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Abstract—The heavy use of event-callback mechanism in
frameworks like Android causes challenges for static analysis.
Modelling of callback mechanisms for Android applications (app
for short) is becoming a major method to address such challenges.
In this work, we aim to construct a generic callback-related
model that supports path-sensitive analysis. We consider three
unresolved challenges in the existing modelling approaches: 1)
building connections between different components; 2) identifying
path-sensitive conditions; 3) handling the system-driven callbacks
and fine-grained lifecycle callbacks. We propose algorithms for
constructing a generic path-sensitive callback model and present
a prototype model constructor, AndroChecker, to validate our
approach. We evaluate 20 real-world apps using AndroChecker.
The evaluation result shows that our method and tool have
a strong capability in modelling path conditions and inter-
component invocations.

I. Introduction

Correctness and security of Android apps has become a
critical concern and thus verification is needed. However, tra-
ditional flow analysis [1], [2] is hard to be directly adopted to
Android apps, since Android apps do not have a fixed program
entry. A promising way of static analysis is to create models of
an Android app rather than directly analysing the app source
code, due to its event-driven structures (e.g, listener interfaces,
event callbacks, etc.). There are two ways of app modelling:
callback-directed [3], [4] and data-directed [5], [6]. Callback-
directed modelling captures event-callback sequences within
the targeted app and represents them as a variation of control
flow graph (CFG); whereas data-directed modelling identifies
types of information related to the analysis goal and combines
this information according to the flow sequences. The former
way is more versatile and is able to provide logical structure
over the entire app program. However, it can hardly provide
concrete assist for analysis in practical scenarios, since most
of the modelling targets, functionality testing or security
verification, are closely combined with solid data input and
output. Data-directed modelling has advantages in tackling
specific analysis, but has a heavy cost in constructing a generic
model. Neither of them is able to conduct a callback model
in a generic and fine-grained manner.

In more details, prior app modelling suffers from in-
completeness in three aspects. 1) Component types: only
activity is involved in the modelling; other components
like service and broadcast receiver are ignored. How-

ever, security compromises and logic bugs frequently exist in
service and broadcast receiver components. 2) Callback
types: only callbacks related to lifecycle and user interaction
are taken into consideration. Actually, in Android, a variety of
callbacks are driven by system events, like phone and location
status. 3) Path-insensitive: in the existing callback modelling,
the generated edges only present a possible flow from a start
node to an end node, ignoring information such as how and
when the flow is executed. There lacks a valid way to handle
the conditions of the execution of possible flows.

In this work, we develop an approach for constructing
generic path-sensitive callback (GPC for short) model for
Android apps. There are three key insights underlying our
approach: 1) components like service run in a parallel
way with other components; 2) each of the non-lifecycle
callbacks needs to register itself in their parent callbacks
before execution; 3) the callback execution condition can be
identified by analysing the register implementation along with
possible paths. Our approach leverages the above insights
to fully automate the model construction via static program
analysis. We design and implement a proof-of-concept model
builder AndroChecker, which receives Android apk files as
input and outputs their corresponding GPC models. We apply
AndroChecker to 20 real-world apps. The evaluation results
show that our technique is both accurate and complete.

II. Construction Algorithm

In this section, we introduce the GPC construction algo-
rithms, using an example shown in Figure 1 and Figure 2.
The algorithm includes the following four stages.

A. Path-insensitive Inner Component Model (PII)

Taking the source code of a target component as input, the
PII constructing process ConsPII outputs a path-insensitive
model for the component, including valid nodes (set N) and
edges between the nodes (El ∪ Er, El contains the edges
connecting two lifecycle nodes, and Er contains the edges
produced by callback registering). For example, taking the
source code in Figure 1 as input, ConsPII generates the black
arrows and all the nodes in Figure 2.

The nodes in N can be simply identified by matching pre-
defined regular expression. To compute El, ConsPII first ini-
tializes an entire lifecycle graph (ELG) in accordance with the



1 public class ShareMyPosition extends MapActivity implements LocationListener{
2   private LocationManager locationManager;
3
4   public void onCreate(Bundle savedInstanceState){
5     ...locationManager = (LocationManager) getSystemService(Context.LOCATION_SERVICE); ...}
6
7   private void performLocation(boolean forceNetwork){
8     ...List<String> providers = locationManager.getProviders(true);   ...
9     boolean containsGPS = providers.contains(LocationManager.GPS_PROVIDER);
10     boolean containsNetwork = providers.contains(LocationManager.NETWORK_PROVIDER);
11     if ((containsGPS && !forceNetwork) || (containsGPS && !containsNetwork)) {
12       locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 5, this);}
13     else {...finish();}}       
14
15   protected void onResume(){
16     ...performLocation(false);}
17
18   protected void onPause(){
19     ...locationManager.removeUpdates(this);}
20
21   protected Dialog onCreateDialog(int id){
22     return new AlertDialog.Builder(this).setTitle(R.string.app_name)
23       .setView(sharedMapView)
24       .setNeutralButton(R.string.options, new OnClickListener() {
25         public void onClick(..., ...){
26           ...startActivity(option);}})
27       .setPositiveButton(R.string.share_it, new OnClickListener() {
28         public void onClick(..., ...){
29           ...startActivity(share);}})
30       .setNegativeButton(R.string.retry, new OnClickListener() {
31         public void onClick(DialogInterface arg0, int arg1){
32           ...performLocation(false);}}).create()}
33
34   public void onLocationChanged(final Location location){
35     ...locationManager.removeUpdates(this);
36       this.location = location;...}}

Fig. 1. Motivating example derived from ShareMyPosition [7].
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Fig. 2. GPC model illustration for the motivating example.

type of the given component. For the nodes in the ELG that are
not implemented in target component (noted as hiddenNodes),
ConsPII removes them and connects their children nodes to
their corresponding parent nodes.

To identify the edges in Er, ConsPII process first identify
a set of register actions FRA (e.g., View.setOnClickListener,
SensorManager.registerListener, etc.), each of which contains
the invoker, invokee and the object conducting the (un)register
action, then adopts an improved DFS (Deep First Search) algo-
rithm over the entire program. The traversal process starts with
onCreate callback in the launcher activity. For each identified
register action, the invokee callback ive is inserted to the active
area as a new node. The active area is a lifecycle interval
between two auxiliary nodes (onActiveStart and onActiveEnd)
where the non-lifecycle callbacks are normally invoked. There
are two types of connections between lifecycle and non-
lifecycle callbacks: lifecycle→ non-lifecycle and non-lifecycle
→ non-lifecycle. The former generates edges onActiveStart →
ive → onActiveEnd; and the latter generates edges ivr → ive
→ onActiveEnd, where ivr is the invoker in a register action.

B. Connections between Components (CBC)

Connections between components (noted as E j) can be
divided into two types: sequential jumping and parallel jump-
ing. The former happens when the invokee occurs after the
end of the invoker. It normally exists in the connections
between activities, since the activities occupy the foreground
(in running status) in the sequence of invocation. The latter

occurs when services involve, because a service runs in the
background in parallel with the foreground activity and other
background services.

The CBC constructing process ConsCBC takes the sequen-
tial jumping as an edge between the invoker and invokee,
similar as in PII. For parallel jumping, ConsCBC generates
specialized parallel edges to represent the parallel relationship.
Specifically, if the trigger component is an activity, we define
parallel slice to represent the part of a triggering activity
model that can run in parallel with the service. For example,
service S is launched and stopped in activity A via the
API startService and stopService respectively. Only the
nodes that can run between startService and stopService
are possible to run in parallel with S. The paths in A consisting
of such nodes and their edges are the parallel slice. The
parallel slice provides a fine-grained model for the parallel
relation between the invoker and invokee. The algorithm
traverses all the feasible paths that contain startNode (e.g.,
startService, bindService) and checks the paths that contain
endNode (e.g., stopService, unbindService). In a path, the
algorithm marks nodes between startNode and endNode as
the parallel slice nodes. Note that in parallel jumping, if the
service is terminated by itself, the parallel slice is the entire PII
of the triggering activity after the startNode. The blue arrows
in Figure 2 are generated by the ConsCBC.

C. Path-sensitive Inter-component Model (PSI)

The PII and CBC do not include the triggering conditions,
which heavily limit their applications. To address this issue, we
propose a path-sensitive modelling approach called ConsPSI
(constructing the PSI). Essentially, ConsPSI aims at handling
the triggering conditions for register edges Er and inter-
component connections E j. Lifecycle edges El need not to be
handled since they are triggered without extra conditions. For
each edge in Er and E j, the path-sensitive model represents the
set of conditions under which the invokee callback is fired. To
achieve this goal, ConsPSI engages a backward data depen-
dency analysis for critical program slice, which involves two
core analyses: checkCV (for checking the condition variables)
and backTraverse (for tracking the condition values). Since
ConsPSI uses the same methods to handle E j as to handle Er,
we only describe how to handle Er for simplicity.

checkCV checks the triggering conditions for callback invo-
cation and records the set of variables in the conditions. The
checked objects are recorded in the register actions in FRA, as
the invocation of a non-lifecycle callback heavily relies on the
execution of the register actions. For each fra ∈ FRA, checkCV
identifies the register actions branch using backward matching,
and then records the branch conditions. Finally, checkCV
abstracts all the variables within the branch conditions and
stores them in a list CVList.

The backTraversal for variable dependency analysis is based
on the CVList. The goal for backTraversal is to clarify the
values of the condition variables. To this end, backTraversal
tracks the variable assignment backward to update the CVList.
The atomic unit of CVList is a variable tuple vt = (var, val),



where var and val refer to the name and value of the variable
respectively, and the val can be either a vt set or a value. The
tuple vt keeps evolving during variable tracking. Eventually,
all the vals in vt are updated to values. When the tracking
ends in a method, the val is possible to be an undetermined
variable. In this case, backTraversal identifies the types of
these variables and marks them as PARA or GLOBAL, which
are used to represent the parameter type and global type of
var respectively. Hence, backTraversal typically records three
types of leaf val at the end of tracking: constant value, PARA
and GLOBAL. Eventually, the final results are treated as an
attribute of the invoker node in fra.

The path-sensitive condition determines whether a callback
is active; and the triggering event determines whether it is
invoked. ConsPSI gets the corresponding triggering event
tuple (〈trigering objects, trigering actions, trigered object〉) in
accordance to the invokee type, and then assigns the tuple to
the invoker node as its attribute.

Limitations. Currently, the path-sensitive model only sup-
ports intra-procedural condition tracking, which limits the
preciseness of the condition values. In fact, inter-procedural
data dependency analysis exploits similar method in tracking
the variables as the intra-procedural one. The differences
embody in the process of handling the parameters. It requires
extra costs to handle the inter-procedural data tracking. How to
improve the preciseness of inter-procedural condition tracking
in an acceptable time and resource cost is an interesting
direction of our future work.

D. Jumping Confusion

In activity jumping, multiple jumping invokers existing
in the same activity may cause jumping confusion on the
matching between the invoker and invokee. A naive solution
is to generate a direct edge connecting the invoker ivr with
invokee ive. However, it ignores the related lifecycle nodes
(i.e., onActiveEnd and onPause) in real sequence. Our
analysis adopts a marking algorithm to address the jumping
confusion. For each jumping edge E j−a, we use a unique ID to
mark the edge from its ivr to the onActiveEnd node, and then
the same ID is used to mark the edge from onPause node to its
ive. If two jumping actions point to the same ive, they share
the same ID. An illustration example is shown in Figure 2.
The edges $1.onClick → shareMyPosition.onActiveEnd and
shareMyPosition.onPause → option.onCreate are marked as
ID 1©, and other two similar edges are marked as ID 2©.

III. Empirical Evaluation

We implemented the method in a prototype tool – An-
droChecker, which is built based on AndroGuard [8] frame-
work, and consists of 4,400 lines of Python code. The input
of our tool is the apk file. The output is the set of nodes
and edges, path condition set, the nodes of parallel slice and
related statistical results. We perform evaluation on 20 real-
world apps downloaded from in Google Play, which are used
in prior works [4], [9]. Then, we study three typical cases to
illustrate results of PSI in details.

A. Construction GPC model

Table I shows the evaluation results for each stage of analy-
sis. Column “Application” shows the component sizes, where
“A”, “S” and “B” represent the number of activity, service
and broadcast receiver, respectively. Column “PII” shows the
results of the inner component model, including: lifecycle
nodes Nl, lifecycle edges El, hidden nodes hN, non-lifecycle
nodes Nn and register edges Er. Column “CBC” shows the
results of the inter component connections, including: the
number of inter-component edges between activities E j−a, the
number of inter-component edges involving service E j−s and
the sum of parallel slice nodes NS lc. Column “PSI” shows
the result of path-sensitive conditions. We present the total
nodes N and total edges E in this stage. From Table I, two
formulas can be observed, which are N = Nl + Nn and
E = El + Er + E j−a + E j−s. Column “Cons” represents the
path sensitive condition number of callback flow in each app.
As mentioned earlier, currently AndroChecker only supports
inner-procedural conditions traversal. So the conditions resid-
ing out of the callback holder method would not be analysed.

We omit the results of marked edges (mentioned in Section
II-D) since they are the same as E j−a. Column “Time” shows
the time cost of our approach. It includes two parts: parsing
time (PT) and modelling time (MT). Since AndroChecker
directly handles apk file, the process of reverse engineering
consumes significant time cost. This part of work is done by
AndroGuard, which is not counted. On the whole, the number
of PT and MT are related to the components’ size.

B. Path Sensitive Conditions (PSC) Discussions

We further manually study the PSC results on three typical
apps shown in Table II, where the column “PSC” represents
the simplified PSC results; column “N” shows the times a PSC
appears; and column “F” shows the false positive (FP) in N.

1) Beem: Beem provides a full featured and easy to
use XMPP client on Android. As shown in Table I,
app Beem contains four PSCs. By manual analysis, the
real conditions contains: 1© if ( SharedPreferences

paramSharedPreferences.getBoolean("use auto awa

y", false) && "use auto away".equals(paramStrin

g) ); 2© if(LoginAnim.this.mTask.getStatus()==Async
Task.Status.PENDING); 3© FP. For 1© and 2©, the conditions
are abstracted successfully. As for 3©, the jumping action
bindService is directly contained by onResume, which
indicates 3© is an FP. The reason is that the back traversal of
AndroChecker can not correctly identify the loop structure.
In details, AndroChecker treats while(){} bindService;
as while(){bindService;}. Currently, in the codes
generated by AndroGuard, distinguishing the two structures is
intractable. This provides a direction for future improvement.

2) MyTracks: MyTracks helps travellers to look for a
way to keep tracking the places that they have been to.
By manual analysis, the real PSCs can be abstracted as 1©
if(Utilities.isGpsOn(getApplicationContext())),
2© FP, 3© if (GooglePlayServicesUtil.a(localContext,
i).str1!=null). For 1©, the real PSC is successfully



TABLE I
Evaluation results for GPC model construction algorithms.

Name Application PII CBC PSI Time(sec)
A S B Nl El hN Nn Er E j−a E j−s NSlc N E Cons PT MT

APV 4 0 0 26 41 18 31 62 9 0 0 57 112 6 9 14
Astrid 57 16 27 304 400 329 118 236 8 0 0 422 725 15 117 125

BarcodeScanner 9 0 1 50 84 44 16 32 4 0 0 66 120 3 18 38
Beem 13 1 7 97 193 49 28 56 18 2 - 125 269 4 43 63

ConnectBot 11 1 1 76 114 51 49 98 9 1 - 125 222 17 47 62
FBReader 9 9 9 86 110 52 29 58 1 2 - 115 171 12 128 141

K9 32 9 8 196 246 177 154 308 24 4 - 350 582 11 66 97
KeePassDroid 24 1 2 115 144 138 36 72 6 2 4 151 224 16 11 18

Mileage 19 13 0 176 209 98 79 158 3 8 40 255 378 11 332 236
MyTracks 7 1 1 42 64 37 41 82 5 2 9 83 153 3 23 35
NotePad 1 0 0 6 10 4 1 2 0 0 0 6 12 0 19 23

NPR 31 13 51 235 370 153 217 434 10 19 - 452 827 32 124 139
OpenManager 53 16 5 321 596 272 272 544 75 8 - 593 1223 1 119 121
OpenSudoku 10 0 0 62 88 49 39 78 14 0 0 101 180 6 3 5

SipDroid 21 3 16 127 203 106 48 96 14 7 16 175 312 10 15 26
SuperGenPass 2 0 1 11 19 10 18 36 1 0 0 29 56 0 5 6
TippyTipper 83 11 102 536 848 359 373 746 362 127 817 909 2083 58 251 376

VLC 24 11 11 189 248 112 211 422 23 6 15 400 699 10 99 113
VuDroid 5 0 0 22 30 30 4 8 0 0 0 26 38 0 1 2
XBMC 3 0 0 11 15 19 0 0 2 0 0 11 17 0 0.1 0.1

TABLE II
Example path sensitive conditions in studied cases.

Name PSC(smali) N F

Beem

if-eq{SharedPreferences;→getBoolean
(String;Z)Z, String;→equals(PARA;)Z} 2 0

if-eq{AsyncTask;→getStatus()AsyncTask
$Status;,GLOBAL} 1 0

if-eq{ChangeStatus;→access$1400(ChangeStatus;)
Landroid/widget/Button;} 1 1

My-
Tracks

if-eq{Utilities;→isGpsOn(Context;)Z} 2 1
if-ne{GooglePlayServicesUtil;→a(Context; I)String;} 1 0

Open-
Sudoku

if-ne{InputMethod;→isInputMethodViewCreated()Z’} 1 0
if-eq {File;→isDirectory()Z, File;→isFile()Z} 1 1

if-ne {Iterator;→hasNext()Z} 4 0

matched as shown in Table II. For 2©, the register action is
directly contained by onCreate, and the reason of FP is the
same as in Beem. For 3©, the PSC abstracted by our approach
lacks the variable str1. This is because str1 is an attribute of
GooglePlayServicesUtil.a, which can not be recognized by
AndroChecker.

3) OpenSudoku: OpenSudoku is an open source sudoku
game. AndroChecker detects six PSCs in OpenSudoku.
Through manual analysis, the real PSCs can be abstracted as
1© if(!(InputMethod).isInputMethodViewCreated()),
2© FP, 3© if(!Iterator.hasNext()). The PSC 1© and 3©
are successfully detected by AndroChecker. Similarly, the FP
occurs because of the loop obstacle.

IV. Conclusion

Prior work targeting at constructing control-flow based
model in Android, provides limited benefit when applied to
real systems. We proposed GPC, a generic representation with
fine-grained path information, and developed algorithms for its
construction and traversal. We described our proof-of-concept

builder AndroChecker and presented the evaluation results on
real apps, which evidenced the efficiency of AndroChecker.
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