in the data. The primary advantage of t-SNE
is that it captures non-linear relationships in the local
and global structure of the dataset.3 For example, if
word embedding learns that two instructions are sim-
ilar, then they will be nearby in the high-dimensional
space. t-SNE is expected to preserve this structure in
low-dimensional plots, which we can visually analyze to
check if it matches our knowledge of instruction seman-
tics and their similarity. Note that t-SNE does not nec-
essarily exhibit all the neighborhood structures that may
exist in high- dimensional space, but is a best-effort tool
at visualizing relationships.

Analogical Reasoning. Another way to infer relation-
ships between instructions represented as vectors is by
analogical reasoning. To understand the idea intuitively,
we point to how this technique is used in natural lan-
guage processing tasks. In natural language, analogy
question tests the ability to define relationships between
words and the understanding of the vocabulary. An ana-
logical question typically consist of two pairs of word,
e.g., (“man”, “king”) (“woman”, “queen”). To answer
how related the two pairs are, the analogy “man is to
king as woman is to queen” is formed of which the
validity is tested. The vector offset method proposed
by Mikolov et al. [29] frames this using vector arith-
metic. The analogical question can be represented as
I1− I2 ≈ I3− I4 where I1, I2, I3 and I4 are the embed-
ding vectors. Specifically, given the analogical question
(“man”, “king”), (“woman”, ?), we can formulate it as
I3− I1 + I2 ≈ I4. To get the approximated result, we first
compute d = I3 − I1 + I2. I4 is the vector that has the
greatest cosine similarity with d. Applying the idea to
our problem setting, we can find similar analogies be-
tween one pairs of instructions and others. If such analo-
gies match our prior knowledge of certain conventions
or idioms that we expect in binary code, we can confirm
that EKLAVYA is able to infer these similarities in its in-
struction embedding representation.

4.2 RNNs for Argument Recovery

We wish to determine for a given test function to an
RNN, which instructions the RNN considers as impor-
tant towards the prediction. If these instruction intu-
itively correspond to our domain knowledge of instruc-
tions that access arguments, then it increases our confi-
dence in the RNN learning the desired decision criteria.

3A short primer on its design is presented in the Appendix B for the
interested reader.

One way to analyze such properties is to employ saliency
maps.

Saliency Map. Saliency maps for trained networks
provide a visualization of which parts of an input the net-
work considers important in a prediction. Intuitively, the
important part of an input is one for which a minimal
change results in a different prediction. This is com-
monly obtained by computing the gradient of the net-
work’s output with respect to the input. In our work, we
chose the approach described by Simonyan et al. to ob-
tain the gradient by back-propagation [44]. Specifically,
we calculate the derivative of the output of the penulti-
mate layer with respect to each input instruction (which
is a vector). This results in a Jacobian matrix. Intuitively,
each element in a Jacobian matrix tells us how each di-
mension of the instruction vector will affect the output of
a specific class (a single dimension of the output). In this
case, we just want to know how much effect a particular
dimension has over the entire output, so we sum the par-
tial derivatives for all elements of the output with respect
to the particular input dimension. The result is a 256-
dimension vector which tells us the magnitude of change
each dimension have over the input. In order for us to
visualize our saliency map, we need a scalar representa-
tion of the gradient vector. This scalar should represent
the relative magnitude of change the entire input over the
output. As such, we choose to calculate the L2-norm of
the gradient vector of each instruction in the function. To
keep the value between 0 to 1, we divide each L2-norm
with the largest one (max(L2−norms)) in the function.

5 Evaluation

Our goal is to experimentally analyze the following:

1. The accuracy in identifying function argument
counts and types (Section 5.2); and

2. Whether the trained models learn semantics
that match our domain-specific knowledge (Sec-
tion 5.3).

Our experiments are performed on a server contain-
ing 2, 14-core Intel Xeon 2GHz CPUs with 64GB of
RAM. The neural network and data processing routines
are written in Python, using the Tensorflow platform [4].

5.1 Dataset
We evaluated EKLAVYA with two datasets. The bina-
ries for each dataset is obtained by using two commonly
used compilers: gcc and clang, with different optimiza-
tion levels ranging from O0 to O3 for both x86 and x64.
We obtained the ground truth for the function arguments
by parsing the DWARF debug information [3].

Following the dataset creation procedure used in pre-
vious work [43], our first dataset consists of binaries
from 3 popular Linux packages: binutils, coreutils and
findutils making up 2000 different binaries, resulting
from compiling each program with 4 optimization levels
(O0-O3) using both compilers targeting both instruction
sets. For x86 binaries, there are 1,237,798 distinct in-
structions which make up 274,285 functions. Similarly
for x64, there are 1,402,220 distinct instructions which
make up 274,288 functions. This dataset has several du-
plicate functions, and we do not use it to report our final
results directly. However, an earlier version of the pa-
per reported on this dataset; for full disclosure, we report
results on this dataset in the Appendix.

For our second dataset, we extended the first dataset
with 5 more packages, leading to a total of 8 packages:
binutils, coreutils, findutils, sg3utils, utillinux, inetutils,
diffutils, and usbutils. This dataset contains 5168 differ-
ent binaries, resulting from compiling each program with
4 optimization levels (O0-O3) using both compilers tar-
geting both instruction sets. For x86 binaries, there are
1,598,937 distinct instructions which constitute 370,317
functions while for x64, there are a total of 1,907,694
distinct instructions which make up 370,145 functions.

Sanitization. For our full (second) dataset, we re-
moved functions which are duplicates of other functions
in the dataset. Given that the same piece of code com-
piled with different binaries will result in different off-
sets generated, naively hashing the function body is in-
sufficient to identify duplicates. To work around this,
we chose to remove all direct addresses used by instruc-
tions found in the function. For example, the instruction
‘je 0x98’ are represented as ‘je ’. After the substitu-
tion, we hash the function and remove functions with the
same hashes. Other than duplicates, we removed func-
tions with less than four instructions as these small func-
tions typically do not have any operation on arguments.

After sanitation, for x86 binaries, there are 60,061
unique functions in our second dataset. Similarly for
x64, there are 59,291 functions. All our final results re-
port on this dataset.

We use separate parts of these datasets for training and
testing. We randomly sample 80% binaries of each pack-
age and designate it as the training set; the remaining
20% binaries are used for testing. Note that the training
set contains all binaries of one instruction set, compiled
with multiple optimization levels from both compilers.
EKLAVYA is tasked to generalize from these collectively.
The test results are reported on different categories of op-
timizations within each instruction set, to see the impact
of compiler and optimization on EKLAVYA’s accuracy.

Imbalanced classes. Our dataset has a different num-
ber of samples for different labels or classes. For in-
stance, the pointer datatype is several hundred times
more frequent than unions; similarly, functions with less
than 3 arguments are much more frequent that those with
9 arguments. We point out that this is a natural distri-
bution of labels in real-world binaries, not an artifact of
our choice. Since training and testing on labels with very
few samples is meaningless, we do not report our test
results on functions with more than 9 arguments for ar-
guments counts recovery, and the “union” and “struct”
datatypes here. The overall ratio of these unreported la-
bels totals less than 0.8% of the entire dataset. The label
distributions of the training dataset are reported in the
rows labeled “data distribution” in Table 1 and Table 2.

5.2 Accuracy

Our first goal is to evaluate the precision, recall, and ac-
curacy of prediction for each of the four tasks mentioned
in Section 3. Precision Pci and recall Rci are used to
measure the performance of EKLAVYA for class i and are
defined as:

Pci =
T Pi

T Pi +FPi
;Rci =

T Pi

T Pi +FNi

where T Pi, FPi and FNi are the true positive predic-
tion, false positive prediction and false negative predic-
tion of class i respectively.

We evaluate the accuracy of EKLAVYA by measuring
the fraction of test inputs with correctly predicted labels
in the test set. Readers can check that accuracy Acc can
alternatively be defined as:

Acc =
n

∑
i=1

Pi×Rci

where n is the number of labels in testing set and Pi
is the fraction of samples belonging to label i in the test
runs. Pi can be seen as an estimate of the occurrence of
label i in the real-world dataset and Rci is the probability
of EKLAVYA labelling a sample as i given that its ground
truth is label i.

Given that our training and testing datasets have im-
balanced classes, it is helpful to understand EKLAVYA’s
accuracy w.r.t to the background distribution of labels in
the dataset. For instance, a naive classifier that always
predicts one particular label i irrespective of the given
test input, will have accuracy pi if the underlying label
occurs pi naturally in the test run. However, such a clas-
sifier will have a precision and recall of zero on labels
other than i. Therefore, we report both the background
data distribution of each label as well as precision and
recall to highlight EKLAVYA’s efficiency as a classifier.

Findings. Table 1 and Table 2 show the final results
over some classes in the test dataset for each task. We
have five key findings from these two tables:

(a) EKLAVYA has accuracy of around 84% for count re-
covery and 81% for type recovery tasks on average,
with higher accuracy of over 90% and 80% respec-
tively for these tasks on unoptimized binaries;

(b) EKLAVYA generalizes well across both compilers,
gcc and clang;

(c) EKLAVYA performs well even on classes that occur
less frequently, which includes samples with labels
occuring as low as 2% times in the training dataset;

(d) In comparison to x86, codename has higher accu-
racy on x64 for count and type recovery; and,

(e) With increase in optimization levels, the accuracy of
EKLAVYA drops on count recovery tasks but stays
the same on type recovery tasks.

First, EKLAVYA has higher accuracy on unoptimized
functions compared with previous work. The reported
accuracy of previous work that uses principled use-def
analysis and liveness analysis to count arguments is 78%
for callers and 83% for callees [51]. It uses domain-
specific heuristics about the calling convention to iden-
tify number of arguments — for example, their work
mentions that if r9 is used by a function then the func-
tion takes 6 arguments or more. However, EKLAVYA
does not need such domain knowledge and obtain higher
accuracy for count recovery. For example, the accuracy
of EKLAVYA on x86 and x64 are 91.13% and 92.03% re-
spectively from callers, while 92.70% and 97.48% sep-
arately from callees. For the task of type recovery, the
accuracy of EKLAVYA, averaged for the first three argu-
ments, on x86 and x64 are 77.20% and 84.55% respec-
tively from callers, and 78.18% and 86.77% correspond-
ingly from callees. A previous work on retargetable com-
pilation recovers types without using machine learning
techniques; however, a direct comparison is not possible
since the reported results therein adopt a different mea-
sure of accuracy called conservativeness rate which can-
not be translated directly to accuracy [14].

Second, EKLAVYA generalizes well over the choice of
two compilers, namely clang and gcc. The accuracy
of count recovery for x86 from callers and callees are
86.22% and 75.49% respectively for gcc binaries, and
85.30% and 80.05% for clang binaries. Similarly, the
accuracy of type recovery (averaged for the first three
arguments) on x86 from callers and callees is 80.92%
and 79.04% respectively for gcc binaries, whereas it is
75.58% and 73.91% respectively for clang binaries.
Though the average accuracy of gcc is slightly higher
than clang, this advantage does not consistently exhibit
across all classes.

Table 1: Evaluation result for argument count recovery from callers and callees for different optimization levels
given different architectures. Columns 3-50 report the evaluation result of EKLAVYA on test dataset with different
instruction set ranging from O0 to O3. “-” denotes that the specific metric cannot be calculated.

Arch Task Opt. Metrics Number of Arguments Accuracy0 1 2 3 4 5 6 7 8 9

x86

Task1

O0
Data Distribution 0.059 0.380 0.288 0.170 0.057 0.023 0.012 0.004 0.004 0.001

0.9113Precision 0.958 0.974 0.920 0.868 0.736 0.773 0.600 0.388 0.231 0.167
Recall 0.979 0.953 0.899 0.913 0.829 0.795 0.496 0.562 0.321 0.200

O1
Data Distribution 0.059 0.374 0.290 0.169 0.059 0.026 0.013 0.003 0.004 0.001

0.8348Precision 0.726 0.925 0.847 0.819 0.648 0.689 0.569 0.474 0.456 0.118
Recall 0.872 0.911 0.836 0.756 0.759 0.703 0.719 0.444 0.758 0.133

O2
Data Distribution 0.056 0.375 0.266 0.187 0.057 0.032 0.015 0.004 0.005 0.001

0.8053Precision 0.692 0.907 0.828 0.758 0.664 0.620 0.606 0.298 0.238 0.250
Recall 0.810 0.912 0.801 0.645 0.782 0.730 0.637 0.262 0.357 0.300

O3
Data Distribution 0.045 0.387 0.275 0.184 0.051 0.029 0.016 0.004 0.005 0.002

0.8391Precision 0.636 0.935 0.862 0.801 0.570 0.734 0.459 0.243 0.231 0.200
Recall 0.760 0.921 0.849 0.724 0.691 0.747 0.637 0.196 0.375 0.167

Task2

O0
Data Distribution 0.068 0.307 0.313 0.171 0.070 0.034 0.018 0.009 0.005 0.002

0.9270Precision 0.935 0.956 0.910 0.957 0.910 0.789 0.708 0.808 0.429 0.500
Recall 0.911 0.975 0.963 0.873 0.856 0.882 0.742 0.568 0.692 0.600

O1
Data Distribution 0.066 0.294 0.320 0.173 0.073 0.034 0.019 0.009 0.005 0.003

0.6934Precision 0.725 0.821 0.667 0.692 0.463 0.412 0.380 0.462 0.182 0.000
Recall 0.697 0.822 0.795 0.574 0.420 0.466 0.284 0.115 0.167 0.000

O2
Data Distribution 0.065 0.283 0.326 0.179 0.068 0.036 0.021 0.011 0.005 0.002

0.6660Precision 0.721 0.761 0.655 0.639 0.418 0.535 0.484 0.667 0.200 0.000
Recall 0.607 0.798 0.792 0.495 0.373 0.434 0.517 0.308 0.286 0.000

O3
Data Distribution 0.051 0.248 0.346 0.188 0.076 0.038 0.023 0.013 0.008 0.003

0.6534Precision 0.600 0.788 0.626 0.717 0.297 0.452 0.250 0.200 0.143 0.000
Recall 0.682 0.822 0.801 0.509 0.321 0.326 0.190 0.071 0.167 0.000

x64

Task1

O0
Data Distribution 0.061 0.385 0.288 0.166 0.056 0.021 0.012 0.004 0.004 0.0

0.9203Precision 0.858 0.957 0.914 0.916 0.818 0.891 0.903 0.761 0.875 0.333
Recall 0.913 0.941 0.936 0.930 0.719 0.853 0.829 0.944 0.667 0.800

O1
Data Distribution 0.057 0.379 0.283 0.174 0.060 0.022 0.013 0.005 0.004 0.001

0.8602Precision 0.734 0.897 0.843 0.884 0.775 0.829 0.882 0.788 0.778 0.500
Recall 0.766 0.899 0.901 0.817 0.677 0.815 0.714 0.839 0.359 0.818

O2
Data Distribution 0.055 0.384 0.260 0.187 0.061 0.027 0.014 0.004 0.006 0.001

0.8380Precision 0.624 0.900 0.816 0.842 0.775 0.741 0.866 0.708 0.667 0.545
Recall 0.686 0.886 0.863 0.822 0.667 0.764 0.785 0.836 0.519 0.600

O3
Data Distribution 0.044 0.382 0.290 0.173 0.054 0.028 0.018 0.004 0.002 0.002

0.8279Precision 0.527 0.908 0.767 0.832 0.654 0.878 0.848 0.613 0.667 0.600
Recall 0.680 0.864 0.867 0.794 0.602 0.761 0.857 0.826 0.444 0.600

Task4

O0
Data Distribution 0.071 0.309 0.312 0.170 0.068 0.032 0.018 0.009 0.005 0.002

0.9748Precision 0.971 0.988 0.986 0.991 0.952 0.962 0.733 0.839 0.714 1.000
Recall 0.981 0.992 0.985 0.980 0.972 0.969 0.873 0.565 0.556 0.500

O1
Data Distribution 0.066 0.297 0.319 0.175 0.070 0.034 0.019 0.010 0.005 0.002

0.7624Precision 0.625 0.811 0.690 0.891 0.780 0.773 0.531 0.576 0.333 -
Recall 0.649 0.833 0.853 0.662 0.697 0.780 0.680 0.487 0.059 0.000

O2
Data Distribution 0.059 0.272 0.336 0.179 0.071 0.037 0.020 0.012 0.006 0.003

0.7749Precision 0.669 0.814 0.733 0.911 0.785 0.761 0.486 0.353 0.333 -
Recall 0.658 0.833 0.882 0.697 0.688 0.761 0.548 0.273 0.167 0.000

O3
Data Distribution 0.048 0.213 0.361 0.190 0.086 0.042 0.029 0.013 0.006 0.004

0.7869Precision 0.636 0.824 0.775 0.912 0.913 0.720 0.400 0.250 0.000 -
Recall 0.875 0.884 0.912 0.722 0.764 0.720 0.429 0.111 0.000 0.000

Table 2: Evaluation result for argument type recovery from callers and callees for different optimization levels given
different architectures. Columns 4-67 report the evaluation result of EKLAVYA on test dataset with different instruc-
tion sets ranging from O0 to O3. “-” denotes that the specific metric cannot be calculated.

Arch Task Opt. Metrics
Type of Arguments

1st 2nd 3rd
char int float pointer enum char int float pointer enum char int float pointer enum

x86

Task3

O0

Data
Distribution 0.0075 0.1665 0.0008 0.8008 0.0220 0.0097 0.3828 0.0002 0.5740 0.0304 0.0094 0.4225 0.0002 0.5588 0.0078

Precision 0.5939 0.6630 1.0000 0.8954 0.5938 0.3929 0.6673 1.0000 0.8258 0.4141 0.3158 0.6245 - 0.8337 0.1429
Recall 0.6766 0.6469 0.1429 0.9145 0.4546 0.2391 0.7302 0.0556 0.8171 0.2405 0.4615 0.7905 0.0000 0.6954 0.1111

Accuracy 0.8385 0.7547 0.7228

O1

Data
Distribution 0.0065 0.1634 0.0005 0.8101 0.0178 0.0082 0.3663 0.0001 0.5894 0.0336 0.0092 0.4274 0.0002 0.5535 0.0082

Precision 0.5315 0.6138 1.0000 0.9027 0.8202 0.3462 0.7108 1.0000 0.8282 0.6222 0.1613 0.7220 - 0.7890 0.3200
Recall 0.4370 0.5913 0.1539 0.9218 0.7559 0.2368 0.7482 0.1500 0.8303 0.3836 0.3333 0.7262 - 0.7867 0.2667

Accuracy 0.8475 0.7762 0.7537

O2

Data
Distribution 0.0015 0.1664 0.0002 0.8056 0.0260 0.0084 0.3505 0.0000 0.5959 0.0446 0.0072 0.4031 0.0002 0.5768 0.0116

Precision 0.0000 0.6029 - 0.9262 0.7647 0.2500 0.6544 - 0.8193 0.6818 0.1429 0.7859 1.0000 0.7007 0.2222
Recall 0.0000 0.6874 0.0000 0.9126 0.7879 0.0833 0.6642 0.0000 0.8442 0.3214 1.0000 0.6647 1.0000 0.8269 0.1000

Accuracy 0.8606 0.7627 0.7328

O3

Data
Distribution 0.0012 0.1731 0.0002 0.8032 0.0218 0.0069 0.3763 0.0001 0.5633 0.0523 0.0074 0.4165 0.0001 0.5647 0.0101

Precision 0.0000 0.6561 1.0000 0.9331 0.7273 0.0000 0.6582 1.0000 0.8464 0.8462 0.5000 0.7410 - 0.8048 0.4286
Recall 0.0000 0.7210 0.1429 0.9287 0.8000 - 0.6656 0.6667 0.8390 0.9296 1.0000 0.7613 0.0000 0.8079 0.2000

Accuracy 0.8794 0.7878 0.7742

Task4

O0

Data
Distribution 0.0056 0.1944 0.0015 0.7910 0.0052 0.0073 0.3151 0.0003 0.6654 0.0086 0.0102 0.3828 0.0016 0.5931 0.0107

Precision 0.7500 0.7620 0.6000 0.9024 0.0870 0.5882 0.5359 1.0000 0.8856 0.3333 0.1111 0.5516 - 0.8278 0.5000
Recall 0.5000 0.6536 0.3000 0.9400 0.2609 0.7692 0.7165 0.2500 0.7874 0.1111 0.2500 0.6447 0.0000 0.7896 0.0476

Accuracy 0.8582 0.7618 0.7254

O1

Data
Distribution 0.0060 0.2156 0.0012 0.7707 0.0049 0.0075 0.3243 0.0001 0.6587 0.0065 0.0127 0.3976 0.0020 0.5732 0.0127

Precision 0.3333 0.5998 0.5000 0.8909 0.5833 0.0000 0.4776 - 0.8424 0.5833 0.0588 0.5268 0.0000 0.7991 0.4000
Recall 0.1500 0.5977 0.1667 0.9049 0.2258 0.0000 0.5238 0.0000 0.8269 0.2414 0.1667 0.5765 0.0000 0.7743 0.1177

Accuracy 0.8305 0.7435 0.7012

O2

Data
Distribution 0.0041 0.2219 0.0006 0.7682 0.0050 0.0071 0.2995 0.0002 0.6841 0.0081 0.0097 0.3636 0.0000 0.6132 0.0122

Precision 0.0000 0.7396 - 0.9125 0.0000 1.0000 0.4940 - 0.8297 1.0000 0.0000 0.4439 - 0.7633 1.0000
Recall 0.0000 0.7188 0.0000 0.9321 0.0000 0.2500 0.5061 0.0000 0.8343 0.2500 - 0.5901 0.0000 0.6775 0.1539

Accuracy 0.8737 0.7447 0.6269

O3

Data
Distribution 0.0032 0.2050 0.0000 0.7869 0.0047 0.0039 0.2856 0.0000 0.6996 0.0103 0.0086 0.3503 0.0026 0.6221 0.0164

Precision 0.0000 0.6759 1.0000 0.9438 0.0000 0.0000 0.4142 1.0000 0.8864 0.0000 0.0000 0.3858 - 0.8309 0.0000
Recall 0.0000 0.7337 0.5000 0.9394 0.0000 - 0.5690 0.3333 0.8079 - 0.0000 0.6129 0.0000 0.7125 0.0000

Accuracy 0.8974 0.7607 0.6624

x64

Task3

O0

Data
Distribution 0.0077 0.1721 0.0008 0.7935 0.0232 0.0101 0.3907 0.0003 0.5650 0.0307 0.0099 0.4296 0.0002 0.5508 0.0083

Precision 0.9579 0.8404 0.5000 0.9342 0.7829 0.2381 0.7421 0.0000 0.8711 0.5818 0.2222 0.7491 - 0.8362 0.0000
Recall 0.4893 0.7577 0.0500 0.9747 0.7126 0.2778 0.7551 0.0000 0.8974 0.2743 0.2500 0.7254 0.0000 0.8661 0.0000

Accuracy 0.9156 0.8182 0.8028

O1

Data
Distribution 0.0062 0.1608 0.0005 0.8073 0.0235 0.0079 0.3795 0.0003 0.5761 0.0338 0.0081 0.4389 0.0001 0.5438 0.0077

Precision 0.9474 0.8457 - 0.9202 0.5872 0.3846 0.6831 1.0000 0.8578 0.5562 0.2222 0.7447 0.0000 0.8375 0.0000
Recall 0.3000 0.6871 0.0000 0.9771 0.7214 0.1852 0.7340 0.2353 0.8573 0.2973 0.2857 0.7481 0.0000 0.8491 0.0000

Accuracy 0.9038 0.7870 0.7985

O2

Data
Distribution 0.0016 0.1520 0.0001 0.8193 0.0265 0.0077 0.3632 0.0001 0.5797 0.0483 0.0079 0.4417 0.0001 0.5404 0.0090

Precision - 0.8630 1.0000 0.9269 0.7217 0.0000 0.6712 1.0000 0.8783 0.8556 0.0000 0.7741 1.0000 0.8426 0.0000
Recall 0.0000 0.7408 0.1000 0.9745 0.8925 0.0000 0.7004 0.1250 0.8918 0.4477 - 0.7608 0.5000 0.8733 0.0000

Accuracy 0.9121 0.8181 0.8135

O3

Data
Distribution 0.0007 0.1847 0.0001 0.7932 0.0206 0.0079 0.3933 0.0000 0.5461 0.0513 0.0070 0.4200 0.0000 0.5569 0.0142

Precision - 0.8633 - 0.9271 0.8611 0.0000 0.7021 - 0.8739 0.7273 0.0000 0.6885 - 0.8286 0.0000
Recall 0.0000 0.7538 0.0000 0.9755 0.8378 - 0.7003 0.0000 0.8754 0.7742 - 0.7395 0.0000 0.8085 0.0000

Accuracy 0.9155 0.8203 0.7663

Task4

O0

Data
Distribution 0.0057 0.2006 0.0015 0.7843 0.0055 0.0074 0.3223 0.0005 0.6581 0.0083 0.0107 0.3879 0.0013 0.5891 0.0094

Precision 0.6842 0.8987 0.8000 0.9777 0.2000 0.6000 0.7214 1.0000 0.9221 0.1429 0.2500 0.5782 1.0000 0.8880 0.4444
Recall 0.6191 0.9301 0.4000 0.9789 0.0625 0.5455 0.7314 0.1667 0.9260 0.0769 1.0000 0.7398 0.1250 0.8199 0.1333

Accuracy 0.9562 0.8725 0.7742

O1

Data
Distribution 0.0055 0.2033 0.0010 0.7830 0.0058 0.0069 0.3128 0.0005 0.6685 0.0090 0.0116 0.3816 0.0011 0.5938 0.0103

Precision 0.7143 0.7936 0.4000 0.9714 0.1429 0.1818 0.6157 1.0000 0.9071 0.3333 0.2857 0.4703 - 0.8677 0.1667
Recall 0.3125 0.9053 0.2500 0.9444 0.0769 0.2222 0.6801 0.4000 0.8828 0.0909 1.0000 0.7457 0.0000 0.7035 0.0345

Accuracy 0.9240 0.8267 0.6918

O2

Data
Distribution 0.0042 0.2261 0.0002 0.7639 0.0051 0.0056 0.2956 0.0003 0.6897 0.0074 0.0090 0.3667 0.0013 0.6110 0.0110

Precision 0.0000 0.8067 - 0.9726 - 0.0000 0.6014 1.0000 0.9014 - 0.0000 0.5206 - 0.8428 0.0000
Recall 0.0000 0.9311 0.0000 0.9473 0.0000 0.0000 0.6692 0.5000 0.8777 0.0000 - 0.7128 0.0000 0.7569 0.0000

Accuracy 0.9305 0.8240 0.7093

O3

Data
Distribution 0.0030 0.2341 0.0004 0.7576 0.0049 0.0058 0.2917 0.0005 0.6937 0.0083 0.0152 0.3660 0.0000 0.5989 0.0200

Precision - 0.7250 - 0.9894 - - 0.6136 - 0.9172 - - 0.4700 - 0.8553 0.3333
Recall 0.0000 0.9667 - 0.9256 - - 0.6750 - 0.8944 - - 0.6912 0.0000 0.7647 0.0769

Accuracy 0.9256 0.8507 0.6980

Third, EKLAVYA has high precision and recall on cate-
gories that occur relatively less frequently in our dataset.
For example, the inputs with 4 arguments only count for
around 6% in our training set, whereas the precision and
recall of count recovery from callers are around 67% and
78% separately on x86. Similarly, inputs whose first ar-
gument is “enum” data type only occupy around 2% over
our training set. However, the precision and recall of type
recovery are around 76% and 69% from callers on x86.

Fourth, the accuracy of EKLAVYA on x64 is higher
than x84. As shown in Table 1, the average accuracy
of EKLAVYA for counts recovery task are 1.4% (from
callers) and 9.0% (from callees) higher for x64 binaries
than x86. Type recovery tasks exhibit a similar finding.
Table 2 shows that the accuracy averaged for the task
of recovering types for the first, second, and third argu-
ments. EKLAVYA has an average accuracy 3−9% higher
for a given task on x64 than of the same task on x86
binaries. This is possibly because x86 has fewer regis-
ters, and most argument passing is stack-based in x86.
EKLAVYA likely recognizes registers better than stack
offsets.

Finally, the accuracy of the model with respect to the
optimization levels is dependent on type of task. Opti-
mization levels do not have a significant effect on the ac-
curacy of the predictions in type recovery tasks , whereas
the EKLAVYA performs better on O0 than on O1 - O3
for arguments counts recovery. For example, the accu-
racy of type recovery for the first argument from callers
on O0 - O3 are nearly the same, which is around 85%
on x86. But, the accuracy for count recovery from callers
on x86, for instance, is 91.13%, which drops to 83.48%
when we consider binaries compiled with O1. The accu-
racy for count recovery does not change significantly for
optimization levels O1 to O3.

5.3 Explicability of Models

Our guiding principle in selecting the final architecture
is its explicability. In this section, we present our results
from qualitatively analyzing what EKLAVYA learns. We
find that EKLAVYA automatically learns the semantics
and similarity between instructions or instruction set, the
common compiler conventions or idioms, and instruction
patterns that differentiate the use of different values. This
strengthens our belief that the model learns information
that matches our intuitive understanding.

5.3.1 Instruction Semantics Extraction

In this analysis, we employ t-SNE plots and analogical
reasoning to understand the relations learned by the word
embedding model between instructions.

Figure 3: t-SNE visualization of mov instructions on
x64. Each dot represent one mov instruction. Red dots
are where Figure 4 is.

Figure 4: t-SNE visualization of a cluster of mov
$constant, %register instructions on x64.

Semantic clustering of instructions. t-SNE plots al-
low us to project the points on the 256 dimension space
to that of a two-dimensional image giving us a visualiza-
tion of the clustering. Figure 3 shows one cluster corre-
sponding to mov family of instructions, which EKLAVYA
learns to have similarity. Due to a large amount of in-
structions (over a million), a complete t-SNE plot is dif-
ficult to analyze. Therefore, we randomly sampled 1000
instructions from the complete set of instructions, and
select all instructions belonging to the mov family. This
family consists of 472 distinct instruction vectors which
we project onto a two-dimension space using t-SNE.

Then we “zoom-in” Figure 3 and show two inter-
esting findings. These two findings are shown in Fig-
ure 4 and Figure 5. In Figure 4, we recognize mov
$constant, %register instructions, which indi-
cates that EKLAVYA recognizes the similarity between

Figure 5: t-SNE visualization of mov
constant(%rip), %register and mov
$constant, %register instructions on x64.

all instructions that assign constant values to regis-
ters, and abstract out the register. Figure 5 shows
that EKLAVYA learns the similar representation for
mov constant(%rip), %register instructions.
These two findings show the local structures that embed-
ding model learned within “mov” family.

Relation between instructions. We use analogical
reasoning techniques to find similarity between sets of
instructions. In this paper, we show two analogies that
our embedding model learned. The first example is
that cosine distance between the instructions in the pair
(push %edi, pop %edi) is nearly the same as the
distance between instructions in the pair (push %esi,
pop %esi). This finding corresponds to the fact that
the use of push-pop sequences on one register is anal-
ogous to the use of push-pop sequences on another
register. In essence, this finding shows that the model
abstracts away the operand register from the use of
push-pop (stack operation) instructions on x86/x64.
As another example, we find that the distance be-
tween the instructions in the pair (sub $0x30,%rsp,
add $0x30,%rsp) and the distance between the pair
(sub $0x20,%rsp, add $0x20,%rsp) is nearly
the same. This analysis exhibits that EKLAVYA recog-
nizes that the integer operand can be abstracted away
from such sequences (as long the same integer value is
used). These instruction pairs are often used to allo-
cate / deallocate the local frame in a function, so we find
that EKLAVYA correctly recognizes their analogical use
across functions. Due to space reasons, we limit the pre-
sented examples to three. In our manual investigation,
we find several such semantic analogies that are auto-
learned.

Table 3: The relative score of importance generated by
saliency map for each instruction from four distinct func-
tions to determine the number of arguments given the
whole function.

Instruction Relative Score Instruction Relative Score
pushl %ebp 0.149496 ...
movl %esp, %ebp 0.265591 subq $0x38, %rsp 0.356728
pushl %ebx 0.179169 movq %r8, %r13 1.000000
subl $0x14, %esp 0.370329 movq %rcx, %r15 0.214237
movl 0xc(%ebp), %eax 1.000000 movq %rdx, %rbx 0.140916
movl 8(%ebp), %ecx 0.509958 movq %rsi, 0x10(%rsp) 0.336599
leal 0x8090227, %edx 0.372616 movq %rdi, 0x28(%rsp) 0.253754

... ...
(a) “print name without quoting” compiled

with clang and O0 on 32-bit (having
2 arguments)

(b) “parse stab struct fields” compiled
with clang and O1 on 64-bit (having

5 arguments)
Instruction Relative Score Instruction Relative Score

... ...
subq $0x80, %rsp 1.000000 subq $0x40, %rsp 0.411254
leaq (%rsp), %rdi 0.683561 movq %rdi, -0x10(%rbp) 0.548005
xorl %eax, %eax 0.161366 movq %rsi, -0x18(%rbp) 1.000000
movl $0x10, %ecx 0.658702 movq %rdx, -0x20(%rbp) 0.725123

... movq %rcx, -0x28(%rbp) 0.923426
movl %ecx, %eax 0.049905 movq -0x10(%rbp), %rcx 0.453617

... movq %rcx, -0x30(%rbp) 0.129167
...

addq %rdx, %rcx 0.093260
...

(c) “EmptyTerminal” compiled
with clang and O1 on 64-bit (having

0 arguments)

(d) “check sorted” compiled
with clang and O0 on 64-bit (having

4 arguments)

5.3.2 Auto-learning Conventions

Next, we analyze which input features are considered
important by EKLAVYA towards making a decision on
a given input. We use the saliency map to score the rela-
tive importance of each instruction in the input function.
Below, we present our qualitative analysis to identify the
conventions and idioms that EKLAVYA auto-learns. For
each case below, we compute saliency maps for 20 ran-
domly chosen functions for which EKLAVYA correctly
predicts signatures, and inspect them manually.

We find that instructions that are marked as high in rel-
ative importance for classification suggest that EKLAVYA
auto-learns several important things. We find consis-
tent evidence that EKLAVYA learns calling conventions
and idioms, such as the argument passing conventions,
“use-before-write” instructions, stack frame allocation
instructions, and setup instructions for stack-based ar-
guments to predict the number of arguments accepted
by the function. EKLAVYA consistently identifies in-
structions that differentiate types (e.g. pointers from
char) as important.

Identification of argument registers. We find that the
RNN model for counting arguments discovers the spe-
cific registers used to pass the arguments. We selected
20 sample functions for which types were correctly pre-
dicted, and we consistently find that the saliency map
marks instructions processing caller-save and callee-
save registers as most important. Consider the func-
tion parse stab struct fields shown in Table 3

as example, wherein the RNN model considers the in-
struction movq %r8, %r13; movq %rcx, %r15;
movq %rdx, %rbx; movq %rsi, 0x10(%rsp)
and movq %rdi, 0x28(%rsp) as the relatively
most important instructions for determining the num-
ber of arguments, given the whole function body. This
matches our manual analysis which shows that rdi,
rsi, rdx, rcx, r8 are used to pass arguments. We
show 4 different functions taking different number of ar-
guments as parameters in Table 3. In each example, one
can see that the RNN identifies the instructions that first
use the incoming arguments as relatively important com-
pared to other instructions.

Further, EKLAVYA seems to correctly place empha-
sis on the instruction which reads a particular regis-
ter before writing to it. This matches our intuitive
way of finding arguments by identifying “use-before-
write” instructions (with liveness analysis). For exam-
ple, in the function check sorted (Table 3(d)), the
register rcx is used in a number of instructions. The
saliency map marks the most important instruction to be
the correct one that uses the register before write. Fi-
nally, the function EmptyTerminal also shows ev-
idence EKLAVYA is not blindly memorizing register
names (e.g. rcx) universally for all functions. It cor-
rectly de-emphasizes that the instruction movq %ecx,
%eax is not related to argument passing. In this example,
rcx has been clobbered before in the instruction movl
$0x10, %ecx on rcx before reaching the movq in-
struction, and EKLAVYA accurately recognizes that rcx
is not used as an argument here. We have manually ana-
lyzed this finding consistently on 20 random samples we
analyzed.

Argument accesses after local frame creation. In our
analyzed samples, EKLAVYA marks the arithmetic in-
struction that allocates the local stack frame as relatively
important. This is because in the compilers we tested, the
access to arguments begins after the stack frame pointer
has been adjusted to allocate the local frame. EKLAVYA
learns this convention and emphasizes its importance in
locating instructions that access arguments (see Table 3).

We highlight two other findings we have confirmed
manually. First, EKLAVYA correctly identifies arguments
passed on the stack as well. This is evident in 20 func-
tions we sampled from the set of functions that accept
arguments on stack, which is a much more common phe-
nomenon in x86 binaries that have fewer registers. Sec-
ond, the analysis of instructions passing arguments from
the body of the caller is nearly as accurate as that from
that of callees. A similar saliency map based analysis of
the caller’s body identifies the right registers and setup of
stack-based arguments are consistently marked as rela-
tively high in importance. Due to space reasons, we have

Table 4: The relative score of importance generated by
saliency map for each instruction from four distinct func-
tions to determine the type of arguments given the whole
function.

Instruction Relative Score Instruction Relative Score
subl $0xc, %esp 0.297477 ...
movl 0x10(%esp), %edx 0.861646 subq $0x328, %rsp 0.774363
movzbl 0x28(%edx), %eax 1.000000 movq %rcx, %r12 0.881474
movl %eax, %ecx 0.332725 movq %rdx, %r15 0.452816
andl $7, %ecx 0.481093 movq %rsi, %rbx 0.363804
cmpb $1, %cl 0.248921 movq %rdi, %r14 0.442176

... movl (%rbx), %eax 1.000000
...

(a) “bfd set symtab” compiled with
gcc-32-O2 (1st argument - pointer)

(b) “do fprintf” compiled with
clang-64-O1 (2nd argument - pointer)

Instruction Relative Score Instruction Relative Score
pushl %ebx 0.235036 ...
subl $0x10, %esp 0.383451 movl %ecx, %r15d 0.431204
fldl 0x1c(%esp) 1.000000 movq %rdx, %r14 0.399483
movl 0x18(%esp), %ecx 0.511937 movzbl (%rsi), %ebp 1.000000
flds 0x8050a90 0.873672 testb $0x20, 0x20b161(%rip) 0.336855
fxch %st(1) 0.668212 jne 0x2d 0.254520

... movl 0x18(%r14), %eax 0.507721
movq 0x20b15c(%rip), %rcx 0.280275

...
(c) “dtotimespec” compiled with
gcc-32-O3 (2nd argument - float)

(d) “print icmp header” compiled with
clang-64-O1 (2nd argument - pointer)

not shown the salience maps for these examples here.

Operations to type. With a similar analysis of saliency
maps, we find that EKLAVYA learns instruction patterns
to identify types. For instance, as shown in examples
of Table 4, the saliency map highlights the relative im-
portance of instructions. One can see that instructions
that use byte-wide registers (e.g. dl) are given impor-
tance when EKLAVYA predicts the type to be char. This
matches our semantic understanding that the char type
is one byte and will often be used in operands of the cor-
responding bit-width. Similarly, we find that in cases
where EKLAVYA predicts the type to be a pointer,
the instructions marked as important have indirect reg-
ister base addressing with the right registers carrying the
pointer values. Where float is correctly predicted, the
instructions highlighted involve XMM registers or float-
ing point instructions. These findings consistently ex-
hibit in our sampled sets, showing that EKLAVYA mirrors
our intuitive understanding of the semantics.

5.3.3 Network Mispredictions

We provide a few concrete examples of EKLAVYA mis-
predictions. These examples show that principled pro-
gram analysis techniques would likely discern such er-
rors; therefore, EKLAVYA does not mimic a full liveness
tracking function yet. To perform this analysis, we in-
spect a random subset of the mispredictions for each of
the tasks using the saliency map. In some cases, we can
speculate the reasons for mispredictions, though there
are best-effort estimates. Our findings are presented in
the form of 2 case studies below.

As shown in Table 5, the second argument is mis-

Table 5: x86 multiple type mispredictions for second ar-
guments.

Instruction Relative
Score Insturction Relative

Score
subl $0x1c, %esp 0.719351 pushl %edi 0.545965
movsbl 0x24(%esp), %eax 1.000000 movl %edx, %edi 0.145597
movl %eax, 8(%esp) 0.246975 pushl %esi 0.021946
movl $0xffffffff, 4(%esp) 0.418808 pushl %ebx 0.068469
movl 0x20(%esp), %eax 0.485717 movl %eax, %ebx 0.188693
movl %eax, (%esp) 0.260028 subl $0x20, %esp 0.446094
calll 0xffffff3e 0.801598 movl 0xc(%eax), %eax 0.890956
addl $0x1c, %esp 0.403249 movl $0, 0x1c(%esp) 1.000000
retl 0.383143 leal 0x1c(%esp), %esi 0.805058

cmpb %dl, (%eax) 0.824601
...

(a) “quotearg char” compiled with gcc and O1
(true type is char but predicted as int)

(b) “d exprlist” compiled with gcc and O2
(true type is char but predicted as pointer)

Table 6: x64 mispredictions.

Instruction Relative
Score Instruction Relative

Score
pushq %rbx 0.175079 ...
movq %rdi, %rbx 0.392229 pushq %rbx 0.025531
callq 0x3fc 1.000000 subq $0x100, %rsp 0.163929
testq %rax, %rax 0.325375 movq %rdi, -0xe8(%rbp) 0.314619
je 0x1004 0.579551 movq %rsi, -0xf0(%rbp) 0.235489
popq %rbx 0.164043 movl %edx, %eax 0.308323
retq 0.135274 movq %rcx, -0x100(%rbp) 0.435364
movq %rbx, %rdi 0.365685 movl %r8d, -0xf8(%rbp) 0.821577
callq 0xe6d 0.665486 movq %r9, -0x108(%rbp) 1.000000

movb %al, -0xf4(%rbp) 0.24482
...

(a) “ck fopen” compiled with clang and O1
(true type of first argument is pointer but

predicted as int)

(b) “prompt” compiled with gcc and O0
(number of arguments is 6 but

predicted as 7)

predicted as an integer in the first example, while
in the second case study, the second argument is mis-
predicted as a pointer. From these two examples, it
is easy to see how the model has identified instructions
which provide hints to what the types are. In both cases,
the highlighted instructions suggest possibilities of mul-
tiple types and the mispredictions corresponds to one of
it. The exact reasons for mispredictions are unclear but
this seems to suggest that the model is not robust against
situations where there can be multiple type predictions
for different argument positions. We speculate that this
is due to the design choice of training for each specific
argument position a separate sub-network which poten-
tially requires the network to infer calling conventions
from just type information.

In the same example as above, the first argument is
mispredicted as well. The ground truth states that the
first argument is a pointer, whereas EKLAVYA pre-
dicts an integer. This shows another situation where
the model makes a wrong prediction, namely when the
usage of the argument within the function body provides
insufficient hints for the type usage.

We group all mispredictions we have analyzed into
three categories: insufficient information, high argument
counts and off-by-one errors. A typical example of a mis-
prediction due to lack of information is when the func-
tion takes in more arguments than it actually uses. The
first example in Table 6 shows an example of it.

Typically, for a functions with high argument counts

(greater than 6), the model will highlight the use of %r9
and some subsequent stack uses. However in example 2
of Table 6, it shows how the model focuses on %r9 but
still made the prediction of an argument count of 7. The
lack of training data for such high argument counts may
be a reason for lack of robustness.

Off-by-one errors are those in which the network is
able to identify instructions which indicate the number
of arguments but the prediction is off by one. For exam-
ple, the network may identify the use of %rcx as impor-
tant but make the prediction that there are 5 arguments
instead of 4 arguments. No discernible reason for these
has emerged in our analysis.

6 Related Work

Machine Learning on Binaries. Extensive literature
exists on applying machine learning for other binaries
analysis tasks. Such tasks include malware classifi-
cation [42, 5, 30, 20, 36, 15] and function identifica-
tion [37, 7, 43]. The closest related work to ours is by
Shin et al. [43], which apply RNNs to the task of function
boundary identification. These results have high accu-
racy, and such techniques can be used to create the inputs
for EKLAVYA. At a technical level, our work employs
word-embedding techniques and we perform in-depth
analysis of the model using dimensionality reduction,
analogical reasoning and saliency maps. These analy-
sis techniques have not been used in studying the learnt
models for binary analysis tasks. For function identi-
fication, Bao et al. [7] utilize weighted prefix trees to
improve the efficiency of function identification. Many
other works use traditional machine learning techniques
such as n-grams analysis [42], SVMs [36], and condi-
tional random fields [37] for binary analysis tasks (dif-
ferent from ours).

Word embedding is a commonly used technique in
such tasks, since these tasks require a way to repre-
sent words as vectors. These word embeddings can
generally be categorized into two approaches, count-
based [13, 32] and prediction-based [24, 28]. Neural net-
works are also frequently used for tasks like language
translation [11, 49], parsing [46, 45].

Function Arguments Recovery. In binary analysis,
recovery of function arguments [51, 23, 14] is an im-
portant component used in multiple problems. Some ex-
amples of the tasks include hot patching [33] and fine-
grained control-flow integrity enforcement [51]. To sum-
marize, there are two main approaches used to recover
the function argument: liveness analysis and heuristic
methods based on calling convention and idioms. Veen
et. al. [51] in their work make use of both these methods

to obtain the function argument counts. Lee et. al. [23]
formulate the usage of different data types in binaries to
do type reconstruction. In addition, ElWazeer et al.[14]
apply liveness analysis to provide a fine-grained recovery
of arguments, variables and their types. A direct compar-
ison to this work is difficult because their work considers
a different type syntax than our work. At a high level,
EKLAVYA provides a comparable level of accuracy, al-
beit on more coarse-grained types.

7 Conclusion

In this paper, we present a neural-network-based system
called EKLAVYA for addressing function arguments re-
covery problem. EKLAVYA is compiler and instruction-
set agnostic system with comparable accuracy. In ad-
dition, we find that EKLAVYA indeed learns the calling
conventions and idioms that match our domain knowl-
edge.

8 Acknowledgements

We thank the anonymous reviewers of this work for their
helpful feedback. We thank Shweta Shinde, Wei Ming
Khoo, Chia Yuan Cho, Anselm Foong, Jun Hao Tan and
RongShun Tan for useful discussion and feedback on ear-
lier drafts of this paper. We also thank Valentin Ghita
for helping in the preparation of the final dataset. This
research is supported in part by the National Research
Foundation, Prime Ministers Office, Singapore under
its National Cybersecurity R&D Program (TSUNAMi
project, Award No. NRF2014NCR-NCR001-21). This
research is also supported in part by a research grant from
DSO, Singapore. All opinions expressed in this paper are
solely those of the authors.

References
[1] GitHub - eliben/pyelftools: Pure-python library for pars-

ing ELF and DWARF. https://github.com/eliben/
pyelftools.

[2] GNU Binutils. https://www.gnu.org/software/
binutils/.

[3] The DWARF Debugging Standard. http://www.
dwarfstd.org/.

[4] ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E., CHEN,
Z., CITRO, C., CORRADO, G. S., DAVIS, A., DEAN, J.,
DEVIN, M., GHEMAWAT, S., GOODFELLOW, I., HARP, A.,
IRVING, G., ISARD, M., JIA, Y., JOZEFOWICZ, R., KAISER,
L., KUDLUR, M., LEVENBERG, J., MANÉ, D., MONGA,
R., MOORE, S., MURRAY, D., OLAH, C., SCHUSTER, M.,
SHLENS, J., STEINER, B., SUTSKEVER, I., TALWAR, K.,
TUCKER, P., VANHOUCKE, V., VASUDEVAN, V., VIÉGAS, F.,
VINYALS, O., WARDEN, P., WATTENBERG, M., WICKE, M.,
YU, Y., AND ZHENG, X. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[5] ABOU-ASSALEH, T., CERCONE, N., KESELJ, V., AND SWEI-
DAN, R. N-gram-based detection of new malicious code. In
Computer Software and Applications Conference, 2004. COMP-
SAC 2004. Proceedings of the 28th Annual International (2004),
vol. 2, IEEE, pp. 41–42.

[6] ANDRIESSE, D., CHEN, X., VAN DER VEEN, V., SLOWINSKA,
A., AND BOS, H. An in-depth analysis of disassembly on full-
scale x86/x64 binaries. In USENIX Security Symposium (2016).

[7] BAO, T., BURKET, J., WOO, M., TURNER, R., AND BRUMLEY,
D. Byteweight: Learning to recognize functions in binary code.
In USENIX Security (2014), pp. 845–860.

[8] BENGIO, Y., DUCHARME, R., VINCENT, P., AND JAUVIN, C.
A neural probabilistic language model. Journal of machine learn-
ing research 3, Feb (2003), 1137–1155.

[9] BENGIO, Y., SIMARD, P., AND FRASCONI, P. Learning long-
term dependencies with gradient descent is difficult. IEEE trans-
actions on neural networks 5, 2 (1994), 157–166.

[10] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2e:
A platform for in-vivo multi-path analysis of software systems.
ACM SIGPLAN Notices 46, 3 (2011), 265–278.

[11] CHO, K., VAN MERRIËNBOER, B., GULCEHRE, C., BAH-
DANAU, D., BOUGARES, F., SCHWENK, H., AND BENGIO, Y.
Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP 2014) (2014).

[12] CHRISTODORESCU, M., JHA, S., SESHIA, S. A., SONG, D.,
AND BRYANT, R. E. Semantics-aware malware detection. In
2005 IEEE Symposium on Security and Privacy (S&P’05) (2005),
IEEE, pp. 32–46.

[13] DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LAN-
DAUER, T. K., AND HARSHMAN, R. Indexing by latent semantic
analysis. Journal of the American society for information science
41, 6 (1990), 391.

[14] ELWAZEER, K., ANAND, K., KOTHA, A., SMITHSON, M.,
AND BARUA, R. Scalable variable and data type detection in
a binary rewriter. ACM SIGPLAN Notices 48, 6 (2013), 51–60.

[15] FIRDAUSI, I., ERWIN, A., NUGROHO, A. S., ET AL. Analysis
of machine learning techniques used in behavior-based malware
detection. In Advances in Computing, Control and Telecommu-
nication Technologies (ACT), 2010 Second International Confer-
ence on (2010), IEEE, pp. 201–203.

[16] FRIEDMAN, S. E., AND MUSLINER, D. J. Automatically repair-
ing stripped executables with cfg microsurgery. In Self-Adaptive
and Self-Organizing Systems Workshops (SASOW), 2015 IEEE
International Conference on (2015), IEEE, pp. 102–107.

[17] GHORMLEY, D. P., RODRIGUES, S. H., PETROU, D., AND
ANDERSON, T. E. Slic: An extensibility system for commod-
ity operating systems. In USENIX Annual Technical Conference
(1998), vol. 98.

[18] HEMEL, A., KALLEBERG, K. T., VERMAAS, R., AND DOL-
STRA, E. Finding software license violations through binary code
clone detection. In Proceedings of the 8th Working Conference
on Mining Software Repositories (2011), ACM, pp. 63–72.

[19] HOTELLING, H. Analysis of a complex of statistical variables
into principal components. Journal of educational psychology
24, 6 (1933), 417.

[20] KOLTER, J. Z., AND MALOOF, M. A. Learning to detect mali-
cious executables in the wild. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and
data mining (2004), ACM, pp. 470–478.

https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
http://www.dwarfstd.org/
http://www.dwarfstd.org/

[21] KRUEGEL, C., KIRDA, E., MUTZ, D., ROBERTSON, W., AND
VIGNA, G. Automating mimicry attacks using static binary anal-
ysis. In Proceedings of the 14th conference on USENIX Security
Symposium-Volume 14 (2005), USENIX Association, pp. 11–11.

[22] KRUEGEL, C., ROBERTSON, W., AND VIGNA, G. Detecting
kernel-level rootkits through binary analysis. In Computer Secu-
rity Applications Conference, 2004. 20th Annual (2004), IEEE,
pp. 91–100.

[23] LEE, J., AVGERINOS, T., AND BRUMLEY, D. Tie: Principled
reverse engineering of types in binary programs.

[24] LEVY, O., GOLDBERG, Y., AND DAGAN, I. Improving distri-
butional similarity with lessons learned from word embeddings.
Transactions of the Association for Computational Linguistics 3
(2015), 211–225.

[25] MAATEN, L. V. D., AND HINTON, G. Visualizing data using t-
sne. Journal of Machine Learning Research 9, Nov (2008), 2579–
2605.

[26] MCCAMANT, S., AND MORRISETT, G. Evaluating sfi for a cisc
architecture. In Usenix Security (2006), vol. 6.

[27] MIKOLOV, T., CHEN, K., CORRADO, G., AND DEAN, J. Effi-
cient estimation of word representations in vector space. CoRR
abs/1301.3781 (2013).

[28] MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. S.,
AND DEAN, J. Distributed representations of words and phrases
and their compositionality. In Advances in neural information
processing systems (2013), pp. 3111–3119.

[29] MIKOLOV, T., YIH, W.-T., AND ZWEIG, G. Linguistic regulari-
ties in continuous space word representations. In Proceedings of
NAACL-HLT (2013), pp. 746–751.

[30] MOSKOVITCH, R., FEHER, C., TZACHAR, N., BERGER, E.,
GITELMAN, M., DOLEV, S., AND ELOVICI, Y. Unknown mal-
code detection using opcode representation. In Intelligence and
Security Informatics. Springer, 2008, pp. 204–215.

[31] NEWSOME, J., AND SONG, D. Dynamic taint analysis: Au-
tomatic detection, analysis, and signature generation of exploit
attacks on commodity software. In In In Proceedings of the 12th
Network and Distributed Systems Security Symposium (2005),
Citeseer.

[32] PENNINGTON, J., SOCHER, R., AND MANNING, C. D. Glove:
Global vectors for word representation. In EMNLP (2014),
vol. 14, pp. 1532–1543.

[33] PERKINS, J. H., KIM, S., LARSEN, S., AMARASINGHE, S.,
BACHRACH, J., CARBIN, M., PACHECO, C., SHERWOOD,
F., SIDIROGLOU, S., SULLIVAN, G., ET AL. Automatically
patching errors in deployed software. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles
(2009), ACM, pp. 87–102.

[34] PRAKASH, A., HU, X., AND YIN, H. vfguard: Strict protection
for virtual function calls in cots c++ binaries. In NDSS (2015).

[35] QIAO, RUI AND SEKAR, R. Effective Function Recovery for
COTS Binaries using Interface Verification. Tech. rep., Depart-
ment of Computer Science, Stony Brook University, May 2016.

[36] RIECK, K., HOLZ, T., WILLEMS, C., DÜSSEL, P., AND
LASKOV, P. Learning and classification of malware behavior.
In International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (2008), Springer, pp. 108–
125.

[37] ROSENBLUM, N. E., ZHU, X., MILLER, B. P., AND HUNT,
K. Learning to analyze binary computer code. In AAAI (2008),
pp. 798–804.

[38] SÆBJØRNSEN, A., WILLCOCK, J., PANAS, T., QUINLAN, D.,
AND SU, Z. Detecting code clones in binary executables. In Pro-
ceedings of the eighteenth international symposium on Software
testing and analysis (2009), ACM, pp. 117–128.

[39] SAXENA, P., POOSANKAM, P., MCCAMANT, S., AND SONG,
D. Loop-extended symbolic execution on binary programs. In
Proceedings of the eighteenth international symposium on Soft-
ware testing and analysis (2009), ACM, pp. 225–236.

[40] SAXENA, P., SEKAR, R., AND PURANIK, V. Efficient fine-
grained binary instrumentationwith applications to taint-tracking.
In Proceedings of the 6th annual IEEE/ACM international sym-
posium on Code generation and optimization (2008), ACM,
pp. 74–83.

[41] SCHULTE, E. M., WEIMER, W., AND FORREST, S. Repairing
cots router firmware without access to source code or test suites:
A case study in evolutionary software repair. In Proceedings of
the Companion Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation (2015), ACM, pp. 847–
854.

[42] SCHULTZ, M. G., ESKIN, E., ZADOK, F., AND STOLFO, S. J.
Data mining methods for detection of new malicious executa-
bles. In Security and Privacy, 2001. S&P 2001. Proceedings.
2001 IEEE Symposium on (2001), IEEE, pp. 38–49.

[43] SHIN, E. C. R., SONG, D., AND MOAZZEZI, R. Recognizing
functions in binaries with neural networks. In 24th USENIX Se-
curity Symposium (USENIX Security 15) (2015), pp. 611–626.

[44] SIMONYAN, K., VEDALDI, A., AND ZISSERMAN, A. Deep
inside convolutional networks: Visualising image classification
models and saliency maps. In ICLR Workshop (2014).

[45] SOCHER, R., LIN, C. C., MANNING, C., AND NG, A. Y. Pars-
ing natural scenes and natural language with recursive neural net-
works. In Proceedings of the 28th international conference on
machine learning (ICML-11) (2011), pp. 129–136.

[46] SOCHER, R., MANNING, C. D., AND NG, A. Y. Learning con-
tinuous phrase representations and syntactic parsing with recur-
sive neural networks. In Proceedings of the NIPS-2010 Deep
Learning and Unsupervised Feature Learning Workshop (2010),
pp. 1–9.

[47] SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER,
I., KANG, M. G., LIANG, Z., NEWSOME, J., POOSANKAM, P.,
AND SAXENA, P. Bitblaze: A new approach to computer security
via binary analysis. In International Conference on Information
Systems Security (2008), Springer, pp. 1–25.

[48] SRIVASTAVA, N., HINTON, G. E., KRIZHEVSKY, A.,
SUTSKEVER, I., AND SALAKHUTDINOV, R. Dropout: a sim-
ple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15, 1 (2014), 1929–1958.

[49] SUTSKEVER, I., VINYALS, O., AND LE, Q. V. Sequence to
sequence learning with neural networks. In Advances in neural
information processing systems (2014), pp. 3104–3112.

[50] TORGERSON, W. S. Multidimensional scaling: I. theory and
method. Psychometrika 17, 4 (1952), 401–419.

[51] VAN DER VEEN, V., GÖKTAS, E., CONTAG, M., PAWLOWSKI,
A., CHEN, X., RAWAT, S., BOS, H., HOLZ, T., ATHANA-
SOPOULOS, E., AND GIUFFRIDA, C. A tough call: Mitigating
advanced code-reuse attacks at the binary level. In IEEE Sympo-
sium on Security and Privacy (S&P) (2016).

[52] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z. Se-
curing untrusted code via compiler-agnostic binary rewriting. In
Proceedings of the 28th Annual Computer Security Applications
Conference (2012), ACM, pp. 299–308.

[53] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,
MCCAMANT, S., SONG, D., AND ZOU, W. Practical control
flow integrity and randomization for binary executables. In Secu-
rity and Privacy (SP), 2013 IEEE Symposium on (2013), IEEE,
pp. 559–573.

[54] ZHANG, M., AND SEKAR, R. Control flow integrity for cots
binaries. In Usenix Security (2013), vol. 13.

A Evaluation on the First Dataset

In this section, we will highlight the importance of hav-
ing a good dataset. To do this, we will look at the ac-
curacy evaluation using the dataset consisting of only
coreutils, binutils and findutils. Table 7 depicts the re-
sults of the evaluation. Qualitative analysis of the results
remains largely the same. For example, the high me-
dian and low minimum F1 indicates that EKLAVYA mis-
predicts for some cases of which we have verified that
these mis-predicted classes correspond to classes that are
under-represented in our training set. However, a key
difference we observed is the actual accuracy of the re-
sults. The accuracy of the smaller, unsanitized dataset is
consistently high even in cases where we expect other-
wise. For example, the F1 score for argument counting
task is consistently over 0.90 even across optimization
levels. We speculate that the difference in the accuracy
is due to the presence of similar functions across the bi-
naries. Manual inspection into the dataset confirms that
there is indeed significant shared code amongst the bina-
ries skewing the results. We find that it is not uncommon
for programs within the same package, or even across
packages to share the same static libraries or code. This
problem is especially pronounced in binaries within the
same package as these binaries typically share common
internal routines. Note that this problem exists for bina-
ries between packages too. There have been examples
of functions of binaries from different packages having
different names but is nearly identical in terms of the bi-
nary code. In our paper, we propose a simple method to
remove similar functions but a better way of quantifying
the similarities can be utilized to generate a more robust

dataset. Finally, we hope that this can be built upon into
a high quality, publicly available binary dataset where
future binary learning approaches can be evaluated on.

B Short Primer on t-SNE

To maintain the neighborhood identity, t-SNE first use
the conditional probabilities to represent the euclidean
distance between high-dimension dataset. For instance,
the similarity between two distinct instruction Ii and I j is
represented as the conditional probability pi j.

The conditional probability has following definition:

p j|i =
exp(−

∥∥Ii− I j
∥∥2

/(2σ2
i))

∑k 6=i exp(−‖Ii− Ik‖2 /(2σ2
i))

pi j =
p j|i + pi| j

2n

where n is the number of data points and σ is the vari-
ance of distribution which is centered at each data point
xi. Here, t-SNE determines the value of σi by binary
search with the given perplexity value.

The perplexity can be considered as the measurement
of valid number of neighbors, which is defined as:

perplexity(pi) = xH(pi)

H(pi) == ∑
j

p j|ilog2 p j|i

The second step is to minimize the difference between
the conditional probability between high-dimensional
dataset and low-dimensional dataset. For the conditional
probability qi j of low-dimensional data point yi and y j,
t-SNE applies similar method:

qi j =
(1+

∥∥yi− y j
∥∥2
)−1

∑k 6=m(1+‖yk− ym‖2)−1

Given the conditional probabilities, we can apply gra-
dient descent method to do the minimization task.

Table 7: Evaluation result on the first dataset for count recovery and type recovery tasks from callers and callees for
different optimization levels given different architectures.Columns 3-18 report the evaluation result of EKLAVYA on
test dataset with different optimization level ranging from O0 to O3. The median, max, and min F1 are calculated over
the reported labels, whereas the accuracy is calculated over the whole test set.

Arch Task O0 O1 O2 O3
Median

F1
Max
F1

Min
F1 Acc Median

F1
Max
F1

Min
F1 Acc Median

F1
Max
F1

Min
F1 Acc Median

F1
Max
F1

Min
F1 Acc

x86

Task1 0.978 0.994 0.923 0.983 0.960 0.991 0.925 0.972 0.968 0.997 0.938 0.977 0.967 0.998 0.936 0.979
Task2 0.984 0.993 0.952 0.986 0.965 0.988 0.933 0.967 0.970 0.982 0.948 0.973 0.966 0.982 0.942 0.972

Task3
1st 0.915 0.989 - 0.979 0.934 0.990 0.400 0.983 0.950 0.991 - 0.985 0.968 0.993 - 0.988
2nd 0.981 1.000 0.904 0.976 0.980 1.000 0.909 0.976 0.981 1.000 - 0.984 0.984 1.000 - 0.984
3rd 0.962 0.982 - 0.978 0.976 0.993 0.500 0.981 0.988 1.000 0.926 0.985 0.977 1.000 0.667 0.984

Task4
1st 0.983 0.994 0.857 0.989 0.994 1.000 0.945 0.990 0.997 1.000 0.750 0.994 0.972 0.997 0.857 0.994
2nd 0.980 1.000 0.975 0.987 0.989 1.000 0.976 0.988 0.984 0.996 - 0.993 0.985 0.996 - 0.993
3rd 0.986 1.000 0.714 0.991 0.983 0.998 0.727 0.989 0.985 1.000 0.800 0.989 0.986 1.000 0.667 0.989

x64

Task1 0.985 0.996 0.967 0.985 0.975 0.997 0.873 0.971 0.978 0.997 0.934 0.979 0.977 0.999 0.946 0.982
Task2 0.997 0.999 0.975 0.998 0.976 0.988 0.942 0.976 0.980 0.991 0.946 0.979 0.979 0.991 0.950 0.978

Task3
1st 0.934 0.992 0.667 0.984 0.938 0.992 0.400 0.985 0.954 0.993 - 0.987 0.969 0.994 - 0.989
2nd 0.984 1.000 0.975 0.980 0.985 1.000 0.978 0.982 0.985 1.000 - 0.986 0.987 0.990 - 0.990
3rd 0.970 0.991 0.667 0.987 0.988 0.997 0.800 0.991 0.993 1.000 0.988 0.992 0.995 1.000 0.990 0.994

Task4
1st 0.987 0.997 0.667 0.995 0.981 0.995 0.667 0.991 0.970 0.996 0.857 0.993 0.971 0.997 0.857 0.994
2nd 0.991 1.000 0.667 0.989 0.984 0.993 0.667 0.989 0.997 1.000 - 0.996 0.997 1.000 - 0.995
3rd 0.983 0.993 0.857 0.989 0.984 1.000 0.727 0.990 0.985 1.000 0.800 0.991 0.988 1.000 0.800 0.992

	Introduction
	Problem Overview
	Design
	Instruction Embedding Module
	Arguments Recovery Module
	Data Preprocessing & Implementation

	Explicability of Models
	Instruction Embedding
	RNNs for Argument Recovery

	Evaluation
	Dataset
	Accuracy
	Explicability of Models
	Instruction Semantics Extraction
	Auto-learning Conventions
	Network Mispredictions

	Related Work
	Conclusion
	Acknowledgements
	Evaluation on the First Dataset
	Short Primer on t-SNE

