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Abstract. A long-standing research problem is how to efficiently verify security
protocols with tamper-resistant global states, especially when the global states
evolve unboundedly. We propose a protocol specification framework, which fa-
cilitates explicit modeling of states and state transformations. On the basis of
that, we develop an algorithm for verifying security properties of protocols with
unbounded state-evolving, by tracking state transformation and checking the va-
lidity of the state-evolving traces. We prove the correctness of the verification
algorithm, implement both of the specification framework and the algorithm, and
evaluate our implementation using a number of stateful security protocols. The
experimental results show that our approach is both feasible and practically effi-
cient. Particularly, we have found a security flaw on the digital envelope protocol,
which cannot be detected with existing security protocol verifiers.

1 Introduction

Automatic formal verification is shown to be extremely useful in analyzing security pro-
tocols. Many security protocol verifiers have been developed, for instance, ProVerif [1],
AVISPA [2] and Maude-NPA [3]. However, such verifiers fail in analyzing security pro-
tocols with shared objects such as databases, registers and memory locations [4]. Real-
world examples include protocols involving security devices like IBM’s 4758 CCA
secure coprocessor platform and trusted platform module (TPM) [5] and protocols in-
volving databases for websites and key servers [6].

As these shared objects must be maintained externally w.r.t. sessions, the objects
are abstracted as global states; and protocols with these shared objects are refereed to
as stateful protocols. The global states have three properties: (1) mutable: the value
of a state can be updated, (2) unbounded evolving: the value updating of a state can
be unbounded, and (3) tamper-resistant: the value of a state can only be updated by
legitimate users. For instance, the following example is a simple stateful protocol, where
the security device is a shared object, i.e., a global state.

Example 1. Consider a security device SD (a variation of [6]), with a tamper-resistant
memory initialized to a constant ‘init’. SD supports three public operations: (1) reading:
the current value stored in the memory can be read; (2) updating: the memory with cur-
rent valuem, can be updated to h(m,x), where h is a hash function and x is an arbitrary
value; (3) decrypting: when receiving a ciphertext of the form enca(〈mf , sl, sr〉, pub),



i.e., a sequence of three values 〈mf , sl, sr〉 asymmetrically encrypted by SD’s public
key pub, SD decrypts it. According to SD’s current memory value m, it continues as
follows: if m = h(mf , left), SD sends out sl; if m = h(mf , right), SD sends out sr,
where left and right are two publicly known constants. Suppose Bob, a legitimate user,
generates two secrets sl and sr , reads the memory of SD as mf and sends a ciphertext
enca(〈mf , sl , sr 〉, pub) to SD. The SD ensures that a malicious Bob or any other attack-
ers can never know both ‘sl ’ and ‘sr ’ at the same time, since SD cannot be configured
as both ‘h(mf , left)’ and ‘h(mf , right)’ in one execution.

Verification of stateful protocols has been noticed as important and necessary but
challenging [5] even for a simple protocol as Example 1. In particular, ProVerif – one
of the popular and widely used verifier (e.g., used in [7–10]), reports false attacks for
some stateful protocols such as Example 1. Recently, an extension StatVerif is proposed,
which is specialized in verifying stateful protocols [6]. However, StatVerif can produce
false attacks when the state-value mutates (e.g., when the security device in Example 1
reboots) and cannot terminate when the state-value mutates unboundedly (e.g., when
the protocol in Example 1 keeps running).

We improve the Horn clause based verification (used in ProVerif and StatVerif)
for analyzing stateful protocols with unbounded global state evolving (i.e., unbounded
evolving steps with potentially unbounded values of a state). Horn clause reasoning
is inherently monotonic – once an event (the basic element in Horn clause) is true, it
cannot be set to false anymore, and thus does not work well for state-value mutation
in ProVerif and StatVerif [4]. Therefore, we propose to distinguish global states from
events. In particular, we explicitly model global states and their evolving transforma-
tions in specification. More importantly, on each step of reasoning in verification, we
record the state-evolving constraints; and when a target event is derived, we instantiate
a state-evolving trace satisfying the constraints in the derivation, i.e., the global states
can evolve following the trace such that the derivation could happen. In such a way, we
reduce the false attacks caused by global states’ unbounded evolving.

For example, we model the security device as a global state SD( ), which consists
of two parts: the name of the object (SD) used to distinguish different objects and its
pre-defined fields (‘ ’) used to distinguish attributes of the same object (the field ‘ ’ in-
dicates the memory of the security device). Each field is filled with a concrete value of
the attribute at any time, e.g., the memory field can be filled with ‘init’, h(mf , left), or
h(mf , right). Hence, SD(init), SD(h(mf , left)), and SD(h(mf , right)) are the pos-
sible instantiations of the global state SD( ). A particular instantiation of a global state
may be visited multiple times in one trace of the global state’s evolving. To distinguish
each appearance of an instantiation, we additionally add a distinct index ai to the in-
stantiation, and require all indexes in a trace to have chronological orders. We name an
instantiation of a global state and its index a snapshot. The snapshots of a global state
must form an evolving trace starting from an initial instantiation, based on the index’s
chronological order. We allow variables to appear in the snapshot to represent a set of
snapshots, and name the snapshot with variables a snapshot pattern.

In verification, we explicitly validate the evolving traces of the snapshots. Suppose
the adversary obtains messagem1 andm2 at the following snapshot pattern respectively(

SD(h(h(x1, x2), left)), a1
)
,
(
SD(h(h(h(init , right), x′1), left)), a2

)
,



Type Expression
Message(m) a[], b[], A[], B[],⊥ (name) [n], [k], [N ], [K] (nonce)

x, y, z,X, Y, Z (variable) f(m1,m2, ...,mn) (function)
Guard(g) m1 6 m2 (@σ,m1 · σ = m2) m1 6= m2 (inequivalence)
Event(e) know(m) (knowledge) new([n], l []) (generation)

init(m1, · · · ,mn) (initialization) accept(m1, · · · ,mn) (acceptance)
leak(m) (leakage)

State(s) name(id1, · · · , ids,m1, · · · ,mn) (state)

Table 1: Syntax Hierarchy

where variables x1, x2 and x′1 can be arbitrary values, a1 and a2 are indexes of the two
snapshots (any ordering is possible). In order to conduct the attack that the adversary
obtains both m1 and m2, the adversary tries to find an instantiation of the variables x1,
x2 and x′1 such that a valid trace exists for the security device to evolve from its initial
snapshot (SD(init), a0) to the above snapshots. We can see that the following evolving
trace exists, when x1 = h(init , right), and x2 = x′1 can be an arbitrary value,

SD(init)→ SD(h(init, right))→ SD(h(h(init , right), x2))

→ SD(h(h(h(init , right), x2), left)).

That is, the adversary tries to guide the protocol to perform the above global state
transformation, and then obtains both m1 and m2 at the last snapshot. However, if an
additional snapshot

(
SD(h(init , left)), a3) exists e.g., for the adversary to obtain m3,

then no valid evolving trace exists for the adversary to obtain m1, m2 and m3, since the
device memory cannot be set to SD(h(init , left)) and SD(h(init , right)) (contained in
the snapshot with index a2) no matter in which order in a single trace. Hence, the attack
is infeasible for obtaining all three pieces of information.

We introduce the formal modeling of global states and their transformations in the
subsequent section, then propose our verification algorithm in Section 3, and finally
present our experimental results in Section 4 and discuss related works in Section 5.

2 Protocol Specification

To verify whether a protocol satisfies a security property, an analyzer needs to formally
specify the protocol (without states in Section 2.1) and the property (Section 2.3). The
key part is how the global states and state transformations are formalized (Section 2.2).

2.1 Preliminary – Specification Syntax without States

As in most verifiers, messages – the basic elements in protocols, are modeled by names,
nonces, variables and functions (first row in Table 1). Names model constants; nonces
are freshly generated random numbers; variables represent memory locations for hold-
ing messages, and functions can be applied to a sequence of messages. All messages
are assumed to be well-typed and variables can be instantiated only once.

The relations between messages are as follows. A message containing variables can
be instantiated by a substitution, e.g., σ = {x1 7→ m1, · · · , xn 7→ mn} instantiates the



variables x1, · · · , xn with the messages m1, · · · ,mn respectively. Given two messages
m1 and m2, when there exists a substitution σ such that m1 · σ = m2, we say that
m1 is unified to m2, denoted as m1  σ m2. When m1 should not be unified to m2,
we write m1 6 m2. For instance, when a message m should not be a tuple, we write
m 6 〈m1,m2〉. Given two messages m1 and m2, if there exists a substitution σ such
that m1 · σ = m2 · σ, we say m1 and m2 are unifiable and σ is a unifier of m1 and m2,
denoted as m1 =σ m2. If m1 and m2 are unifiable, the most general unifier of m1 and
m2 is a unifier σ such that for any unifier σ′ ofm1 andm2 there exists a substitution σ′′

such that σ′ = σ · σ′′. When m1 and m2 should not be unifiable (a.k.a., inequivalence),
we write m1 6= m2. For instance, if the current branch condition is that the protocol
responder r is not Bob, we write r 6= Bob. m1 6 m2 and m1 6= m2 form the guarding
conditions (second row in Table 1) i.e., whether an rule (defined later) can be applied.

Based on the above definitions, a protocol is modeled as a set of logical rules, similar
as in ProVerif [1] and Tamarin [11]. The basic elements of a rule are events. An event
is applying a predicate to a message sequence. The following two events are used in the
protocol specification:

– event know(m) means that the adversary knows the message m; and the
– event new([n], l[]) models that a nonce [n] (the concrete value of the nonce) is

freshly generated at the location l[] (symbolic value used to distinguish the nonce
from other nonces in a specification) by a legitimate protocol participant. Note that
nonce [n1] . . . [nk] with the same location l[] are k concrete generation of the same
nonce specification in k different sessions.

The intuition is that a protocol and its involved cryptographic primitives can be treated
as oracles accessible to the adversary. The adversary having the required messages ob-
tains the corresponding outputs. Once receiving an input, the oracle generates nonces,
processes messages and outputs messages according to its specification. Each oracle is
modeled as a rule [ G ] H −[ ]→ e, where G is a set of guard conditions, H is a set of
premise events, and e is a conclusion event, meaning that if the guard conditions in G
and the premise events in H are satisfied, then the conclusion event in e is satisfiable.
Cryptographic primitives. The premises of a cryptographic primitive are a set of know
events specifying the input parameters, and the conclusion is one know event repre-
senting the generated result, e.g., the asymmetric encryption and decryption used in
Example 1 is modeled as follows, where m, pub and sk are variables.

know(m), know(pub) −[ ]→ know(enca(m, pub)) (1)

know(enca(m, pk(sk))), know(sk) −[ ]→ know(m) (2)

Protocol. A pair of the message input and the subsequent output of a participant are
specified as an oracle as well. The difference is that we need to additionally consider
the nonce generation and potential guard conditions. Whenever a nonce at position l[]
is generated in a protocol, we model the nonce generation by adding a new([d], l[])
event to H of the oracle. Whenever m1 6= m2 or m1 6 m2 conditions are required
(which rarely happen in protocol specification) in the current execution branch, we add
the conditions into G. For example, bob’s behavior in Example 1 can be modeled as

new([bobl], lsl []),new([bobr], lsr []), know(mf ) −[ ]→
know(enca(〈mf , [bobl ], [bobr ]〉, pk(sksd []))) (3)



2.2 Protocol Specification with States

As addressed in the introduction, we explicitly model the global states of a protocol as
well as their transformations. There are two ways that the states are involved. First, we
use snapshots to represent at which state a rule can be applied. Second, we use a rule to
model how the state transforms.

For the first case, we introduce a set of snapshots S into the rule to denote the
involved states, use M to record at which snapshot each event happens (each element
in M is of the form ei :: aj with ei ∈ H and aj being the index of a snapshot in S), and
use O to denote the constraints on chronically orders between snapshots (each element
in O is of the form aiR aj with ai and aj being indexes of snapshots in S). We define
three types of ordering relations between two snapshots ai and aj in R: (1) ai ≤ aj
means that ai appears earlier than aj ; (2) ailaj means that the shared object is modified
once between ai and aj ; (3) ai ∼ aj means that the shared object remains unchanged
between ai and aj . A rule now is of the form [ G ] H : M −[ S : O ]→ e where e is
an event. We name such rules as state consistent rules. For example, depending on the
configuration, the SD replies sl or sr in Example 1, and the behavior of replying sl is
modeled as follows:

know(enca(〈mf , sl, sr〉, pk(sksd [])))) 1 : { 1 :: a1} −[
(
SD(init []), a0

)
,(

SD(h(mf , left [])), a1
)
: {a0 ≤ a1} ]→ know(sl) (4)

where 1 is a reference to the corresponding premise event inH , so that we do not need
to repeat the entire event in M , in order to save space and have a clearer presentation.
The rule describes that if (1) the SD reads in a ciphertext enca(〈mf , sl, sr〉, pk(sksd [])))
at snapshot a1, which is denoted by an event know(enca(〈mf , sl, sr〉, pk(sksd [])))),
and the mapping between the event and a set of snapshots 1 :: {a1} where 1 refers
to the know event; and (2) snapshot a1 is reachable, i.e., there should be a valid trace
from the initial state SD(init []) to the current state SD(h(mf , left [])), which is denoted
by the two snapshots

(
SD(init []), a0

)
,
(
SD(h(mf , left [])), a1

)
and their ordering con-

straints {a0 ≤ a1}, meaning that a0 needs to appear earlier than a1 in a trace; then (3)
the SD returns sl, since the current configuration is h(mf , left []). Another type of state
consistent rule is that the adversary may be able to obtain information from the states,
e.g., the reading operation in Example 1 can be modeled as

−[
(
SD(init []), a0),

(
SD(m), a2

)
: {a0 ≤ a2} ]→ know(m) (5)

meaning that if a2 is reachable (denoted by
(
SD(init []), a0),

(
SD(m), a2

)
: {a0 ≤

a2} with a0 being the initial state), then the adversary can read the current value in the
memory, modeled as know(m).

For the second case, we introduce the state transferring rules of the form [ G ] H :
M −[ S : O ]→ T where T is a set of state transformations (a sequence of two
snapshots). For example, the SD can be updated in Example 1, which is modeled as

know(x) 2 : { 2 :: a3} −[
(
SD(init []), a0

)
,
(
SD(m), a3

)
: {a0 ≤ a3} ]→

〈
(
SD(m), a3

)
,
(
SD(h(m,x)), a4)〉 (6)

meaning that the adversary who has x at state SD(m) can update the SD to be h(m,x),
where 〈

(
SD(m), a3

)
,
(
SD(h(m,x)), a4)〉models the transformation of SD from snap-

shot a3 to snapshot a4.



2.3 Security Properties

We focus on two types of security properties: authentication and secrecy. To formalize
authentication properties, we add the following two events: When the protocol initiator
starts a protocol run, we add a corresponding init event (defined in Table 1) into H;
when the protocol responder accepts a protocol run, we add a corresponding accept
event (defined in Table 1) into C. Then authentication is modeled as correspondence
between the init and accept events (as in most verifiers such as ProVerif and StatVerif).

Definition 1 (Authentication). In a security protocol, an authentication property holds,
i.e., correspondence between an accept event and an init event with agreed arguments
holds, if and only if for every occurrence of event accept(m1, · · · ,mn), the correspond-
ing init(m1, · · · ,mn) event must be engaged before, and all the required snapshots
form a valid evolving trace, denoted as accept(m1, · · · ,mn)⇐ init(m1, · · · ,mn).

The secrecy property specifies that the adversary cannot obtain certain secret mes-
sages. It is defined by introducing a rule with the leak event (defined in Table 1) as the
conclusion. If secrecy is preserved in a protocol, the leak event should not be reachable.

Definition 2 (Secrecy). In a protocol, secrecy holds for a message m if and only if
leak(m) is not reachable after adding new1, · · · ,newn, know(m) −[ ]→ leak(m),
where new1, · · · ,newn are the nonce generation events for all nonces in m.

Intuitively, if the adversary knows the message know(m), the messagem is leaked; and
the new events are used to accurately specify the nonces in m.

As commonly assumed, we consider an active network attacker who can intercept
all communications, compute new messages, generate new nonces and send the mes-
sages he obtained. For computation, he can use all the publicly available functions, e.g.,
encryption, decryption and concatenation. He can also designate honest participants to
initiate new protocol runs and to take part in the protocol whenever he needs to.

3 Verification Algorithm

Given a set of rulesBinit specifying a protocol (including stateless rules, state consistent
rules and state transferring rules) and a property as described in Section 2, the verifi-
cation aims to find the derivations of the target event specified in the property (accept
event for authentication and leak for secrecy) using the rules in Binit , and then check
whether a derivation contradicts the specified property.

To derive a target event using a set of rules, directly reasoning on the rules would not
terminate, e.g., repeatedly applying Rule (1) leads to increasingly complex terms [1, 6].
To improve efficiency and help termination, we follow the approach in [1, 6] – provid-
ing an algorithm to guide the reasoning. Hence, similar to [1], we construct a rule base
B, in the first phase, by combining pairs of rules in Binit , which may infer new rules.
Then we perform query searching in B to find valid attacks in the second phase. The
key idea of our rule-base construction is as follow: If a rule’s premise events are triv-
ially satisfiable (events in N ), we can use its conclusion to fulfill other rules’ complex
premises (events not in N ). This is called rule composition. By applying rule compo-
sition repeatedly on existing rules until saturation, we can then safely remove the rules



with complex premise events, because whenever the rule with complex premises is used
in the reasoning, it can be replaced with an alternative rule (often generated by compo-
sition) with all premise events in N . In addition, when a new rule is inferred by rule
composition, rule implication operation is applied to check whether this rule is neces-
sary to be added to B. If the new rule is implied by existing rules then it is not necessary
to add it. These two operations are shown to be efficient in avoiding complex terms and
accelerating the verification process in ProVerif.

We generally follow the above procedure as proposed in ProVerif, but we need to
add snapshot trace validation in rule composition and rule implication. Intuitively, rule
composition applies one rule after another. Thus, regarding states, we ensure that (1)
the snapshot ordering constraints in both rules are still preserved and (2) the ordering
between the two rules are added to the ordering constraints in the resulting new rule.
For rule implication, regarding states, we need to define that the ordering constraints of
snapshots in a rule is less than the constraints in another one, i.e., whenever the second
rule is applicable, the first rule is also applicable.

In addition, we try to concretize the snapshot traces in a rule if possible, to narrow
the possible traces satisfying the ordering constraints in the rule, since it is sufficient as
long as one trace exists to reach the conclusion event. To do so, we introduce two addi-
tional operations: state unification and state transformation. The intuition is as follows:
Any two snapshots appear in a rule may have three kinds of relations: (1) they are from
different objects; (2) they are of the same object, and the object is not modified between
two snapshots; (3) they are of the same object, and the object is modified between the
two snapshots. In the first case, we do not need to search for a valid trace between the
two snapshots. In the second case, we try to unify them to the same value, i.e., state
unification. In the third case, we try to find the transformations between them, i.e., state
transformation. Note that these two operations only need to be applied to rules (1) with
its premise events in N , since those with premise event not in N will be eventually
removed; and (2) with their conclusion events be leak event or accept event, since they
are the query goals.

3.1 Preliminary Definitions

We first define the set N as the following three types of events, similar to ProVerif: (1)
initializing a new protocol (an init event), (2) generating a fresh nonce (a new event),
(3) knowing an arbitrary value (a know(x) event where x is a variable).

Recall that a rule may contain a set of ordering constraintsO specified using relation
R defined in Section 2, we define O as closed if the following properties hold.

ai l aj , aj ∼ ak ∈ O ⇒ ai l ak ∈ O
ai l aj , ak ∼ aj ∈ O ⇒ ai l ak ∈ O
ai ∼ aj , aj l ak ∈ O ⇒ ai l ak ∈ O
aj ∼ ai, aj l ak ∈ O ⇒ ai l ak ∈ O

ai l aj ∈ O ⇒ ai ≤ aj ∈ O
ai ∼ aj ∈ O ⇒ ai ≤ aj ∈ O
ai ∼ aj , aj ∼ ak ∈ O ⇒ ai ∼ ak ∈ O
ai ≤ aj , aj ≤ ak ∈ O ⇒ ai ≤ ak ∈ O

In verification, we first ensure the O in every rule is closed using the above definition.
Given two sets of ordering constraints O and O′, we use O ] O′ to denote their closed
union. When all snapshots of the same object are connected by l and ∼ in an acyclic
trace (i.e., no uncertain relation ≤), we conclude that a valid evolving trace is found.



Let R = [ G ] H : M −[ S : O ]→ V and R′ = [ G′ ]H ′ : M ′ −[ S′ : O′ ]→ V ′ be
two rules. (1) ‘R having less restricted mappings than R′’ means that if some premise
events in R are required to be satisfied at a snapshot (s, aj), the same premise events
need to be satisfied at an earlier snapshot (s′, ai) in R′ (ai ≤ aj). This indicates that R′

has more restrictions on the satisfaction of the premises than R. This requirement can
be formally captured by the joint operator ‘∗’.

M ∗O = {〈ei, aj〉 | ei :: ak ∈M ∧ aj ≤ ak ∈ O}

For every event ei,M ∗O captures all the snapshots later than the snapshot at which the
event should be satisfied. The larger the set M ∗ O is, the earlier the event ei needs to
be satisfied. Hence, (M ∗O) ⊆ (M ′ ∗O′) captures that R has less restricted mappings.
(2) ‘R having more organized ordering than R′’ means that for every two snapshots
(s1, ai) and (s2, aj) appearing in bothR andR′, the ordering of the two snapshots inR
is more concrete (less uncertain) than in R′. Since, ai l aj or ai ∼ aj is more concrete
than ai ≤ aj , given an ordering O, we measure its uncertainty (less concrete) with

δ(O) = {ai ≤ aj | ai ≤ aj ∈ O} − {at ≤ ak |at l ak ∈ O ∨ at ∼ ak ∈ O}.

O is more organized than O′ if and only if δ(O) ⊆ δ(O′). δ(O) captures the uncertain
ordering relations between every two snapshots in the snapshot setO. The larger the set
δ(O′) is, the more uncertain the ordering O′ is, and hence the less organized R′ is.

3.2 Rule Operations

Similar to ProVerif, when the premise of a rule contains an event not in N , we try to
fulfill/unify the event with a conclusion of other state consistent rules whose premises
are in N by rule composition.

Definition 3 (Rule Composition). Let R = [ G ] H : M −[ S : O ]→ e be a state
consistent rule and R′ = [ G′ ] H ′ : M ′ −[ S′ : O′ ]→ V be either a state consistent
rule or a state transferring rule. If there exists e0 ∈ H ′ such that e =σ e0, then R with
R′ can be composed on the event e0, and the newly composed rule is defined as

R ◦e0 R
′ =

(
[ G ∪ G′ ](H ∪ (H ′ − {e0})) :M ∪M ′ ∪M0

−[ (S ∪ S′) : O ]O′ ]O0 ]→ V
)
· σ,

M0 = {ei :: ak|ei ∈ H, e0 :: ak ∈M ′}, O0 = {ai ≤ aj | (s, ai) ∈ S, e0 :: aj ∈M ′}.

In the resulting rule R ◦e0 R′, the guard condition G ∪ G′, premise events H ∪
(H ′ − {e0}) and conclusion event V are straightforward, following the same idea as
in ProVerif. Regarding states, S ∪ S′, M ∪M ′ and O ] O′ capture that the snapshots,
event-snapshot mapping and ordering constraints in both rules need to be satisfied in
the resulting rule. For event-snapshot mapping, we additionally require that any event
ei ∈ H needs to map to the snapshots of e0 (i.e. ak), such that R can be applied at state
ak. Otherwise even if e and e0 are unifiable, after applying R, R′ cannot be applicable,
due to that the state of e0 is not satisfied. This requirement is captured by M0. For the
snapshot ordering, we additionally require that any snapshot in S should appear before
the snapshot of e0, capturing thatR is applied beforeR′ in order to obtain e (or e0), and
thus the snapshots of R should appear before the snapshot for e0, as modeled in O0.



Given two rules R and R′, if R (1) has the same conclusion as R′ but requires less
guard conditions and less premises (the same as in ProVerif), (2) has less snapshots, less
restricted mappings and more organized ordering (additional requirements regarding
states), we say that R implies R′, denoted as R⇒ R′.

Definition 4 (Rule Implication). Let R = [ G ] H : M −[ S : O ]→ V and R′ =
[ G′ ]H ′ : M ′ −[ S′ : O′ ]→ V ′ be two rules. We define R implies R′ denoted as
R⇒ R′ if and only if ∃σ,

(1)
(
(V · σ = V ′) ∧ (G · σ ⊆ G′) ∧ (H · σ ⊆ H ′)

)
∧

(2)
(
(S · σ ⊆ S′) ∧ ((M ∗O) · σ ⊆ (M ′ ∗O′)) ∧ (δ(O) · σ ⊆ δ(O′))

)
.

By now, we updated the rule composition and rule implication with additional re-
quirements on states. Hereafter we introduce operations to concertize a snapshot trace.

Given two snapshots (s1, ai), (s2, aj) of the same object in a rule, if s1 and s2
are unifiable (s1 =σ s2), the simplest trace between s1 and s2 is to unify them as
one snapshot, capturing the situation where the object is not modified between the two
snapshot (formally ai ∼ aj or aj ∼ ai).
Definition 5 (State Unification). Let R = [ G ] H : M −[ S : O ]→ e be a state
consistent rule. Assume there exist two distinct snapshots (s1, ai), (s2, aj) ∈ S such
that s1 =σ s2, then we can unify the two snapshots in rule R; and the state unification
of s1 to s2 on R is defined as

R[ai ∼ aj ] =
(
[ G ]H :M −[ S : O ] {ai ∼ aj} ]→ e

)
· σ.

Note that if s1 =σ s2, both R[ai ∼ aj ] and R[ai ∼ aj ] will be generated.
Given a state consistent rule R = [ G ] H : M −[ S : O ]→ e, if a snapshot

(s, ai) ∈ S does not have an immediate previous snapshot defined inO, i.e., @(s′, aj) ∈
S : aj l ai ∈ O ∨ aj ∼ ai ∈ O, we try to apply a state transferring rule to find an
immediate previous snapshot. Given a rule R, we use η(S,O) to denote the snapshots
in S whose previous snapshots have not been found, i.e.,

η(S,O) = S − {(s, ai) | aj l ai ∈ O ∨ aj ∼ ai ∈ O}.

Definition 6 (State Transformation). Let R = [ G ] H : M −[ S : O ]→ T be
a state transferring rule and R′ = [ G′ ] H ′ : M ′ −[ S′ : O′ ]→ e be a state
consistent rule. Assume there is an injective function f : T → η(S′, O′), such that
∀t = 〈(s, ai), (s′, aj)〉 ∈ T, s′ =σ s′′ if f(t) = (s′′, ak). The state transformation of
applying R to R′ on f is

R ./fR
′ =

(
[ G ∪G′ ] (H ∪H ′) :M ∪M ′ −[ (S ∪ S′) : O ]O′ ]O0 ]O′′ ]→ e

)
· σ,

where O0 = {ai l ak | 〈(s, ai), (s′, aj)〉 ∈ T, f(t) = (s′′, ak)}, and O′′ = {at ≤
ai |at ≤ ak ∈ O′, t = 〈(s, ai), (s′, aj)〉 ∈ T, f(t) = (s′′, ak)}.
O0 captures that for a state transformation 〈(s, ai), (s′, aj)〉 in T and a function f(t) =
(s′′, ak) ∈ S′, ai did exact one transformation to ak, because the snapshot (s′, aj) will
not appear in the new rule, as it is unified with (s′′, ak). O′′ enforces the snapshots
(e.g., at) that appear earlier than ak in O′ to be also earlier than ai in the new rule. The
intuition is that there is an immediate concrete transformation from ai to ak (ai l ak),
but the relation between at and ak is rather uncertain; in this case, we try to align the
three snapshots as at ≤ ai l ak. Note it is sufficient to find one trace among at, ai and
ak. Applying the above operations leads to new rules, some of which may not be valid.



Definition 7 (Rule Validation). A rule R = [ G ] H : M −[ S : O ]→ V is valid
if and only if (1) V /∈ H; (2) O is closed and ∀ ai ≤ aj ∈ O : aj ≤ ai 6∈ O;
(3) ∀ know(x), know(y) ∈ H: x 6≡ y, and ∀ init(x), init(y) ∈ H: x 6≡ y, and
∀ new([n], l[]), new([n′], l′[]) ∈ H: n 6≡ n′ ∨ l 6≡ l′; (4) ∀ ei :: aj ∈ M : ei ∈
H ∧ ∃(s, aj) ∈ S, and ∀ aiRaj ∈ O : ∃(s, ai) ∈ S ∧ ∃(s′, aj) ∈ S.
The rule validation procedure of R is denoted as

R ⇓=
(
merge(H) : clear(M) −[ S : clear(O) ]→ V

)
· σ

where function merge removes the duplicated premises, function clear removes refer-
ences of non-existing events and snapshots, σ is the most general unifier such that any
two redundant events can be merged or unified.

We use x 6≡ y to denote that x is not syntactically equal to y. The definition says that a
rule [ G ] H : M −[ S : O ]→ V (V is an event e or a set of state transformations T ) is
valid if and only if it satisfies: (1) If V is an event, V should not be in H; (2) O should
be closed and contains no contradictory constraints; (3) there is no redundant events
(two events modeling the same thing) in H (redundant events should be unified and
merged); and (4) all mappings in M and all orderings in O do not involve non-existing
events or snapshots (non-existing events or snapshots should be removed).

Heuristics. If provided with a snapshot pattern, we try to instantiate the snapshots in
a rule with the pattern to accelerate the process of finding a concrete snapshot trace.
Consider a state consistent rule R = [ G ] H : M −[ S : O ]→ e, where H ⊆ N ,
e = know(x) and x is a variable. This implies that x does not appear in H; otherwise,
the rule is not valid. Hence, x must be originated from S, for example the reading
operation supported by the security device in Example 1. Since know(x) ∈ N , we
cannot composeR with other rules. To guide the verification, we try to apply the pattern
to the states, so that R can be composed with other rules.

Definition 8 (State Instantiation). Let R = [ G ] H : M −[ S : O ]→ e be a state
consistent rule. Given a snapshot (s, ai) ∈ S and its pattern p such that s =σ p, we
define the state instantiation of the snapshot s with its pattern p as follows

R[s 7→ p] =
(
[ G ]H :M −[ S : O ]→ e

)
· σ.

3.3 Rule Base Construction

Using the above rule operations, we develop an algorithm to construct the rule base (Al-
gorithm 1). The algorithm guides the verification by selecting proper rules to perform
rule operations. Given an initial set of rules Binit as input, the algorithm returns the rule
base B as output. In the algorithm, we first add the rules in Binit to the set rules (line
8−11). During this procedure, redundant rules are removed (line 1−6). Then we apply
rule operations on the rules in rules and obtain a saturated rule set Bv (line 13 − 35).
The algorithm defines which operation is applied to which types of rules. Finally, we
select those rules in Bv with premises in N and conclusion event being accept or leak
to form B. Now we prove the correctness of the algorithm.

Theorem 1. Any accept or leak event e that is derivable from the initial rules Binit if
and only if it is derivable from the knowledge base B constructed in Algorithm 1.



Algorithm 1: Rule Base Construction
Input : Binit - initial rules
Output: B - knowledge base

1 Procedure add(R, rules)
2 for Rb ∈ rules do
3 if Rb ⇒ R then return rules;
4 if R⇒ Rb then rules = rules − {Rb};
5 end
6 return {R} ∪ rules;
7 Algorithm
8 rules = ∅;
9 for R ∈ Binit do

10 rules = add(R, rules);
11 end
12 repeat
13 Case 1. Rule Composition
14 Select a state consistent rule R = H −[ S : O ]→ e
15 and a general rule R′ = H ′ −[ S′ : O′ ]→ V from rules such that
16 1. H ⊆ N ; 2. ∃e0 ∈ H ′ : e0 6∈ N ;
17 rules = add((R ◦e0 R′) ⇓, rules);
18 Case 2. State Unification
19 Select a state consistent rule R = H −[ S : O ]→ e from rules such that
20 1. H ⊆ N and e is an accept event or a leak event;
21 2. ∃s, s′ ∈ S, s and s′ can be unified;
22 rules = add(R[s ∼ s′] ⇓, rules);
23 Case 3. State Transformation
24 Select a state transferring rule R = H −[ S : O ]→ T
25 and a state consistent rule R′ = H ′ −[ S′ : O′ ]→ e from rules such that
26 1. H ∪H ′ ⊆ N and e is an accept event or a leak event;
27 2. ∃f,∀t ∈ T, f(t) = (s, aj), @ai l aj ∈ S′;
28 rules = add((R ./f R

′) ⇓, rules);
29 Case 4. State Instantiation
30 Select a state consistent rule R = H −[ S : O ]→ e from rules such that
31 1. H ⊆ N , e ∈ N ; 2. ∃s ∈ S, s has pattern p;
32 rules = add(R[s 7→ p] ⇓, rules);
33 until fix-point is reached;
34 Bv = rules;
35 return B = {R = H −[ S : O ]→ e ∈ rules | ∀p ∈ H, p ∈

N ∧ e is an accept event or a leak event};

The basic idea is as follows: Whenever there is an attack using the rules in Binit, there
is an attack using the rules in Bv , since there is no rule missing. Then we only need
to show that the selected rules (rules in Bv) would not miss an attack. To do so, we
first introduce the representation of an attack – the derivation tree for an leak or accept
event from a set of rules as follows:
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Fig. 1: Rule in derivation tree

Definition 9 (Derivation Tree). A closed rule is a rule with its conclusion initiated by
its premises and states. Let Bt be a set of closed rules and et be an event, et is derivable
from Bt if and only if there exists a finite derivation tree satisfying the following.
1. Every edge in the tree is labeled by an event e, a set of snapshots S = {(s1, a1), . . . ,

(sl, al)} and an index i, and ∀(si, ai), (sj , aj) ∈ S: ai 6∼ aj .
2. Every node is labeled by a rule in Bt.
3. If a node is labeled by a state consistent rule R as in Figure 1a, then we have
R ⇒ H : M −[ S0 ∪ S : O ]→ e where H = {e1, · · · , en}, M is defined as
∀e ∈ H : e :: {a1, . . . , al}, O = {a0 ≤ ai|(s0, a0) ∈ S0, (si, ai) ∈ S} with
S0 being the set of initial snapshot of each object; and the indexes labeled on the
outgoing edge and incoming edges (Figure 1a) are the same.

4. If a node is labeled by a state transferring rule R as in Figure 1b, there exists a
set of state transformation T such that R ⇒ H : M −[ S0 ∪ S : O ]→ T where
H = {e1, · · · , en}, M is defined as ∀e ∈ H : e :: {a1, . . . , al}, O = {a0 ≤
ai|(s0, a0) ∈ S0, (si, ai) ∈ S} with S0 being the initial snapshots; let Spre =
{(si, ai)|〈(si, ai), (sj , aj)〉 ∈ T} and Spost = {(sj , aj)|〈(si, ai), (sj , aj)〉 ∈ T},
we have Spre ⊆ S; and in Figure 1b, S′ = S − Spre + Spost, e can be any event
that is satisfied at S, the indexes labeled on the incoming edges equal to the index
labeled on the outgoing edge plus 1.

5. Outgoing edge of the root is labeled by the event et and the index 1.
6. Incoming edges of the leaves are only labeled by events in N with the same index.
7. The edges with the same index have the same state.

Then we prove that whenever there is a derivation tree for an accept or a leak event
using rules in Bv , there is a derivation for the event using the rule base B created using
Algorithm 1, and vice versa. The key part in the proof is the following Lemma which
demonstrates how to replace two directly connected nodes in the derivation tree with
one node labeled by a composite rule with the same state and index. Detailed proofs of
the theorem and lemma are available online [12].

Lemma 1. If Ro ◦e0 R′
o is valid, Rt ⇒ Ro and R′

t ⇒ R′
o, then either there exists e′

such that Rt ◦e′ R′
t is valid and Rt ◦e′ R′

t ⇒ Ro ◦e0 R′
o, or R′

t ⇒ Ro ◦e0 R′
o.

3.4 Query Searching

The query of authentication property and secrecy property is to find a rule that disproves
the properties. A rule disproves non-injective authentication if and only if its conclusion



secret(s, 
pk, p)

Phase 1

Phase 2

alice(n)

extend(n) with Encrypted Session

pk and certificate

data s encrypted by pkey

tpm(bob, x)

tpm(bob, h(x, n))

tpm(bob, p)

tpm(bob, 
h(p, open))

OR
tpm(bob, 

h(p, revoke))

generate key pair <sk, pk>
lock to h(p, open)

create secret s

Alice Bob

create nonce  n

PCR = p PCR = p

option 1:
extend(open)

read s
option 2:

extend(revoke)
send PCR quote to Alice

Fig. 2: The DEP protocol

Alice Bob

create nonce  n

extend(n) with Encrypted Session

PCR = b PCR = b

create bind key <sk, pk>
locked to h(b, open)

pk and certificate

data s encrypted by pk

extend(open)
read s

Phase 1

Phase 2.1

Reboot

extend(revoke)
send PCR quote to Alice

Reboot

Phase 2.2

create secret s

Fig. 3: An attack on DEP

event is an accept event, while it does not require the corresponding init event in its
premises. A rule disproves secrecy when the leak event is reachable.

Definition 10. Authentication Counterexample. A rule R = [ G ]H :M −[ S : O ]→
e disproves authentication property Qn := accept ⇐ init denoted as Qn 0 R if and
only if G 6= false , e and accept are unifiable with the most general unifier σ such that
∀e′ ∈ H, e′ ∈ N and ∀σ′ : (init · σ · σ′ /∈ H · σ).

Definition 11. Secrecy Contradiction. A rule R = [ G ] H : M −[ S : O ]→ e
disproves secrecy property Qs := leak(m) denoted as Qs 0 R if and only if ∀e′ ∈ H :
e′ ∈ N , G 6= false , ∃σ, leak(x) · σ = e.

If we cannot find any counterexample during the verification, when our algorithm
terminates, the protocol satisfies the property. For a detailed proof, see [12].

Theorem 2. Let B be the rule base generated in Algorithm 1. When Q is a secrecy
query or an authentication query, there exists R derivable from Binit such that Q 0 R
if and only if there exists R′ ∈ B such that Q 0 R′.

4 Case Studies

We have implemented the proposed approach in a tool named SSPA (Stateful Security
Protocol Analyzer). Using SSPA, we have successfully verified Example 1, three ver-
sions of the digital envelope protocols [13, 7] and the Bitlocker protocol [14] to show its
applicability to stateful protocols. To show that SSPA also works for protocols without
global states, we have verified two versions of the Needham-Schroeder public key pro-
tocol [15, 16]. The tool detected a security flaw in the digital envelope protocol (DEP)
when the trusted platform module (TPM) reset is enabled. The tool, all protocol mod-
els and their evaluation results are available online at [17]. In the remaining part, we
provide more details on the DEP protocol and the detected security flaw.



DEP consists of two phases as shown in Figure 2. In the first phase, Alice generates
a secret nonce [n] and uses it to extend a given PCR in Bob’s TPM with an encrypted
session (detailed TPM explanation can be found at [12]). Since the nonce [n] is secret,
Bob cannot re-enter the current state of the TPM if he makes any changes to the given
PCR. In the second phase, Alice and Bob read the value of the given PCR as p and Bob
creates a binding key pair 〈[sk ], pk([sk ])〉 locked to the PCR value h(p, open[]) and
sends the public binding key together with the key certificate to Alice, where open[] is
an agreed constant in the protocol. This means that the generated binding key can be
used only if the value open[] is first extended to the PCR of value p. After checking the
correctness of the certificate, Alice encrypts the data [s] with the public key pk([sk ])
and sends it back to Bob. Later, Bob can either open the digital envelope by extending
the PCR with open[] or revoke his right to open the envelope by extending another pre-
agreed constant revoke[]. If Bob revokes his right, the quote of PCR value h(p, revoke[])
can be used to prove Bob’s revoking action.

Using our approach and the implemented tool, we have found a cold-boot attack for
this DEP when the TPM rebooting is allowed (see Figure 3). When the TPM rebooting
is allowed, Bob can reboot his TPM immediately after the first phase. Bob can reset the
PCR value, e.g., to b. As a consequence, the secret nonce [n] extended to the PCR is
lost. When Alice reads the PCR value in the beginning of the second phase, she actually
reads a PCR value b that is unrelated to her previous extending action. Later this new
PCR value b is used in generating key; and the key is used to encrypt Alice’s secret [s].
On receiving Alice’s cipher-text, Bob can open it and read [s] by extending the PCR
value by open[]. Since Bob is allowed to reboot, he reboots the TPM, resets the PCR
value to b, and extends the PCR value by revoke[]. Now Bob can get a PCR quote
proving that he did not open the ciphertext, despite the fact that he has opened it.

The previously DEP verification in [7] fails to detect the above attack, because, in
order to use the automatic verification tool ProVerif, which can only handle limited
number of TPM steps, the authors made modification to the original DEP protocol –
Bob always performs the TPM reboot before the first phase; and Alice is assumed to
have the PCR value h(p, n) without actually reading it, in the beginning of the second
phase. As a result, in their model, TPM rebooting can never happen before the second
phase. Hence, the modification prevents them from detecting the attack. Since we allow
state modeling and unbounded state-evolving, we can remove the assumption made
in [7], and thus are able to detect the flaw.

5 Related Works
Formal analysis of security protocols has been an active research area since 1980’s. The
analysis is with respect to the Dolev-Yao attacker [18], who controls the network by
blocking, inserting, eavesdropping messages in the network. Verifying security of pro-
tocols with bounded sessions has shown to be decidable [19]; however, the verification
of unbounded sessions is, in general, undecidable [20]. Verifiers that do not bound the
sessions rely on abstractions that may result in false attacks, e.g., ProVerif [1], and/or
allow non-termination, e.g., Maude-NPA [3]. In this work, we focus on protocols with
unbounded sessions and in general follow the ProVerif style when no global states are
involved. However, our work reduces false attacks when global states are involved.



For verifiers that can handle global states, StatVerif [6] is mostly relevant to our
work. As mentioned earlier, StatVerif does not terminate for unbounded involving of
global states (see Example 1). In addition, StatVerif still has false attacks due to the
monotonicity of Horn clauses, for example, when the security device in [6] (similar
protocol to Example 1 which allows the memory to be reset to a value instead of being
extended to a value) is first set to either left or right and then set to reboot (the StatVerif
code for this scenario and Example 1 can be found at [17]). Our method does not have
this problem for the above example protocols. Kremer et al. extended StatVerif with
the ability to model unbounded number of global states [4], while our work enables to
model and verify unbounded evolving of global states. Hence, our work is orthogonal
to the work of Kremer et al. In addition, their work uses Tamarin [11] as its backend
verification engine, which is different from the Horn clause based approaches (general
comparison is difficult [21]). In general, Tamarin can be used for reasoning on pro-
tocols with global states, but its user may need to interact with the verifier [4]. Our
verifier, on the other hand, is fully automatic. Furthermore, Mödersheim developed a
verification framework that works with global states [22]. The framework extends the
IF language with sets and abstracts messages based on its Set-Membership. However
its expressivenss and verification applicability is unclear. Guttman extended the strand
space with mutable states to deal with stateful protocols [23, 24], but without tool sup-
port for his approach. Most importantly, none of the above explicitly handles unbounded
global state evolving.

6 Conclusions and Future Work

We have presented a new approach for the stateful security protocol verification with
unbounded global state evolving. We implemented a tool for our new approach and the
verification results of a number of protocols are quite encouraging. For future work,
accelerating the redundancy checking would be helpful to improve the tool’s perfor-
mance. In addition, analyzing more stateful protocols, and adapting our approach for
protocols with physical properties, e.g., time and space, would be interesting directions.
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