
KLEESPECTRE : Detecting Information Leakage
through Speculative Cache Attacks via Symbolic

Execution
Guanhua Wang*

National University of Singapore
guanhua@comp.nus.edu.sg

Sudipta Chattopadhyay*

Singapore University of Technology
and Design

Arnab Kumar Biswas
National University of Singapore

Tulika Mitra
National University of Singapore

Abhik Roychoudhury
National University of Singapore

Abstract
Spectre attacks disclosed in the early 2018 expose data leak-
age scenarios via cache side channels. Specifically, specula-
tively executed paths due to branch mis-prediction may bring
secret data into the cache which are then exposed via cache
side channels even after the speculative execution is squashed.
Symbolic execution is a well known test generation method
to cover program paths at the level of the application software.
In this paper, we extend symbolic execution with modeling
of cache and speculative execution. Our tool KLEESPECTRE
, built on top of the KLEE symbolic execution engine, can
thus provide a testing engine to check for the data leakage
through cache side channel as shown via Spectre attacks. Our
symbolic cache model can verify whether the sensitive data
leakage due to speculative execution can be observed by an
attacker at a given program point. Our experiments show that
KLEESPECTRE can effectively detect data leakage along
speculatively executed paths and our cache model can further
make the leakage detection much more precise.

Keywords Spectre; Symbolic execution; Cache side-channel

1 Introduction
Speculative execution in modern super-scalar microproces-
sors improves the program performance (by reducing exe-
cution time and by increasing throughput) compared to a
non-speculative processor by predicting both the outcome
and the target of branching instructions. The processor contin-
ues executing instructions after the branch where the number
of speculatively executed instructions depends on how soon
the actual branch condition is evaluated and also on the size
of the buffer that holds the resulting states during speculative
execution.

If the prediction of a branching instruction is incorrect, all
effects due to the speculatively executed instructions after the
branch instruction are rolled back. To this end, the buffer and
pipeline stages are flushed which hold these instructions or
their results. However, if the cache content is also modified
due to speculatively executed load instructions, the cache

*Both authors contributed equally to this research.

state is not fully rolled back. This opens up the possibility
of a cache side channel through which an attacker can ob-
tain sensitive information from a user who shares the same
platform with the attacker. The family of Spectre attacks [18]
shows that this vulnerability is present in all modern general
purpose processors. Such a vulnerability thus poses major
concerns from the stand-point of software security.

Symbolic execution [16] is a well-known path exploration
method that can be used for program testing and verification.
Given a program with un-instantiated or symbolic inputs, it
constructs a symbolic execution tree by expanding both direc-
tions of every branch whose outcome depends on symbolic
variable(s). The leaf nodes of the tree correspond to program
paths, and by solving the constraint accumulated along a pro-
gram path (also called a path condition), a test input to explore
the path can be generated.

Symbolic execution can be used to cover program paths
(modulo a time budget). However, it does not consider behav-
iors induced by performance enhancing features of the under-
lying processor, specifically cache and branch prediction. Due
to branch mis-prediction, certain paths may be speculatively
executed and then squashed. Such speculatively executed
paths are not covered in symbolic execution. However, one
may argue that there is no need to cover the speculatively
executed paths since they are ultimately squashed and they
have no impact on the observable behavior of the program.
However, in the presence of caches, certain sensitive data
may be brought into a cache in a speculatively executed path.
This data may linger in the cache even after the speculative
path is squashed. Such sensitive data may then be potentially
ex-filtrated by attackers via cache side channels. Current gen-
eration symbolic execution engines, as embodied by tools
like KLEE [5] do not demonstrate the presence or absence
of such side channel scenarios. This is because the reasoning
in current day symbolic execution engines is solely at the
program level.

In this paper, we extend symbolic execution with the mod-
eling of speculative execution as well as cache accesses. For
an unresolved branch involving a symbolic variable, classical
symbolic execution considers two possibilities - the branch

ar
X

iv
:1

90
9.

00
64

7v
1

 [
cs

.C
R

]
 2

 S
ep

 2
01

9

, , Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

is either taken or not taken. In the presence of speculative
execution, note that for every unresolved branch we need
to consider four possibilities, namely: taken and correctly
predicted, taken and mis-predicated, not taken and correctly
predicted, not taken and mis-predicted. As explained earlier,
since the mis-predicted execution paths are squashed, they
only need to be considered in symbolic execution in the pres-
ence of cache modeling. We model the behavior of the cache
by capturing memory accesses to concrete or symbolic mem-
ory addresses; the symbolic memory accesses occur when
the accessed memory address depends on a symbolic input
such as accessing array element a[i] when i is a symbolic
input variable. Given such symbolic memory accesses, the
possible cache conflicts (two memory accesses to the same
cache set) can be captured as a symbolic formula. By solving
such symbolic formula, we can enunciate whether a secret
brought into cache in a speculative path continues to linger
in the cache (this is when it has not been evicted from the
cache due to cache conflicts). Hence we can detect and infer
the cache side-channel leakage in Spectre attacks.

The remainder of the paper is organized as follows. Af-
ter providing a brief background (Section 2) and overview
(Section 3) of KLEESPECTRE , we make the following con-
tributions:

1. We present KLEESPECTRE , our methodology to ex-
tend state-of-the-art symbolic execution engines with
micro-architectural features, specifically speculative
execution and caches (Section 4).

2. We present a symbolic cache model embodied in KLEE-
SPECTRE to precisely detect and highlight cache side-
channel leakage through speculative execution paths,
resulting in potential Spectre style attacks (Section 4).

3. We implement our KLEESPECTRE approach on top
of state-of-the-art and widely used symbolic virtual
machine KLEE (Section 5). Our implementation and
all experimental data are publicly available:
https://github.com/winter2020/kleespectre.

4. We evaluate KLEESPECTRE on litmus tests provided
by Kocher [17] as well as on real-world cryptographic
programs from libTomCrypt, Linux-tegra,
openssl and hpn-ssh. Our evaluation reveals that
KLEESPECTRE can effectively and efficiently detect
Spectre vulnerable code. Moreover, the cache model-
ing embodied in KLEESPECTRE results in a precise
leakage detection by ruling out false positives.

After discussing the related work (Section 8), we conclude in
Section 9.

2 Background and threat model
In this section, we introduce the necessary background regard-
ing the speculative execution and our targeted threat model.

Speculative execution. Speculative execution [13] is an in-
dispensable micro-architectural optimization for performance

enhancement in modern superscalar processors. Speculative
execution allows the processor pipeline to continue execution
even in the presence of some data or control dependency be-
tween the current instruction and the unfinished instructions
instead of stalling the pipeline. Branch predictor is one of the
prediction unit in processor supporting speculative execution.
The branch predictor predicts the execution path based on
the history of the executed branch instructions. The processor
stores a record of the speculatively executed instructions in a
so-called Reorder Buffer (ROB). This buffer mainly helps the
processor to commit all instructions in-order though they are
executed out-of-order. If the outcome of a branch prediction
is correct, then the instructions in ROB are committed to the
architectural state, otherwise, the results of these instructions
are squashed. However, the effect of the load execution unit
i.e. the bytes that are read from memory during speculative
execution may reside in the cache. The state of the cache is
usually not squashed due to performance reasons. Thus, for a
mis-predicted branch, even though the functional effects of all
speculatively executed instructions are rolled back, the cache
state may hold unexpected memory addresses. This phenom-
enon opens the potential vulnerability of cache side-channel
attack.

Bounds Check Bypass (BCB) attack. Spectre-style attacks
have proven that the computer can leak secret data through the
cache side channel when it performs the speculative execu-
tion. Bound Check Bypass (BCB, also called Spectre variant
1) attack is one such Spectre attack. BCB attack can be per-
formed by mis-training a vulnerable branch in the victim’s
process to leak data from the victim.

Listing 1. Example code of Spectre variant 1.
1if (x < array1_size) { \\ VB
2 y = array1[x]; \\ RS
3 temp |= array2[y * 64]; \\ LS
4}

Listing 1 shows an example code vulnerable to BCB attacks.
In this example code, if the condition x < array1_size
holds, then the statement at line 2 loads array1[x] to
variable y. Finally, the statement at line 3 reads data from
array2[] where the accessed address depends on the value
array1[x]. Normally, the boundary check at line 1 guar-
antees the absence of out-of-bound memory access. However,
in the presence of the speculative execution, such guarantees
do not hold. For example, the mis-prediction of the branch
instruction at line 1 allows a memory access array1[x]
where x ≥ array1_size. Such a memory access may
point to a sensitive value. Thus, y may hold a sensitive value
when the branch is mis-predicted. Finally, the statement at
line 3 changes the cache state using the potential sensitive
value y. By observing this cache state, the attacker can re-
construct the potentially sensitive value y. For simplicity, we

KLEESPECTRE : Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution , ,

name the branch potentially causing the BCB attack as Vul-
nerable Branch (VB), the instruction loading the potential
sensitive data as Read Secret (RS) (e.g statement at line 2)
and the instruction leaking the sensitive data to cache state as
Leak Secret (LS) (e.g statement at line 3).

Threat model. Similar to the existing literature on cache side-
channel attacks [20], in this work, we assume the victim and
the attacker coexist on a machine, and they share the cache.
The attacker can execute any code in its security domain (e.g.
a process or a virtual machine) and it can learn information
from the shared cache side-channel. Besides, in our threat
model, we do not consider the data leakage in the normal
execution path. Instead, we focus on data leakage only due to
the speculative execution.

Listing 2. Data leakage in dead code.
1 int a=100, size=16;
2 char array1[16];
3 char array2[256*64];
4 int victim() {
5 int y=0, temp=0;
6 if (a < size) { //CB
7 y = array1[a];
8 temp |= array2[y];
9 }

10 return temp;
11 }

We assume that all conditional branches in a program are
potentially vulnerable. This is in line with the existing works
on Spectre-style attacks [6] that show the possibility of a
branch to be mis-trained either by the victim process or out-
side the victim process (e.g. by an attacker-controlled pro-
cess). As a result, any branch in the victim process is poten-
tially vulnerable to mis-training by the attacker. To consider
the implication of our threat model, consider the code in list-
ing 2. Since the conditional branch at line 6 is unsatisfiable,
the code at lines 7–8 will never be executed without specu-
lation. However, in our considered threat model, the code at
lines 7–8 can leak data if the branch at line 6 is mis-trained
and the branch is subsequently mis-predicted (thus pointing
outside the array bound of array1). We also note that nei-
ther the branch nor the memory access at line 7 is controlled
by any external input.

Finally, we assume that the attacker can either perform the
access-based cache side-channel attack or the trace-based
cache side-channel attack [24]. The ability of such attack-
ers depend on which execution points (s)he observes cache
states. In particular, the access-based attack assumes that an
attacker can probe the cache only upon the termination of a
program. On the contrary, the trace-based attack assumes that
an attacker can snoop the cache after any executed instruction
from the victim process.

3 Overview
Intuitively, KLEESPECTRE is an effort to consider and ex-
pose the micro-architectural execution semantics at software
layer. Specifically, KLEESPECTRE enhances the machinery
of symbolic execution with branch speculation and cache
modeling. In the following, we will use a running example
to show the motivation behind the design of KLEESPECTRE
and briefly outline the KLEESPECTRE work-flow. We use
the term normal execution to capture the execution semantics
embodied in classic symbolic execution tools.

The example: We consider the example code shown in Fig-
ure 1(a). The variable x is a user controlled input. The code
performs several memory related operations on two arrays
array1 and array2. Although x is user controlled, we
note that the access to array1[x] is protected by the bound
check (i.e. x < SIZE). Thus, considering the normal execution,
the example does not exhibit any out-of-bound access. Fig-
ure 1(b) captures the execution tree generated by any classic
symbolic execution tool.

Enhancing symbolic execution: Consider the code fragments
labelled A in Figure 1(a). Such a code has the following
problems that only appear in the presence of branch spec-
ulation. Assume the value of the user controlled input is
such that x ≥ SIZE. If the branch b1 is mis-predicted, then
the memory access array1[x] exhibits an out-of-bound
reference. Moreover, if array1[x] captures a sensitive
value (e.g. a secret), then the subsequent memory access
array2[array1[x]] (cf. Figure 1(a)) refers to a mem-
ory address dependent on secret value. Memory addresses
that depend on secret values are potentially exposed to cache
side-channel attacks. For example, consider the access-based
attacker who probes the state of the cache after the end of
execution. For such an attack, the attacker might be successful
to ex-filtrate the value of array1[x] (potentially holding a
sensitive value) only if array2[array1[x]] remains in
the cache after the execution.

It is evident from the preceding example that detecting the
potential leakage of array1[x] is beyond the capability of
classic symbolic execution. Specifically, to detect this side
channel scenario, it is crucial to capture both the branch spec-
ulation and the cache behaviour while exploring symbolic
execution states. In KLEESPECTRE , we enhance the power
of symbolic execution along these two dimensions.

Speculative symbolic execution in KLEESPECTRE : In
KLEESPECTRE , the purpose of speculative symbolic execu-
tion is to explore any potential secret that might be accessed
due to branch speculation. To investigate the mechanism,
consider again the example in Figure 1(a). To incorporate
the branch speculation within symbolic execution, consider
the branch b1 (i.e. x < SIZE). In the presence of branch
speculation, KLEESPECTRE encounters the following four
scenarios:

, , Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

𝑠𝑝𝑇3 𝑠𝑝𝐹3

𝑝𝑇1 𝑝𝐹1

𝑝𝑇2 𝑝𝐹2

uint32_t SIZE = 16;
uint8_t array1[16],
array2[256*64], array3[16];

uint8_t foo(uint32_t x) {
uint8_t temp = 0;
if (x < SIZE) {

temp = array1[x];
temp |= array2[temp];
if (x <= 8) {

temp |= array2[8];
}

}
temp |= array3[8];
return temp;

}

b1

A
b2

B

C

0

(a). Example code (b). Normal execution paths (c). Execution paths with speculation

𝑠𝑝𝑇2

𝑠𝑝𝐹4 𝑠𝑝𝑇4

𝑠𝑝𝐹1 𝑠𝑝𝑇1

𝑠𝑝𝐹2

b1

A

b2

C

B C

C

b1

C C

C C
C C

C CB

BB

A AC C

b2

b2

B

𝑝𝑇1 𝑝𝐹1

𝑝𝐹2𝑝𝑇2

Figure 1. The example code, and its normal execution paths along with the execution paths with branch speculation. (a) example
code where b1 and b2 capture branch instructions. A, B and C indicate the corresponding basic blocks. (b) Execution paths
explored by classic symbolic execution. pT #, pF # represent normal paths that go along the true or false leg of a branch. (c)
Symbolic execution tree explored by KLEESPECTRE . spT #, spF # denote speculative paths that go along the true or false leg of a
branch. The node in red color indicates the basic block with potential data leakage.

1. pT 1: x < SIZE is satisfiable and the branch b1 is cor-
rectly predicted. In this case, the symbolic execution
will fork a new state with constraint x < SIZE and
proceeds by executing the code fragment A.

2. pF 1: x ≥ SIZE is satisfiable and the branch b1 is cor-
rectly predicted. In this case, the symbolic execution
will fork a new state with constraint x ≥ SIZE and
proceeds by executing the code fragment C.

3. spT 1: x ≥ SIZE is satisfiable and the branch b1 is mis-
predicted. In this case, KLEESPECTRE forks a new
state with constraint x ≥ SIZE, but proceeds by execut-
ing the code fragment A.

4. spF 1: x < SIZE is satisfiable and the branch b1 is mis-
predicted. KLEESPECTRE forks a new state with con-
straint x < SIZE, but proceeds by executing the code
fragment C.

spT 1 and spF 1 are the additional symbolic states explored by
KLEESPECTRE at branch b1. Figure 1(b) and (c) capture
the symbolic execution trees explored by normal symbolic
execution and KLEESPECTRE , respectively, for the code in
Figure 1(a).

The symbolic execution along a speculative path spans
across only a limited number of instructions. This is because
the maximum number of speculatively executed instructions
is bounded by the size of the re-order buffer (ROB). In KLEE-
SPECTRE , we use Speculative Execution Window (SEW)
to limit the number of speculatively executed instructions
at any branch. It is worthwhile to note that a speculatively
executed path may still span over multiple branch instructions
(cf. Figure 1(c)) despite the limited size of SEW .

KLEESPECTRE prunes speculative symbolic states if they
do not pose any risk of data leakage. For example, in Fig-
ure 1(c), only the execution of code fragment A under the
branch spT 1 exhibits such risk. This is due to the access of
array elements array1[x] and array2[array1[x]].
Also note that, the symbolic states spT 3, spF 3, spT 4 and spF 4
are all discarded once KLEESPECTRE reaches the limit of
speculation window SEW . In this fashion, KLEESPECTRE
can control the explosion in the number of symbolic states due
to speculation. Specifically, for the example in Figure 1(c),
KLEESPECTRE only keeps the record of executing code A
under the speculative state spT 1.

The next stage of KLEESPECTRE computes whether the
secret accessed in spT 1 can potentially be ex-filtrated by a
cache side-channel attacker.

b1

b2

𝑠𝑝𝑇1
m1m2

m3

𝑝𝐹1

𝑠𝑝𝑇3 𝑠𝑝𝐹3

&array2[array1[x]]&array3[8]

&array2[8]

if (x < SIZE)

if (x <= 8)

Figure 2. Partial speculative execution paths of example code.
m# represents a memory access on a path. The memory access
in red color brings in a sensitive cache state.

Cache modeling in KLEESPECTRE : KLEESPECTRE com-
putes the set of memory access sequences that are potentially

KLEESPECTRE : Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution , ,

vulnerable to a cache side-channel attack. Each such mem-
ory access sequence may involve at least one memory access
along the speculative path and multiple memory accesses
along the normal execution path. Moreover, along the specu-
lative path, we only record memory accesses that are depen-
dent on secret. This is because KLEESPECTRE focuses to
discover data leakage due to branch speculation.

For example, in Figure 1(c), KLEESPECTRE computes the
following sequence of memory accesses for inspecting the
leakage of data:

⟨⟨A,x > SIZE,&array2[array1[x]]⟩, ⟨C,x > SIZE,&array3[8]⟩⟩

The triplet ⟨A,x > SIZE,&array2[array1[x]]⟩ captures that
the memory address &array2[array1[x]] was accessed with
the symbolic constraint x > SIZE in code fragment A. The
sequence of memory accesses capture the accesses in the
speculative state spT 1 followed by a memory access in the
normal state pF 1 (cf. Figure 1(c)). Even though the functional
states in spT 1 do not affect the computation in pF 1, the cache
state influenced in spT 1 remains unchanged when the branch
is resolved and the execution continues through code fragment
C (cf. Figure 2).

Through our cache modeling, we check the presence of
the address &array2[array1[x]] in the cache when the code
segment C finishes execution. To this end, we check whether
memory access array3[8] can replace array2[array1[x]] from
the cache. For the sake of simplicity, let us assume a 1-way
associative (i.e. direct-mapped) cache. For direct-mapped
caches, a memory address maps to exactly one cache line.
In particular, the following symbolic condition is satisfiable
if and only if the terminating cache state holds the memory
address &array2[array1[x]]:

(x > SIZE) ∧ (set (&array2[array1[x]]) , set (&array3[8]))
∨ (taд (&array2[array1[x]]) = taд (&array3[8]))

(1)

where set(x) and taд(x) capture the cache line and cache
tag, respectively, for a memory address x . Intuitively, the
constraints in Formula 1 can be presented to a satisfiability
modulo theory (SMT) solver. KLEESPECTRE formulates
such constraints for each memory access sequence that may
access secrets along a speculative path. These constraints are
then discharged by an SMT solver to check the presence of
data leakage due to speculation.

In the subsequent section, we will elaborate the individual
sub-systems within KLEESPECTRE in detail.

4 Cache Aware Speculative Symbolic
Execution

In this section, we describe the design of KLEESPECTRE
. First, we describe the overall speculative symbolic execu-
tion process augmented with a symbolic cache model. Subse-
quently, we discuss in detail the features of the cache model

to accurately detect the cache side-channel leakage along a
speculative execution path.

4.1 Speculative Symbolic Execution
Algorithm 1 outlines the overall process involved in KLEE-
SPECTRE . Our methodology takes a program P and sym-
bolically executes P by taking into account the speculation
at branches. Moreover, KLEESPECTRE records memory
accesses along the speculatively executed paths to check
whether any such memory access may refer to a secret. Fi-
nally, the sequence of memory accesses are used to formulate
a symbolic cache model Γspectre . The model Γspectre is satis-
fiable if a possible secret s, accessed along a speculative path,
remains in the cache after the program execution. This is be-
cause the presence of a speculatively accessed secret s in the
cache might result in ex-filtrating s via a cache side-channel
attack. The construction of the speculative execution revolves
around the concept of speculative execution window (SEW).
Such a bounded window captures the number of instructions
that a processor might speculatively execute beyond a branch
before the outcome of the branch is resolved. We note that
SEW may span across multiple unresolved branch instruc-
tions.

At a broader perspective, Algorithm 1 intercepts each con-
ditional branch instruction r and explores all possible specu-
latively executed instructions from this branch. To this end,
we compute Ωr . After handling a conditional branch r , each
element in Ωr is a possible sequence of memory accesses that
might have occurred during a speculative execution from r .
Moreover, Ωr only records memory accesses that may refer
to a secret. If memory accesses do not refer to secrets along
speculatively executed paths, then they do not impose any risk
related to the leakage of information. Algorithm 1 terminates
when the time budget exceeds or KLEESPECTRE explores
all (speculatively) executed paths and Ωr is constructed for
every conditional branch r . In the following, we will discuss
some critical features of KLEESPECTRE .

Identifying Secret Access: In this work, we identify secrets
as follows. For each memory-related instruction r , we con-
sider that r accesses a secret if and only if r points to an
out-of-bound memory location. Although all such memory
accesses may not refer to secrets, these memory accesses
capture illegal accesses, a typical target for attacks exploit-
ing speculative execution. Nevertheless, KLEESPECTRE can
easily be configured for explicitly marked secret data, such
as a secret key in an encryption routine. We use the function
DEP(sec,m) to capture whether some memory address m is
data-dependent on secret sec. Concretely, DEP(sec,m) is true
if and only ifm is data-dependent on the secret sec.

Procedure SPSE Algorithm 1 outlines the symbolic ex-
ecution process embodied in KLEESPECTRE . Intuitively,
KLEESPECTRE modifies the handling of branch instructions

, , Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

within a classic symbolic execution process. For each condi-
tional branch r , KLEESPECTRE maintains a structure Ω[r].
Upon encountering a conditional branch instruction r , KLEE-
SPECTRE explores all possible execution paths that might
occur due to branch speculation. This is accomplished via the
procedure ExpandSpecTree. Consider the symbolic state
before the branch instruction is µ and the branch condition is
ϕr . If π [µ] captures the partial path condition before r , then
a speculative execution may proceed in the following two
scenarios. Firstly, the true leg of the branch might be explored
with the constraint π [µ] ∧ ¬ϕr . Secondly, the false leg of the
branch might be explored with the constraint π [µ]∧ϕr . These
explorations are accomplished via the two calls to procedure
ExpandSpecTree in Algorithm 1. Upon termination of
ExpandSpecTree for a branch instruction r , the structure
Ω[r] contains the set of memory access sequences that de-
pend on some secret. Therefore, these memory accesses are
candidates that may leak secret information via cache side
channel. Each memory access captures a triplet of the form
⟨r ,π ,σ ⟩ where r points to the instruction in the execution
trace, π captures the symbolic constraint with which r was ex-
ecuted and σ captures the symbolic expression of the accessed
memory address. Finally, KLEESPECTRE records all mem-
ory accesses that influence the cache state for memory blocks
in Ω[r]. Thus, after termination of a symbolically executed
path, each list Γ ∈ Ω[r] contains all memory accesses that
may replace a memory block accessed during the speculation
at r .

Procedure ExpandSpecTree: Algorithm 2 outlines the
overall process of exploring the set of speculative execution
paths. In summary, ExpandSpecTree performs the follow-
ing operations. First, it explores all speculative paths until
the speculation depth SEW . We note that such an exploration
may involve nested speculation. Secondly, while exploring the
speculative paths, we record memory addresses for checking
information leakage through the cache. These are the set of
memory accesses that may depend on some secret sec ∈ SEC.
In our framework, we consider that any out-of-bound mem-
ory access along a speculative path points to a secret. Thus,
the procedure ExpandSpecTree also records the potential
secrets during exploration.

Termination of a speculative state. The execution of spec-
ulative state can be terminated in the following ways:

1. The speculation window SEW expires. Since SEW cap-
tures the maximum number of instructions that can be
executed speculatively, we terminate the exploration
of a speculative execution state after exploring SEW
instructions.

2. A memory fence instruction is executed. The memory
fence can stop the speculative execution triggered due
to branch mis-prediction.

3. An exception is raised. When an exception (e.g. divide
by zero) is raised, the speculative execution terminates.
This is analogous to the termination of normal execu-
tion.

Algorithm 1 satisfies the following crucial properties:

Property 1. Consider an instance of the procedure call
ExpandSpecTree(π , µ, r , rs , Γ). Upon termination of this
call, let us assume Ω[r] = {Γ1, Γ2, . . . , Γn}. During an arbi-
trary execution, further assume that the conditional branch
r was mispredicted and memory address ms was accessed
speculatively. If ms is data-dependent on some secret, then
⟨∗, ∗,ms ⟩ ∈ Γi for some Γi ∈ Ω[r]. In short, Ω[r] is guaran-
teed to be an over-approximation of speculatively accessed
memory addresses that are dependent on secret.

Property 2. Consider Γ ∈ Ω[r] after the termination of a
symbolically executed path with the symbolic state µ. Let
⟨∗, ∗,ms ⟩ ∈ Γ where ms is data-dependent on some secret.
Assume tail (Γ, ⟨∗, ∗,ms ⟩) captures the set of elements in
the sequence Γ post the element ⟨∗, ∗,ms ⟩. If ⟨∗, ∗,m⟩ ∈
tail (Γ, ⟨∗, ∗,ms ⟩), then the memory blockm must be accessed
following the access toms for any concrete execution realiz-
ing the symbolic state µ.

4.2 Symbolic Model of Cache
In this section, we will model the cache behaviour of an
execution path to check whether a secret remains in the cache
after program execution. Note that our modified symbolic
execution already takes into account the speculative execution
semantics. Thus, the obtained execution path already accounts
for memory references accessed speculatively. Concretely,
the input to our cache model is any memory access sequence
Γ ∈ Ω[r] (see Algorithm 1) where Ω[r] is constructed for
every conditional branch instruction r . In the following, we
show the cache modeling for a memory access sequence Γ.
Since Γ is arbitrary, the same modeling principle is employed
for all the memory access sequences recorded. Concretely,
any memory access sequence Γ is captured by a sequence of
triplets as follows:

Γ ≡ ⟨(r1,π1,σ1), (r2,π2,σ2), . . . , (rN ,πN ,σN)⟩ (2)

where ri is a memory-related instruction, πi is the symbolic
constraint with which ri was executed and σi is the memory
address accessed by ri . We note that ri can be accessed along
a speculative path or a normal path (cf. Algorithm 1). Before
discussing the cache model, we first explain the basic design
principle behind caches.

Basics of Cache Design: Caches are fast memory employed
between the CPU and the main memory. While accessing a
memory location, the CPU first checks whether the memory
location is cached. If the location is cached, then the CPU
fetches the respective value from the cache. Otherwise, it ac-
cesses main memory and updates the cache with the accessed

KLEESPECTRE : Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution , ,

Algorithm 1 Symbolic execution process embodied in
KLEESPECTRE

procedure KLEESPECTRE (P, SEW)
Let r be the first instruction in P
/* µ0 is the initial state before running P */
/* π [µ0] is the constraint associated with the state µ0 */
χ := {µ0}; π [µ0] := true; Spec := ∅
while χ , ∅ do

Choose a symbolic state µ ∈ χ
/* get the next instruction to symbolically execute */
r := GetNextInstruction(P, µ)
µ := ExecuteSymbolic(µ, r)
if r is a conditional branch then

Let ϕr be the branch condition
remove µ from χ
Γt := Γf := empty; Ω[r] := ∅
µt := µf := µ
π [µt] := π [µ] ∧ ϕr ; π [µf] := π [µ] ∧ ¬ϕr
if π [µt] is satisfiable then

r tn := GetNextInstruction(P, µt)
/* r fn is executed when r is mis-predicted */
ExpandSpecTree(π [µt], µt , r , r fn , Γf)
χ := χ ∪ {µt }

end if
if π [µf] is satisfiable then

r
f
n := GetNextInstruction(P, µf)

/* r tn is executed when r is mis-predicted */
ExpandSpecTree(π [µf], µf , r , r tn , Γt)
χ := χ ∪ {µf }

end if
if Ω[r] , ∅ then

Spec := Spec ∪ {r }
end if

end if
/* record memory accesses along the normal path */
if r is a memory-related instruction then

Let σ be the accessed memory address
for each i ∈ Spec s .t . π [µ] =⇒ ϕi ∧ Γ ∈ Ω[i] do

Append (Γ, ⟨r ,π [µ],σ ⟩)
end for

end if
end while

end procedure

memory location and its value. The design parameters of a
cache can be captured via a triplet: ⟨2S , 2B ,A⟩. 2S captures
the number of cache sets and 2B captures the size of cache line
(in bytes). Each cache set can hold A cache lines while A is
called the associativity of the cache. For any memory-related
instruction r , let us assume it accesses the memory addressm.
The addressm is mapped to the cache set

(⌊ m
2B

⌋
mod 2S

)
.

Since multiple memory addresses can be mapped to the same
cache set, each cache line in a cache set stores a tag. This
tag is identified via the most-significant B bits of the mem-
ory address m. Once a cache set is full (i.e. holds A cache

Algorithm 2 Exploring speculative execution paths for
branch r

procedure EXPANDSPECTREE(π , µ, r , rs , Γ)
µ ′ := ExecuteSymbolic (µ, rs)
while ∆(r , rs) ≤ SEW ∧ rs , exit do

if rs is a conditional branch then
Let ϕr s be the branch condition for rs
Let r ts immediately follows if rs is taken
Let r fs immediately follows if rs is not taken
if π ∧ ϕr s is satisfiable then

Γtt := Γ
f
t := Γ

/* explore the true leg for correct prediction */
ExpandSpecTree(π ∧ ϕr s , µ ′, rs , r ts , Γtt)
/* explore the false leg for mis-prediction */
ExpandSpecTree(π ∧ ϕr s , µ ′, rs , r fs , Γft)

end if
if π ∧ ¬ϕr s is satisfiable then

Γtf := Γ
f
f := Γ

/* explore the false leg for correct prediction */
ExpandSpecTree(π ∧ ¬ϕr s , µ ′, rs , r fs , Γff)
/* explore the true leg for mis-prediction */
ExpandSpecTree(π ∧ ¬ϕr s , µ ′, rs , r ts , Γtf)

end if
end if
if rs is a memory-related instruction then

Let σs be the accessed memory address
/* record memory access dependent on secret */
if ∃sec ∈ SEC such that DEP(sec,σs) then

Append (Γ, ⟨rs ,π ,σs ⟩)
end if
if σs refers to a potential secret then

/* val(σs) captures value at location σs */
SEC := SEC ∪ {val(σs)}

end if
end if
rs := GetNextInstruction(P, rs)

end while
Ω[r] := Ω[r] ∪ {Γ}

end procedure

lines) and a new memory location is mapped to the same
cache set, then a replacement policy is employed to evict a
cache line and make room for fresh memory locations. In this
work, we instantiate KLEESPECTRE for the least recently
used (LRU) replacement policy. In LRU, the least recently ac-
cessed memory location in a cache set is chosen for eviction
to accommodate fresh memory blocks. We define a cache
set state as an ordered A-tuple where the rightmost element
captures the least recently used cache line. For example, in
a two-way associative cache, the state ⟨L1,L2⟩ captures that
L2 (respectively, L1) is the least (respectively, most) recently
used cache line.

In line with the preceding description of cache design, we
will assume the following notations throughout the section:

, , Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

• 2S : The number of cache sets in the cache.
• 2B : Size of the cache line.
• Ns : The set of memory-related instructions access-

ing symbolic memory addresses (i.e. potential secrets
accessed along speculative paths) in memory access
sequence Γ (cf. Equation 2).

• Nt : The set of memory-related instructions exhibited
along normal path in memory access sequence Γ (cf.
Equation 2). We note that |Ns ∪ Nt | = N holds.

• A : Associativity of the cache.
• σi : Memory address accessed by instruction ri .
• set(ri) : Cache set accessed by memory-related instruc-

tion ri .
• taд(ri) : Cache tag related to the memory-related in-

struction ri .

It is worthwhile to note that the symbolic address is defined
to be a memory address that is dependent on a secret value.
Moreover, as mentioned in the preceding section, we only
consider secrets that might be accessed along speculative
paths. Thus, if any address dependent on secrets remains in
the cache after program execution, the respective program is
vulnerable to Spectre attacks. The set of instructions accessing
such symbolic addresses, i.e., Ns were identified during our
novel symbolic execution stage.

Cache Conflict: The symbolic model of the cache revolves
around the notion of cache conflict. Intuitively, the phenome-
non of cache conflict influences the states of each cache set.
This, in turn, decides whether a value is cached during or after
the execution. In the following, we first formally define the
notion of cache conflict.

Definition 3. (Cache Conflict): Consider memory-related
instructions ri and r j . Let ζi (respectively, ζj) be the cache
state immediately after ri (respectively, r j) is executed. r j
generates a cache conflict to ri only if r j is executed after ri
and executing r j can influence the relative position of memory
block

⌊ σi
2B

⌋
within the cache state ζj .

The preceding definition of cache conflict works for arbi-
trary memory-related instructions ri and r j . In KLEESPECTRE
, however, our objective is to check whether any symbolic
address remains in the cache. To this end, we only need to
capture the cache conflict when r j ∈ Nt and ri ∈ Ns . The
cache conflicts within normal paths and within the speculative
paths are ignored. Similarly, we do not need to check whether
a memory block accessed in normal path can be replaced
via a memory block accessed along speculative paths. Thus,
we can ignore the cache conflict when r j ∈ Ns and ri ∈ Nt .
We formalize the aforementioned notion of cache conflict in
KLEESPECTRE via the following definition:

Definition 4. (Cache Conflict in KLEESpectre): Consider
memory-related instructions ri and r j . For KLEESpectre ,
we consider a cache conflict from r j to ri if and only if r j

generates a cache conflict to ri according to Definition 3 and
r j ∈ Nt and ri ∈ Ns .

By considering the notion of cache conflict, as defined in
Definition 4, we greatly simplify the size of the symbolic
cache model and keep the overall complexity of KLEE-
SPECTRE under check. In the next sections, we shall elaborate
the crucial conditions required for the generation of cache
conflicts and usage of such conditions to check the residency
of a memory block in the cache. Subsequently, we build upon
such conditions to formulate the symbolic model for identify-
ing Spectre vulnerabilities.

Cache Set and Cache Tag : We note that due to the sym-
bolic memory addresses, set(ri) and taд(ri) can be symbolic
expressions. Specifically, set(ri) and taд(ri) are computed as
follows:

set(ri) = (σi ≫ B) & (2S − 1) subject to πi (3)
taд(ri) = σi ≫ (B + S) subject to πi (4)

Cache Conflict and Conflict Propagation : Our objective
is to discover whether any symbolic memory address can be
evicted from the cache after being accessed. As stated in Def-
inition 4, KLEESPECTRE only considers cache conflict from
memory accesses along normal path (i.e. set Nt) to the mem-
ory accesses along speculative paths (i.e. set Ns). However,
it is not sufficient to check the cache conflict from r j (∈ Nt)
to ri (∈ Ns) to precisely identify Spectre vulnerabilities. To
check whether the conflict actually influences the relative
position of the memory block till the end of the execution, we
need to check whether the memory block accessed by ri can
be reloaded after r j and before the end of the execution. If ri
is reloaded after r j , then the cache conflict generated by r j
is not propagated until the end of the execution. Finally, we
need to check whether the memory block accessed by ri is
replaced from the cache before the execution terminates. This
is accomplished by checking whether the number of unique
cache conflicts to ri that propagate till the end of execution
exceeds the cache associativity (A). In the following, we will
model these phenomenon symbolically.

If r j generates a cache conflict to ri , then the following
condition must hold: r j and ri access the same cache set,
but have different memory-block tags. This is formalized as
follows:

ψcnf
(
ri , r j

)
≡

(
set(ri) = set(r j)

)
∧

(
taд(ri) , taд(r j)

)
(5)

Additionally, we need to check whether r j is a unique
cache conflict. To this end, we check that none of the mem-
ory accesses after r j accesses the same memory block as r j .
Thus, we only account for the last memory-related instruction
accessing the block

⌊ σj
2B

⌋
. This is formalized as follows:

ψunq
(
r j

)
≡∧

k ∈(j,N]∧rk ∈Nt

(
set(r j) , set(rk)

)
∨

(
taд(r j) , taд(rk)

) (6)

KLEESPECTRE : Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution , ,

Finally, we need to check that ri is not reloaded after r j .
Otherwise, the memory block accessed by ri will be reloaded
to the cache and the conflict due to r j would be nullified. This
is formalized as follows:

ψr el
(
ri , r j

)
≡

∧
k ∈(j,N]

(set(ri) , set(rk)) ∨ (taд(ri) , taд(rk))

(7)
Combining Equations 5-7, we can obtain the symbolic con-

dition where r j changes the relative position of the memory
block accessed by ri and such a change in the relative position
of the memory block is also propagated until the end of the ex-
ecution. Thus, when all the conditionsψcnf

(
ri , r j

)
,ψunq

(
r j

)
and ψr el

(
ri , r j

)
hold, we can say that the conflict generated

by r j to ri is propagated until the end of the execution. This
is symbolically captured as follows:

Θ+j,i ≡ ψcnf
(
ri , r j

)
∧ψunq

(
r j

)
∧ψr el

(
ri , r j

)
⇒

(
cnfi, j = 1

)
(8)

Θ−
j,i ≡ ¬ψcnf

(
ri , r j

)
∨¬ψunq

(
r j

)
∨¬ψr el

(
ri , r j

)
⇒

(
cnfi, j = 0

)
(9)

Attack Identification : We note that r j is arbitrary in the
preceding discussion. To check whether the memory block
accessed by ri can be replaced, we need to repeat the com-
putation of Θ+j,i and Θ−

j,i for any j ∈ [i + 1,N] where N is
the total number of memory accesses in the trace. Finally,
we need to check whether the collective sum of cnfi, j for
j ∈ [i + 1,N] exceeds the cache associativity. Let us assume
that speci is true if and only if the memory block accessed
by ri may remain in the cache after program execution, thus
exhibiting a potential Spectre attack. The truth value of speci
can be symbolically computed as follows:

λi ≡
©­«

∑
j ∈[i+1,N]∧r j ∈Nt

cnfi, j < Aª®¬ ⇒ speci (10)

Putting it altogether : Finally, spectre attacks can be tar-
geted for any memory-related instruction accessing a sym-
bolic address. Therefore, Equations 5-10 need to account for
all such symbolic memory accesses. Recall that Ns captures
the set of all memory-related instructions in the trace that ac-
cess symbolic memory address. Thus, to check the possibility
of Spectre attacks for an arbitrary (combination) of memory
addresses, the following symbolic model is used:

Γspectre ≡∧
ri ∈Ns

©­«λi ∧ ©­«
∧

j ∈[i+1,N]∧r j ∈Nt

Θ+j,i ∧ Θ−
j,i

ª®¬ª®¬ ∧
(∨
ri ∈Ns

speci

)
(11)

We note that Γspectre is true if and only if any of the sym-
bolic memory address remains in the cache after program
execution, thus leading to a potential spectre attack.

5 Implementation
KLEESPECTRE is primarily implemented on top of the state-
of-the-art symbolic execution engine KLEE v2.0 [5]. KLEE-
SPECTRE is built from CLang v6.0 and it takes the LLVM
bitcode generated with LLVM 6.0 as input. If a subject pro-
gram contains external function calls, then the program is
linked with KLEE- uClibc [2] first, before being passed to
KLEESPECTRE . We used the SMT solver STP [12] to check
the satisfiability of the path constrains and the symbolic cache
model. Broadly KLEESPECTRE makes three major changes
in KLEE: generating speculative symbolic states, propagat-
ing potentially sensitive data and symbolically modeling the
cache behaviour.

Generating speculative symbolic states. A symbolic execu-
tion engine interprets a single instruction symbolically subject
to the constraints imposed on the respective symbolic state.
The initial symbolic state is constrained via the logical for-
mula true. If the constraint imposed on the current symbolic
state is C and the engine encounters a branch instruction with
condition ϕb , then traditional symbolic execution engines
check the satisfiability of constraints C ∧ ϕb and C ∧ ¬ϕb .
If such a constraint is satisfiable, then the engine creates a
new symbolic state with the constraint. The new state inher-
its the state before encountering the branch instruction, but
proceeds interpreting the subsequent instructions indepen-
dently. Our KLEESPECTRE approach generates two extra
symbolic states to model the speculative execution. These
states are generated to model the speculative paths and they
also model nested speculative execution. We also modify
the path selection heuristic in KLEE to take into account
the newly generated speculative symbolic states. Specifically,
when the scheduler selects a normal state Sm to execute, we
check whether the state may be immediately preceded by any
speculative state. If such is the case, then KLEESPECTRE
selects a speculative state SSi to process. The normal state Sm
is not processed until all preceding speculative states of Sm
are handled. KLEESPECTRE can use all existing state selec-
tion strategies in KLEE, such as Depth First Search (DFS),
Breadth First Search (BFS), random path selection (random-
path) for both the normal state selection and speculative state
selection.

Propagating potentially sensitive data. KLEESPECTRE prop-
agates the sensitive data along the execution path to identify
the addresses that may leak the sensitive data to the cache
state. When a memory load instruction reads a variable vs
from an out-of-bound memory location, we mark vs as sensi-
tive. All new expressions dependent on vs are subsequently
marked sensitive as well. By tracking these sensitive expres-
sions, we can detect if a memory access leads to the leakage of
sensitive data. This is accomplished by checking whether the
accessed memory address is constructed from any sensitive
expressions.

, , Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

Symbolically modeling the cache behaviour. Our KLEE-
SPECTRE tool models the cache to further check whether
a cache state impacted by a sensitive address can be observed
in an execution point, in particular, at the termination of a pro-
gram for the access-based cache side-channel attack. Each ex-
ecution state contains a cache state that symbolically records
the cache content along the execution path. The cache mod-
eling of KLEESPECTRE collects all memory load and store
addresses except the memory store addresses in a speculative
execution. There exists multiple reasons for such a design
choice. Firstly, the memory store is not visible to the cache
until the speculatively executed instructions are committed in
the real execution of a processor. Secondly, our assumption is
that all speculative executions in KLEESPECTRE are caused
by the branch mis-prediction and all speculatively executed
instructions are rolled back. Upon the termination of an exe-
cution, the symbolic cache model is constructed in line with
the explanation in Section 4.2 and we call the STP solver
to check whether the sensitive address may still stay in the
cache.

6 Evaluation
In this section, we perform the effectiveness evaluation of
KLEESPECTRE in detecting the Bounds Check Bypass (BCB
or Spectre variant 1) vulnerabilities. We aim to answer the
following research questions:

1. RQ1: Can KLEESPECTRE effectively detect various
kinds of BCB vulnerabilities?

2. RQ2: How efficient is KLEESPECTRE in detecting the
BCB vulnerabilities?

3. RQ3: How effective is our cache model in detecting
cache side-channel leakage through speculative path?

Note that BCB vulnerability has not been reported in the wild
yet. Therefore, we first run KLEESPECTRE on the litmus
tests created by Kocher [17]. These litmus tests are different
types of Spectre vulnerable code patterns. Secondly, we run
KLEESPECTRE on a set of security-critical benchmarks to
check whether KLEESPECTRE can find the potential BCB
vulnerabilities. Finally, we evaluate the effectiveness of our
cache model in KLEESPECTRE by modifying the litmus tests
and the security-critical benchmarks appropriately.

6.1 Evaluation of KLEESPECTRE on litmus tests
No real BCB vulnerability has been reported in the wild.
So we first rely on fifteen litmus test programs with Spec-
tre vulnerability created by Kocher [17]. We aim to check
whether KLEESPECTRE can successfully detect these differ-
ent variations of BCB vulnerabilities. These litmus tests were
originally developed to evaluate the effectiveness of the Spec-
tre mitigation in Microsoft C/C++ compiler. The Microsoft
compiler uses static analysis to identify the vulnerable code
fragments and inserts lfence to repair the vulnerable code.
Kocher reports [17] that the Microsoft compiler can only

Listing 3. The code for testing KLEESPECTRE with cache
modelling.
1 int array1_size = 16;
2 char array1 [16];
3 char array2 [256];
4 char array3[512 * 64];
5 char temp = 0;
6 char victim_fun(int idx) {
7 register int i ;
8 if (idx < array1_size) {
9 temp &= array2[array1 [idx]];

10 }
11 #define ITER N // N = {1, ... , 512}
12 for (i = 0; i < ITER; i++) {
13 temp &= array3[i * 64];
14 }
15 return temp;
16 }
17 void main() {
18 int x;
19 klee_make_symbolic(&x, sizeof(x), "x");
20 victim_fun(x);
21 }

identify two out of 15 vulnerable programs. This is because
instead of using precise static analysis, Microsoft C/C++ com-
piler only performs a simple code pattern matching to identify
code fragments related to the BCB vulnerabilities. In contrast,
KLEESPECTRE can correctly detect all the BCB variants in
15 litmus tests produced by Kocher.

The programs used in litmus tests contain no memory ac-
cess after the sensitive data is leaked and brought into the
cache along the speculative path. As a result, our cache mod-
eling has no impact on the detection results and all the litmus
tests are correctly confirmed to contain Spectre vulnerability
by KLEESPECTRE . Thus, we design additional experiments
to showcase the power of cache modeling in KLEESPECTRE
by introducing memory access code in the litmus test pro-
grams after the spectre vulnerability.

For evaluating our cache model, we use a 32 KB set-
associative cache with the LRU replacement policy and each
cache line has 64 bytes data. We configure the cache to be 2-
way, 4-way or 8-way in our experiments. We mainly consider
the PRIME + PROBE attack on L1 cache. This attack is used
to target both data [22, 23] and instruction cache [3].

A modified litmus test code is outlined in Listing 3. The
code contains a vulnerable function victim_fun() that
receives an integer idx as an argument. The if statement at
line 8 checks whether idx is less than the array1[] size
array1_size. If the condition holds, then idx is used to access
array1[]. The code between line 8 and 10 exposes a typi-
cal BCB vulnerability. Specifically, if the branch at line 8 is
mis-predicted, then the access of array1[] with idx value

KLEESPECTRE : Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution , ,

640 128 192 256 320 384 448 512

2-way

4-way

8-way

N iterations

Leakage detected

Leakage free

Figure 3. The detection result of KLEESPECTRE with cache
model enabled. #-way represents a cache setting with #-way
set associative cache.

greater than array1_size can bring in potentially sensi-
tive data. This is because array1[idx] can point outside
of array1[] when the branch at line 8 is mis-predicted.
The sensitive data can subsequently be leaked to the cache
state by accessing array2[] at line 9. The question remains
whether the leaked data will still remain in the cache after
completion of the program execution. This question can be
answered by our cache modeling in KLEESPECTRE .

Thus, to test the effectiveness of the cache model in KLEE-
SPECTRE , we add a loop at lines 11-15. The loop contin-
uously brings in data to the different cache sets after the
leakage of sensitive data at line 9. The memory accesses in
the loop may evict the sensitive data introduced into the cache
by BCB vulnerability (line 9) after N iterations. Each iteration
brings a memory block to a different cache line, for example,
the loop introduces a memory block for each cache set by
the first 256 iterations and the entire cache is filled up after
performing total 512 iterations for a 2-way (256 sets) cache.
We run this litmus test program with different value of N from
1 to 512 to evaluate the effectiveness of KLEESPECTRE .
Specifically, we aim to detect the eviction of the sensitive data
from the cache for different values of N and different cache
associativities (i.e. 2, 4 and 8).

The outcome of our findings is shown in Figure 3. The
red solid line denotes that KLEESPECTRE can detect the
sensitive cache state, which means the sensitive data is still in
the cache after Nmemory accesses in the test code. In contrast,
the green dash line indicates that the sensitive data has been
evicted from the cache by the additional code (Leakage free).
We can see from Figure 3 that the sensitive data is no longer
present in the cache after 260, 288 and 452 memory accesses
for cache associativity 2, 4 and 8, respectively.

The result in Figure 3 proves the effectiveness of KLEE-
SPECTRE cache modeling. As an example, consider the code
at line 9 in Listing 3. The data read by array1[idx] is

Table 1. Subject benchmarks.

Program Source Description LoC #Branch
chacha20 LibTomCrypt chach20poly1305 cipher 776 71
aes LibTomCrypt AES implementation 1,838 27
encoder LibTomCrypt encode binary data to ASCII string 134 14
ocb3 LibTomCrypt OCB implementation 377 40
salsa Linux-tegra Salsa20 stream cipher 279 20
camellia Linux-tegra camellia cipher 1,324 12
seed Linux-tegra Seed cipher 487 9
str2key openssl Key preparation for DES 385 12
des openssl DES implementation 1,051 11
hash hpn-ssh hash function 304 24

one byte represented as Bi . Thus, Bi has a value between
0 and 255. The address of the memory access performed
by array2[Bi] is captured via array2 + Bi . As the least
significant six bits of Bi are used for the byte offset in the
cache block (64 byte cache block), only two bits of Bi are
used for the two least significant bits of the cache set index.
Thus, the address array2+Bi can map to one of four selected
contiguous cache sets depending on the value of Bi for any
cache associativity. Thus to completely evict array2 + Bi
from the cache for arbitrary values of Bi , we need access to
8, 16 and 32 corresponding caches lines for 2, 4 and 8-way
associate caches, respectively.

As shown in Figure 3, for 2-way set associative caches,
the leakage is undetectable after 260 memory accesses from
the loop at lines 11-13. In a 2-way set-associative cache,
array2+Bi can potentially map to four contiguous cache sets
depending on the value of Bi . Thus, if we want to guarantee
the eviction of array2 + Bi from the cache, then we need to
fill up these contiguous four cache sets that array2 + Bi may
map to. In our experiment, array2 was mapped to the first
cache set. As a result, 260 memory accesses can completely
fill up the first four sets of a 2-way cache. Specifically, the first
256 iterations of the loop (lines 11-13) access memory blocks
mapping to all cache sets (256 cache sets for 2-ways cache)
and the rest four iterations introduce the second memory
blocks for first four cache sets. This guarantees the removal
of array2+Bi from the cache for any value of Bi . To the best
of our knowledge, none of the existing tools such as oo7 [25]
and SPECTECTOR[14] can accurately verify the cache-side
channel freedom against BCB attack like KLEESPECTRE .

6.2 Effectiveness and Efficiency: Detection of BCB
Gadgets in Real Programs.

Benchmark selection. To evaluate KLEESPECTRE on real
programs, we select ten cryptography related programs from
well known projects: libTomCrypt, hpn-ssh, openssl
and Linux-tegra. Table 1 outlines some salient features
of the subject benchmarks. All the benchmarks potentially
process or contain sensitive data. All of these benchmarks
were also used in a recent work [26] to perform the analysis
of speculative execution via abstract interpretation. In Table 1,
column LoC denotes the lines of code; the collected programs

, , Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

have 134 (encoder) to 1,838 (AES) lines of code. The col-
umn #Branch denotes the number of branches in each pro-
gram ranging from 9 (seed) to 71 (chacha20). For all the
benchmarks, we use the internal function klee_make_symbolic()
of KLEE to set the input of the programs (e.g., the plaintext
and the key in cryptography programs) as symbolic variables.
All benchmarks are compiled by Clang-6.0 with "-O1" opti-
mization.

Experimental results. We run KLEE, KLEESPECTRE
with SEW=50, and KLEESPECTRE with SEW=100 (SEW
is the size of the speculative window in terms of the number
of micro-instructions) on the benchmarks listed in Table 1
to compare the performance and the effectiveness of KLEE-
SPECTRE to detect BCB gadgets. The results are shown in
Table 2. The column Explored paths denotes the number of
explored normal execution paths and the column Explored
speculative path indicates the explored speculative execution
paths by KLEESPECTRE .

In each category of KLEE, KLEESPECTRE 50 and KLEE-
SPECTRE 100, column Analysis time provides the analysis
time of the tool. We conduct our experimental evaluation on
Intel Xeon Gold 6126 [1] running at 2.6GHz with 192GB
memory. Intel Xeon Gold 6126 is equipped with 12 cores
(24 threads) and 19.25MB shared last-level cache (LLC). The
machine is running a Ubuntu 16.04 server with Linux kernel
4.4.

Both KLEE, KLEESPECTRE 50, KLEESPECTRE 100
complete the analysis within 69 seconds. More specifically,
for most benchmarks, KLEESPECTRE 50 and KLEESPECTRE
100 have longer analysis time than KLEE; but the analy-
sis time of KLEESPECTRE is still acceptable. For example,
KLEE explores three paths of chacha20 in 0.50s, KLEE-
SPECTRE 50 explores all three normal paths along with
12,392 speculative paths in 2s. Besides, KLEESPECTRE 100
always explores more speculative paths than KLEESPECTRE
50 because KLEESPECTRE 100 executes more instructions
along any speculative path. Moreover, if KLEESPECTRE
encounters branch instructions along the speculative path,
then it generates new speculative states (nested speculative
execution), resulting in managing larger number of symbolic
states as compared to KLEE. Finally, the speculative exe-
cution might be terminated upon receiving an exception or
the program exit event. The column Avg. #inst in Table 2
shows the average number of the instructions executed along
the speculative path, which is close to the SEW value in
most benchmarks (e.g., 47.49 and 95.25 for KLEESPECTRE
50 and KLEESPECTRE 100, respectively, while analyzing
chacha20).

As for the detection result of BCB Gadgets, the detected
number of vulnerable instructions are listed in columns VB,
UC_VB, RS and LS. VB represents the number of vulnerable
branches. The mis-prediction of such branches may result in
the secret data to be loaded in the cache. The term UC_VB
means that the vulnerable branch can directly be trained via

the user controlled input. RS is the abbreviation of Read Se-
cret. Specifically, RS means that the secret can be loaded after
executing the respective instruction. LS is an abbreviation of
Leak secret wherein an instruction can leak the secret loaded
by RS instruction to the cache state. The columns VB, UC_VB,
RS and LS in Table 2 are reported as the unique code loca-
tions and if one vulnerable code location appears in several
speculative execution paths, the code location is only reported
once.

We detect VB and RS in all the benchmarks. For exam-
ple, KLEESPECTRE 50 found eight vulnerable branches in
chacha20 but none of of them is user-controlled. Only the
benchmark str2key contains a Leak secret (LS), which
means that the secret can potentially be loaded to the cache
and observed by the attacker.

Listing 4. Potential Spectre variant 1 vulnerability in
str2key; TB, RS, LS are highlighted.

1void DES_set_odd_parity(DES_cblock*key) {
2 int i ;
3 for (i=0; i<DES_KEY_SZ; i++) /* VB */
4 (*key)[i]=odd_parity [(*key)[i]]; /* RS, LS */
5}

Listing 4 shows a potential Spectre variant 1 vulnerabil-
ity in the str2key function DES_set_odd_parity().
The loop iteratively reads the data pointed by *key and uses
the data to index array odd_parity. A mis-prediction of
the for loop condition may cause a speculative execution of
a few more loop iterations than normal execution. This may
lead sensitive data beyond the end of *key (i.e. beyond the
size DES_KEY_SZ) to be loaded into the cache. The sensitive
data can impact the cache state when it is used to access array
odd_parity. Thus, the cache state can potentially be ob-
served by the attacker through probing array odd_parity.
The exact amount of the leakage depends on the number of
iterations that can be speculatively executed. However, in
its current state, KLEESPECTRE does not compute an exact
quantification of the leakage.

We also compare the KLEESPECTRE result with oo7 [25]
and show that oo7 can only detect data leakage in encoder
and ocb3. This is because oo7 only identifies the user con-
trolled branches as vulnerable branches. However, KLEE-
SPECTRE assumes all branches can be mis-trained by the
attacker; for example, the victim process and the attacker
process may be scheduled to the same core and the attacker
can directly mis-train the branch prediction [6, 11].

6.3 Leakage detection with cache modeling.
The cache modeling of KLEESPECTRE can accurately check
whether the leaked sensitive data can be observed by the at-
tacker through cache side-channel attack. Our cache model
is not invoked until some sensitive data leakage is identified

KLEESPECTRE : Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution , ,

Table 2. The analysis performance comparison of KLEE, KLEESPECTRE 50 and KLEESPECTRE 100 along with the detection
results of BCB gadgets. Avg. #inst= The average number of instructions executed on the speculative path. VB= vulnerable
branch. UC_VB= user controlled vulnerable branch. RS=Read Secret. LS=Leak Secret.

Program KLEE KLEESPECTRE 50 KLEESPECTRE 100

Analysis
time

Explored
paths

Analysis
time

Explored
paths

Explored
speculative
paths

Avg.
#inst VB UC_VB RS LS Analysis

time
Explored
paths

Explored
speculative
paths

Avg.
#inst VB UC_VB RS LS

chacha20 0.50s 3 2s 3 12392 47.49 8 0 6 0 12s 3 124364 95.25 14 0 7 0
aes 0.06s 1 0.06s 1 524 47.75 2 0 2 0 0.16s 1 547 92.67 2 0 2 0
encoder 0.45s 22 4s 22 2090 42.64 2 1 3 0 11s 22 10502 81.55 2 1 3 0
ocb3 0.11s 2 0.22s 2 6286 49.61 2 0 2 0 1s 2 58859 99.52 5 0 5 0
salsa20 0.08s 2 0.26s 2 308 45.8 2 0 2 0 0.44s 2 556 82.07 2 0 2 0
camellia 22s 4 22s 4 3141 44.98 1 0 1 0 23s 4 10440 82.07 1 0 1 0
seed 19s 1 20s 1 242 49.45 1 0 1 0 20s 1 370 99.1 1 0 1 0
str2key 41s 114 48s 114 2101 49.81 2 0 1 1 69s 114 8500 99.51 2 0 1 1
des 0.01s 1 0.01s 1 8 6.88 1 0 1 0 0.01s 1 8 6.88 1 0 1 0
hash 0.12s 1 0.16s 1 1513 49.41 1 0 1 0 0.23s 1 3278 99.44 1 0 1 0

Table 3. The detection result with cache modeling enabled for different cache configurations.

Program KLEESPECTRE 100 KLEESPECTRE 100 with cache modeling
2-ways 4-ways 8-ways

Symbolic
address (%)

Analysis
time

Detected
leakage

Solver
time(%)

Analysis
time

Detected
leakage

Solver
time(%)

Analysis
time

Detected
leakage

Solver
time(%)

Analysis
time

Detected
leakage

Solver
time(%)

chacha20 5.56% 131s 3 56.09% 1256s 3 3.28% 1217s 3 3.30% 1288s 3 3.18%
aes 0.52% 0.30s 3 45.43% 62s 3 12.86% 10s 1 4.53% 10s 1 10.00%
encoder 27.72% 3s 3 59.96% 6s 2 42.01% 5s 2 43.35% 5s 2 43.87%
ocb3 2.49% 5s 3 22.19% 11s 2 12.80% 11s 2 13.12% 10s 2 13.84%
salsa20 8.52% 1s 3 10.51% 1s 2 8.90% 1s 2 8.50% 1s 2 7.62%
camellia 13.53% 19s 3 86.98% 1712s 1 1.27% 1696s 1 1.32% 1670s 1 1.26%
seed 25.90% 24s 3 92.13% 1074s 3 10.87% 1174s 2 8.71% 1036s 3 10.87%
str2key 12.12% 793s 4 64.90% 1.08h 4 43.23% 0.89h 4 31.38% 0.82h 4 29.05%
des 25.00% 59s 3 88.76% 37s 3 77.54% 72s 3 86.90% 46s 3 79.59%
hash 3.76% 19s 3 87.74% 317s 2 4.73% 120s 3 7.38% 318s 2 4.72%

along the speculative path. As we do not find any data leak-
age in our benchmarks, in this experiment, we insert several
vulnerable functions to the benchmarks and check whether
KLEESPECTRE can detect them. More specifically, we ran-
domly choose three Spectre v1 variant functions suggested
by Kocher [17], then insert them to the start, middle and
the end of each benchmark listed in Table 1. Then, we run
KLEESPECTRE with cache modeling enabled. Each exper-
iment is conducted over three runs for three different cache
associativities: 2, 4 and 8.

Table 3 shows the test result of comparing KLEESPECTRE
100 and KLEESPECTRE 100 with cache model enabled
(KLEESPECTRE 100_Cache). All inserted vulnerable code
that leaks the sensitive data in the speculative execution path
have been detected by KLEESPECTRE 100 (str2key con-
tains one original leakage). More importantly, we observe that
the number of vulnerable code fragments reduces when we
enable the cache modeling. For example, three data leakage
scenarios were identified in ocb3 without cache modeling;
but only two of them were identified when cache modeling
is enabled. The remaining two data leakages were identified
as false positives. This means that the sensitive data loaded
into the cache were subsequently evicted by other memory
accesses. Moreover, we observe that the presence of infor-
mation leakage might depend on the cache configuration,

asserting further importance to the cache modeling embodied
by KLEESPECTRE . For example, three data leakage sce-
narios were detected by KLEESPECTRE for 2-ways cache
in aes; but only two leakage scenarios were detected when
using the 4-ways or 8-ways cache configurations for the same
aes benchmark.

The precision of KLEESPECTRE comes with the cost of
solving the symbolic cache model. Thus both the analysis
time and the solver time increase (as compared to the cache
modeling being disabled). The time to solve the symbolic
cache model depends on the number of memory accesses
and the percentage of symbolic addresses. As observed from
Table 3 that the percentage of symbolic addresses is relatively
low (the maximum is 27.72% for encoder); thus the solver
can finish within an acceptable time. Finally, except for hash
and des, we did not observe a noticeable difference in analy-
sis time with increased cache associativity. This means that
our symbolic cache model scales well with respect to varying
cache configurations.

, , Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik Roychoudhury

7 Threats to validity
Path explosion. Path explosion is a major challenge in the
symbolic execution. KLEESPECTRE is based on symbolic ex-
ecution, which does not scale to large programs while explor-
ing all feasible program paths. In particular, KLEESPECTRE
forks more paths than the classical symbolic execution for
performing the speculative execution. However, only limited
number of instructions are executed on the speculative paths
in KLEESPECTRE , which is bounded by the Speculative Ex-
ecution Windows (SEW). Thus, as observed in our evaluation,
KLEESPECTRE has similar complexity with the classical
symbolic execution. Moreover, the existing methods to allevi-
ate the path explosion can also be used by KLEESPECTRE
, for example, state merging [15, 19]. Specifically, the spec-
ulative states can be merged similarly as the classical states
when the control flows of a program merges. Besides, the
symbolic execution can be guided by the low-cost static anal-
ysis in such a fashion that a static analysis can be performed
to roughly locate the vulnerable code and prune the redundant
paths during the construction of symbolic execution tree.

Precise modeling of program behavior. The program be-
havior running on the hardware may not be the same as it is
in the symbolic execution. This is because KLEESPECTRE
uses bitcode that may not replicate exactly the same behavior
as the final binary code due to the compiler optimization. For
example, the program may have more memory accesses when
running on the hardware than it is during the symbolic execu-
tion due to the register spilling. However, KLEESPECTRE is
designed as an over-approximation method that it captures all
necessary memory accesses and detects all potentially secret
leakage. This results in the absence of false negatives. In other
words, KLEESPECTRE guarantees that all leakage in the real
execution can be detected. However, KLEESPECTRE can
generate false positives. For instance, the leakage detected by
KLEESPECTRE may not be exploitable in the real hardware.

8 Related work
Spectre-style attack mitigation. Several approaches have
been proposed to mitigate Spectre vulnerabilities [7, 9, 14,
21, 25].

Speculative Load hardening [7] (SLH) is a mitigation tech-
nique for Spectre variant 1, adopted by the LLVM compiler.
SLH identifies the potentially vulnerable code fragments
where memory accesses depend on the conditional branches
and then inserts hardening instruction sequence to nullify the
pointers that may leak the data. SLH hardens the RS stage of
the vulnerable code, the secret data cannot be loaded to the
cache during speculative execution after nullifying the crucial
pointers. As SLH repairs the program at every conditional
branch and the hardening instructions slow down execution, it
introduces 36% performance overhead. Oleksenko et al. [21]
present mitigation of Spectre variant 1 attack by delaying the

execution of the vulnerable instructions via introduction of ar-
tificial data dependencies instead of serialization instructions
to stop speculative execution altogether. These methods lack
accurate analysis and hence overestimate vulnerable code
fragments leading to a significant performance overhead of
the repaired programs.

Microsoft Visual C/C++ compiler [9] enables mitigation
of Spectre Variant 1 through a compiler option that inserts
"lfence" serializing instruction at potentially vulnerable code.
However, this technique successfully mitigates only 2 out of
15 Spectre litmus tests [18].

oo7 [25] is the first work proposed to mitigate Spectre-style
attacks via modeling speculative execution in static analysis.
oo7 works on binary and leverages taint analysis to track
the vulnerable branches and memory operations that lead to
Spectre-style vulnerabilities. oo7 can effectively detect and
fix Spectre-style attacks, but may still produce false positives
due to conservative static analysis.

SPECTECTOR [14] presents a principled approach using
speculative non-interference in symbolic execution to dis-
cover data leakage. However, Spectector only finds whether
some secret data has been speculatively accessed; it does not
check the possibility of follow-up cache side-channel attack,
which is what we achieved via our cache modeling.

Side-channel attack identification via cache modeling.
Casym [4] presents a cache-aware symbolic execution to
identify and fix cache side-channel vulnerabilities. Casym
provides two cache models: the infinite cache model of caches
with infinite size and associativity, and the age model that
tracks the distance of a memory access from its most re-
cent access. However, the description of the cache models in
Casym are sketchy and hence prevents reproducibility. Be-
sides, Casym does not consider speculative execution in its
models. CACHEFIX [8] is another cache side-channel veri-
fication tool that can detect and fix the attack via symbolic
execution. It also targets cache timing attacks and does not
consider speculative execution paths.

Abstract interpretation is a static analysis approach that
has been effectively adopted for cache hit/miss modeling
in Worst-Case Execution Time (WCET) estimation. Wu et
al. [26] introduce abstract interpretation to side-channel attack
detection by extending it to cover speculative execution. This
approach targets timing based side-channel attack but does
not handle Spectre attack. A similar approach is embodied
CacheAudit [10], however, the CacheAudit approach does
not consider speculative execution semantics.

In summary, the previous works either do not model spec-
ulative execution or lack a precise cache model. KLEE-
SPECTRE is the first work to integrate speculative symbolic
execution with cache modeling.

KLEESPECTRE : Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution , ,

9 Conclusion
We have presented a new software testing tool named as
KLEESPECTRE to expose the micro-architectural features
to the software testing. The micro-architectural features such
as speculative execution and caches are generally ignored
by traditional software testing. This hides the vulnerabili-
ties caused by invisible micro-architectural behaviours when
a program runs on the hardware. KLEESPECTRE makes
these behaviours visible in the software testing via model-
ing the speculative execution and caches within the tradi-
tional symbolic execution. The experiment shows that KLEE-
SPECTRE can effectively detect the BCB vulnerabilities and
the cache model can make such detection more accurate.
KLEESPECTRE is only a step forward to extend the foun-
dation of software testing to systematically discover vulnera-
bilities dependent on micro-architectural features. Our tool
also provides an open platform to extend our methodologies
as more Spectre style attacks are being discovered. For repro-
ducibility and further research in the area, our tool and the
benchmarks are publicly available:

https://github.com/winter2020/kleespectre

Acknowledgments
This research is supported by the National Research Founda-
tion, Prime Minister’s Office, Singapore under its National
Cybersecurity R&D Program (Award No. NRF2014NCR-
NCR001-21) and administered by the National Cybersecurity
R&D Directorate.

References
[1] 2017. Intel Xeon Gold 6126 Processor. https://ark.intel.com/

products/120483/Intel-Xeon-Gold-6126-Processor-19-25M-
Cache-2-60-GHz-. (2017).

[2] 2018. www.uclibc.org. (2018).
[3] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. 2010. New

Results on Instruction Cache Attacks. In Cryptographic Hardware and
Embedded Systems, CHES 2010, Stefan Mangard and François-Xavier
Standaert (Eds.). Springer Berlin Heidelberg, 110–124.

[4] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut
Kandemir. 2019. CaSym: Cache aware symbolic execution for side
channel detection and mitigation. In CaSym: Cache Aware Symbolic
Execution for Side Channel Detection and Mitigation. IEEE, 0.

[5] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for Com-
plex Systems Programs.. In OSDI, Vol. 8. 209–224.

[6] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. 2018. A Systematic Evaluation of Transient Execu-
tion Attacks and Defenses. arXiv. org e-Print archive (2018).

[7] Chandler Carruth. 2018. Speculative Load Hardening. https:
//docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_
61e_Ko3TmoCS3uXLcJR0. (2018).

[8] Sudipta Chattopadhyay and Abhik Roychoudhury. 2018. Symbolic
verification of cache side-channel freedom. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 37, 11
(2018), 2812–2823.

[9] Microsoft community. 2018. C++ Developer Guidance for Speculative
Execution Side Channels. https://docs.microsoft.com/en-us/cpp/
security/developer-guidance-speculative-execution. (2018).

[10] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke.
2015. Cacheaudit: A tool for the static analysis of cache side channels.
ACM Transactions on Information and System Security (TISSEC) 18, 1
(2015), 4.

[11] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. 2018. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. SIGPLAN Not. 53, 2 (March 2018),
693–707. https://doi.org/10.1145/3296957.3173204

[12] Vijay Ganesh and David L Dill. 2007. A decision procedure for bit-
vectors and arrays. In International Conference on Computer Aided
Verification. Springer, 519–531.

[13] José González and Antonio González. 1997. Speculative execution via
address prediction and data prefetching. In International conference on
supercomputing. Citeseer, 196–203.

[14] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and Andrés
Sánchez. 2018. SPECTECTOR: Principled Detection of Speculative
Information Flows. arXiv preprint arXiv:1812.08639 (2018).

[15] Trevor Hansen, Peter Schachte, and Harald Søndergaard. 2009. State
joining and splitting for the symbolic execution of binaries. In Interna-
tional Workshop on Runtime Verification. Springer, 76–92.

[16] James C. King. 1976. Symbolic Execution and Program Testing. Com-
mun. ACM 19 (1976). Issue 7.

[17] Paul Kocher. [n. d.]. Spectre Mitigations in Microsoft’s
C/C++ Compiler. https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html. ([n. d.]).

[18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2018. Spectre Attacks: Exploiting Specu-
lative Execution. ArXiv e-prints (Jan. 2018). arXiv:1801.01203

[19] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George
Candea. 2012. Efficient state merging in symbolic execution. In Acm
Sigplan Notices, Vol. 47. ACM, 193–204.

[20] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
2015. Last-level cache side-channel attacks are practical. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 605–622.

[21] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein,
and Christof Fetzer. 2018. You Shall Not Bypass: Employing data
dependencies to prevent Bounds Check Bypass. Technical Report
arXiv:1805.08506, https://arxiv.org/abs/1805.08506. arxiv.

[22] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks
and Countermeasures: The Case of AES. In Topics in Cryptology –
CT-RSA 2006, David Pointcheval (Ed.). Springer Berlin Heidelberg,
1–20.

[23] Colin Percival. 2005. Cache missing for fun and profit. In Proc. of
BSDCan 2005.

[24] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm.
2007. Timing predictability of cache replacement policies. Real-Time
Systems 37, 2 (2007), 99–122.

[25] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra,
and Abhik Roychoudhury. 2018. oo7: Low-overhead defense against
spectre attacks via binary analysis. arXiv preprint arXiv:1807.05843
(2018).

[26] Meng Wu and Chao Wang. 2019. Abstract interpretation under specula-
tive execution. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 802–
815.

https://github.com/winter2020/kleespectre
https://ark.intel.com/products/120483/Intel-Xeon-Gold-6126-Processor-19-25M-Cache-2-60-GHz-
https://ark.intel.com/products/120483/Intel-Xeon-Gold-6126-Processor-19-25M-Cache-2-60-GHz-
https://ark.intel.com/products/120483/Intel-Xeon-Gold-6126-Processor-19-25M-Cache-2-60-GHz-
www.uclibc.org
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://doi.org/10.1145/3296957.3173204
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
http://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1805.08506

	Abstract
	1 Introduction
	2 Background and threat model
	3 Overview
	4 Cache Aware Speculative Symbolic Execution
	4.1 Speculative Symbolic Execution
	4.2 Symbolic Model of Cache

	5 Implementation
	6 Evaluation
	6.1 Evaluation of KLEESpectre on litmus tests
	6.2 Effectiveness and Efficiency: Detection of BCB Gadgets in Real Programs.
	6.3 Leakage detection with cache modeling.

	7 Threats to validity
	8 Related work
	9 Conclusion
	References

