EffectiveSan: Type and Memory Error Detection using
Dynamically Typed C/C++"

Gregory J. Duck
Department of Computer Science
National University of Singapore

Singapore
gregory@comp.nus.edu.sg

Abstract

Low-level programming languages with weak/static type
systems, such as C and C++, are vulnerable to errors re-
lating to the misuse of memory at runtime, such as (sub-
)Jobject bounds overflows, (re)use-after-free, and type con-
fusion. Such errors account for many security and other
undefined behavior bugs for programs written in these lan-
guages. In this paper, we introduce the notion of dynamically
typed C/C++, which aims to detect such errors by dynami-
cally checking the “effective type” of each object before use
at runtime. We also present an implementation of dynami-
cally typed C/C++ in the form of the Effective Type Sanitizer
(EffectiveSan). EffectiveSan enforces type and memory safety
using a combination of low-fat pointers, type meta data and
type/bounds check instrumentation. We evaluate Effective-
San against the SPEC2006 benchmark suite and the Firefox
web browser, and detect several new type and memory errors.
We also show that EffectiveSan achieves high compatibil-
ity and reasonable overheads for the given error coverage.
Finally, we highlight that EffectiveSan is one of only a few
tools that can detect sub-object bounds errors, and uses a
novel approach (dynamic type checking) to do so.

CCS Concepts -« Software and its engineering — Dy-
namic analysis; Data types and structures; Software
testing and debugging; - Security and privacy — Sys-
tems security; Software and application security;

“This research was partially supported by a grant from the National Research
Foundation, Prime Minister’s Office, Singapore under its National Cyber-
security R&D Program (TSUNAMi project, No. NRF2014NCR-NCR001-21)
and administered by the National Cybersecurity R&D Directorate.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06...$15.00
https://doi.org/10.1145/3192366.3192388

Roland H. C. Yap
Department of Computer Science
National University of Singapore

Singapore
ryap@comp.nus.edu.sg

Keywords Type errors, memory errors, (sub-)object bounds
errors, use-after-free errors, type confusion, dynamic types,
type checking, bounds checking, sanitizers, low-fat pointers,
C, C++

ACM Reference Format:

Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: Type
and Memory Error Detection using Dynamically Typed C/C++.
In Proceedings of 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18). ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3192366.3192388

1 Introduction

Modern programming languages employ type systems to
control object usage and detect bugs. Type systems may be
static (compile time), dynamic (run time), strong (strict), or
weak (loose). The type system of C/C++ is static and weak,
meaning that it is up to the programmer to prevent type er-
rors from occurring at runtime, including: bounds overflows
(e.g., accessing the 101st element of an int [100]), (re)use-
after-free (type mutation) and type confusion (e.g., bad cast)
errors. Detecting such errors is desirable for a number of
reasons, including: security, debugging, conformance to the
compiler’s Type Based Alias Analysis (TBAA) [5] assump-
tions, C/C++ standards [16, 17] compliance, code quality
(e.g., readability, portability, maintainability, etc.), and re-
vealing type-related undefined behavior. For example, type
and memory errors are well known to be a major source of
security bugs, e.g., accounting for over 75% of remote code
execution vulnerabilities in Microsoft software alone [27].
Type errors can also be problematic for reasons other than se-
curity. For example, errors that violate the compiler’s TBAA
assumptions may lead to program mis-compilation—a known
problem for some SPEC2006 benchmarks [13].

One solution is to deploy a sanitizer that instruments the
program with additional code aiming to detect errors at run-
time. Sanitizers are typically used for testing and debugging
during the development process—helping to uncover prob-
lems before the software is deployed—and sometimes also
for hardening production code (with a performance penalty).
However, existing sanitizers tend to be specialized for spe-
cific classes of errors rather than enforcing comprehensive
dynamic type safety. For example, TypeSan [11], Baggy-
Bounds [1] and CETS [28] are specialized tools designed

https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3192366.3192388

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

to detect type confusion, bounds overflows and use-after-
free errors respectively. Neither tool offers any protection
against other kinds of errors. Furthermore, many sanitizers
only offer incomplete protection against the class of errors
they target. For example, a known limitation of AddressSan-
itizer [32], LowFat [6, 8] and BaggyBounds [1] is that they
do not protect against sub-object bounds overflows, e.g.:

struct account {int number[8]; float balance;}

Modification of (balance) from an overflow in the account
(number) will not be detected. Another example is CAVER [23]
TypeSan [11], and HexType [18] which are specialized to
detect bad casts between C++ class types only.

In this paper, we propose dynamic type checking for C/C++
as a unified method for detecting a wide range of mem-
ory misuse errors, including type confusion, (sub-)object
bounds overflows and (re)use-after-free. We also propose an
implementation of dynamic type checking in the form of
the Effective Type Sanitizer (a.k.a. EffectiveSan). EffectiveSan
dynamically verifies the effective type (see [16] §6.5.0 96) of
each object before use, allowing for the direct detection of
the following classes of errors:

e Type-errors: By dynamically checking types, Effective-
San directly detects type errors that are a common source
of security vulnerabilities (e.g., type confusion [23]) and
other undefined behavior. EffectiveSan’s type checking is
comprehensive, covering all standard C/C++ types (int,
float, pointers, structs, classes, unions, etc.). Further-
more, coverage is not limited to explicit cast operations.

¢ (Sub-)Object-bounds-overflows: C/C++ types intrinsi-

cally encode bounds information, e.g., (int [100]), mean-
ing that type and bounds checking go hand-in-hand. Effect-
iveSan uses dynamic types to detect bounds errors, as well
as sub-object bounds overflows within the same object.

Furthermore, EffectiveSan can detect some classes of (re)use-
after-free errors:

¢ (Re)Use-after-free and Double-free: By binding unallo-
cated objects to a special type, EffectiveSan can also de-
tect some use-after-free and double-free errors. Likewise,
reuse-after-free (when the object is reallocated before the
erroneous access) is protected if the reallocated object is
bound to a different type.

In essence, EffectiveSan is a “generalist” sanitizer that finds
multiple classes of errors using a single underlying method-
ology, namely, dynamic type checking. Such errors account
for the majority of attacks [27] as well as other undefined
behavior. Furthermore, unlike existing C/C++ type error san-
itizers [11, 18, 20, 23], EffectiveSan checks pointer use (i.e.,
dereference) rather than explicit casts.

Our EffectiveSan implementation works by extending low-
fat pointers [6, 8] to dynamically bind type meta data to
allocated objects. Low-fat pointers have several advantages,

5

Gregory J. Duck and Roland H. C. Yap

including: speed, low memory overheads and compatibil-
ity with uninstrumented code. The key insight is to store
meta data at the base of allocated objects, analogous to a hid-
den malloc header, which can be retrieved using standard
low-fat pointer operations. This differs from most existing
sanitizers that store meta data in a shadow space or some
other adjunct memory. EffectiveSan’s type meta data is de-
tailed, storing the type and bounds of every possible sub-
object, allowing for interior pointers (pointers to sub-objects
inside allocated objects) to be checked at runtime. We ex-
perimentally evaluate EffectiveSan against the SPEC2006
benchmarks and the Firefox web browser [10]. EffectiveSan
finds multiple type, (sub-)object bounds, and reuse-after-free
errors in SPEC2006, with some errors previously unreported.
EffectiveSan offers more comprehensive error detection
compared to more specialized tools. However, more com-
prehensive error detection necessitates more instrumented
checks, so the trade-off is higher performance overheads.
EffectiveSan is intended for deployment in the software de-
velopment and testing life-cycle where error coverage is the
priority. While EffectiveSan’s design philosophy is to “check
everything” by default, it is also possible to trade coverage
for performance. To demonstrate this, we also evaluate two
reduced-instrumentation variants of EffectiveSan, namely:

o EffectiveSan-type: for type-cast-checking-only; and
o EffectiveSan-bounds: for bounds-checking-only.

Both variants have similar coverage compared to existing
state-of-the-art specialized sanitizers. In summary, the main
contributions of this paper are:

- Dynamic Type Checking: We introduce dynamically typed
C/C++ as a general methodology against a wide range of
errors relating to the misuse of memory.

- EffectiveSan: We present a practical implementation of
dynamically typed C/C++ in the form of the Effective Type
Sanitizer (EffectiveSan). EffectiveSan offers comprehensive
type error detection (for both C and C++), comprehensive
(sub-)object bounds overflow error detection, as well as
partial detection for some (re-)use-after-free errors, all
using the same underlying methodology.

- Sub-object Bounds Checking: Dynamic type checking offers

a novel approach to sub-object bounds checking. Most ex-

isting bounds-checking tools either check object bounds

only (e.g., AddressSanitizer [32]), or require explicit track-
ing of sub-object bounds information, e.g., by changing the

Application Binary Interface (ABI) (e.g., SoftBound [28]),

however this can be a source of incompatibility. In contrast,

EffectiveSan uses dynamic type information to derive sub-

object bounds “on demand”, does not change the ABI, and

is thread-safe.

Evaluation: We experimentally evaluate EffectiveSan ag-

ainst the SPEC2006 benchmark suite [13] and the Firefox

web browser [10]. SPEC2006 is a heavily analyzed code-
base, yet EffectiveSan is able to detect several new errors.

EffectiveSan: Type and Memory Error Detection using Dynamically...

2 Background

Dynamically typed languages, such as JavaScript, Python,
Lua, etc., check the types of objects at runtime. In contrast,
statically typed languages, such as C, check types at compile
time. Similarly, C++ is a statically typed language with the
limited exception of Run-Time Type Information (RTTI) and
the (dynamic_cast) operator for downcasting (casting from
a base to a derived class). The C/C++ type system is inten-
tionally weak, i.e., allowing for arbitrary pointer casting and
pointer arithmetic, meaning that type and memory errors
will not be prevented at compile time. By using dynamic
typing, we can detect such errors at runtime at the cost of
additional overheads. Note that dynamic typing concerns
pointer or reference access only, e.g., (f = *(float *)p)
is a type error if p does not point to a (f1oat) object. Casts
that create copies of objects, such as (f = (float)i), are
valid conversions and not type errors.

Aside from RTTI, there is limited existing work on dy-
namic type checking for C/C++. A simple dynamic checking
system for C that tags each data word with a basic type, e.g.,
integral, real, pointer, etc., was proposed in [25]. Unlike our
approach, there is no distinction between different types
of pointers (i.e., all pointers are treated as (void *)). Over-
heads are also very high at 35x-133x for SPEC95 [25]. Type
confusion sanitizers also provide a limited form of dynamic
typing discussed below. Bounds-checking is also a weak form
of dynamic typing (where only the type’s size is checked).
CCured [30] extends the C type system with memory-safety
guarantees. However, CCured has limited compatibility, no
C++ support, and does not track types over arbitrary casts.

2.1 Sanitizers

Type and memory errors have long been recognized as a
major source of bugs in programs written in low-level lan-
guages such as C/C++. As such, many different bug detection
tools (sanitizers) have been proposed which we survey and
compare.

Type Confusion. C++ provides a limited form of dynamic
typing in the form of RTTI and (dynamic_cast) for down-
casting. However, programmers will sometimes opt for the
faster yet unsafe (static_cast) version of the same operat-
ion—a known source of security vulnerabilities. CAVER [23]
and TypeSan [11] are specialized for detecting such type
confusion errors caused by unsafe downcasts. Another ap-
proach is the Undefined Behavior Sanitizer (UBSan) [33] that
transforms static_casts into dynamic_casts to enable
standard RTTI protections. HexType [18] is a more general
tool that extends protection to other kinds of C++ casts
such as (reinterpret_cast), (const_cast), etc. Finally,
libcrunch [20] can detect bad pointer casts for C programs.

Existing type confusion sanitizers have several limitations.
Firstly, existing sanitizers only verify incomplete types that
lack bounds information (e.g., T[] is incomplete whereas

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

T [100] is complete). For example, if (p) points to an object
of type (T [100]), then (p+101) may point to an object of any
type or unused memory. Existing sanitizers will not detect
such bounds errors since they assume both (p) and (p+101)
have the same type (T [1). EffectiveSan detects (sub-)object
bounds errors based on complete type information. The sec-
ond limitation is that existing sanitizers instrument explicit
cast operations only. Implicit casts (e.g., via memory, unions,
function arguments, etc.) are unprotected. For example, the
following is an implicit cast from (ptrA) to (ptrB):

memcpy (buf, &ptrA, 8); memcpy(&ptrB, buf, 8);

EffectiveSan instruments pointer use (i.e., dereference) mean-
ing that type errors arising from (ptrB)’s usage will be de-
tected (regardless of how the cast occurred). The final lim-
itation is that existing sanitizers focus only on a subset of
explicit C/C++ casts, e.g., C++ class casts for CAVER/Type-
San/HexType. In contrast, EffectiveSan can detect type errors
for any C/C++ type (int, float, structs, pointers, etc.). Eff-
ectiveSan generally performs more type checks than existing
tools, mainly because of increased type coverage and pointer
use instrumentation.

(Sub-)Object Bounds Overflows. Object bounds overflows
are well known to be a major source of security vulnerabili-
ties. As such, many existing solutions have been proposed,
including [1, 2, 6, 8, 9, 14, 19, 22, 28, 30, 32, 34] amongst oth-
ers. Many solutions, such as BaggyBounds [1], LowFat [6, 8],
Intel MPX [14] and SoftBound [28], work by binding bounds
meta data (object size and base) to each pointer. The binding
is typically implemented using some form of shadow mem-
ory (e.g., SoftBound, MPX) or encoding the meta data within
the pointer itself (e.g., LowFat with low-fat pointers). Solu-
tions that use shadow memory may also have compatibility
issues interfacing with uninstrumented code that allocates
its own memory (the corresponding entries in the shadow
memory will not be initialized). This can be partially miti-
gated by intercepting standard memory allocation functions,
or by hardware-based solutions (e.g., with MPX). Low-fat
pointers avoid the problem by encoding bounds meta data
within the pointer itself. Another approach to memory safety
is AddressSanitizer [32] which uses poisoned red-zones and
shadow memory to track the state of each word of memory,
e.g. unallocated, allocated or red-zone. Out-of-bounds mem-
ory access that maps to a red-zone will be detected, however,
memory errors that “skip” red-zones may be missed.

Most existing bounds overflow sanitizers protect allocation
or object bounds only. This means the overflows contained
within an allocated object will not be detected, e.g., the over-
flow into (balance) from Section 1. A few bounds checking
systems, e.g., SoftBound [28] and Intel MPX [14], can also
detect sub-object bounds overflows by using static type infor-
mation for bounds narrowing, i.e., an operation that further
constrains bounds meta information to a specific sub-object
for more accurate protection. This also requires sub-object

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

bounds to be associated with pointers when they are passed
between contexts, e.g., a pointer parameter in a function call.
For example, MPX solves this problem by passing bounds
information through special registers (bnd0-bnd3), or failing
that, by resorting to the bounds directory stored in shadow
memory. Similarly, SoftBound also explicitly tracks bounds
information, e.g., by inserting additional function parame-
ters [28]. Both MPX and SoftBound use shadow memory
schemes that have been shown to be unsuitable for multi-
threaded environments [31]. In contrast, EffectiveSan de-
tects (sub-)object bounds errors using dynamic type infor-
mation. For example, a pointer (p) of static type (int *) can
be matched against an object of dynamic type (account),
since (p) points to the sub-object (number) of compatible
type. EffectiveSan will enforce the sub-bounds for (number),
thereby preventing overflows into (balance) or outside the
(account). Unlike other sub-object bounds checkers, Effect-
iveSan does not change the Application Binary Interface nor
rely on thread-unsafe shared state.

(Re)Use-After-Free. Use-after-free (UAF) sanitizers include
tools such as AddressSanitizer [32] and Compiler Enforced
Temporal Safety (CETS) [29]. AddressSanitizer stores the
allocation state in shadow memory, allowing for the detec-
tion of use-after-free errors. AddressSanitizer also mitigates
reuse-after-free by putting freed objects into a “quarantine”
that delays reallocation (a technique also applicable to Eff-
ectiveSan). CETS uses a more sophisticated identifier-based
approach, that binds a unique tag to each allocated object,
allowing for general (re)use-after-free detection.

EffectiveSan’s use-after-free protection is related to the
AddressSanitizer approach—but with type meta data replac-
ing AddressSanitizer’s shadow memory scheme. Effective-
San can also detect reuse-after-free provided the object is
reallocated with a different type. Although EffectiveSan’s
protection is not as comprehensive as specialized tools such
as CETS, it is nevertheless worthwhile to target such errors
anyway, since this incurs no additional costs. Tools based on
instrumentation (including EffectiveSan, CETS, AddressSan-
itizer) may also miss some use-after-free errors because of
the inherent race between the check and a call to (free), e.g.,
by another thread. (Re)use-after-free can also be mitigated
using other means, such as garbage collection [3].

2.2 Our Approach

Figure 1 summarizes existing sanitizers and their capabilities.
Most sanitizers are specialized to one particular class of error
and/or offer partial protection against the classes of errors
they do support. This means that, if more comprehensive
error detection is desired, multiple different tools must be
deployed at once. However, this is problematic, since most
sanitizers are compiler specific (e.g., clang versus gcc) and
use competing instrumentation/shadow-memory schemes
that are not generally designed to be interoperable. Even if it

Gregory J. Duck and Roland H. C. Yap

l Sanitizer ‘ Types Bounds UAF ‘
CAVER [23] Partial® X X
TypeSan [11] Partial® X X
UBSan [33] Partial* X X
HexType [18] Partial* X X
libcrunch [20] Partial” X X
BaggyBounds [1] X Partial X
LowFat [6, 8] X Partial® X
Intel MPX [14] X v X
SoftBound [28] X v X
CETS [29] X X v
AddressSanitizer [32] X Partial’ Partial*
SoftBound+CETS [28, 29] X v v

’ EffectiveSan ‘ v v Partial’ ‘

Figure 1. Summary of different sanitizers and capabilities
against type and memory errors. Here (v') means comprehen-
sive protection, (X) means no or incidental protection, and
(Partial) means partial protection with caveats. The caveats
are: (x) only protects a subset of explicit C++ casts, (*) only
protects explicit C casts, (1) only protects allocation bounds,
(%) only protects use-after-free (not reuse-after-free), and (§)
only protects reuse-after-free for different types.

were possible to seamlessly combine sanitizers, EffectiveSan
still offers a more comprehensive level of error detection,
such as type errors caused by implicit casts.

EffectiveSan’s underlying approach is to convert C/C++
into a dynamically typed programming language. The ba-
sic idea is to bind a dynamic type to each allocated object,
which can be retrieved at runtime and compared against the
static type declared by the programmer. The dynamic type
information is complete and supports standard C/C++ types,
thus allowing for the detection of type errors beyond CAVER,
TypeSan, HexType and libcrunch. Furthermore, C/C++ types
encode (sub-)object size information, and thus dynamic types
can be used to enforce (sub-)object bounds. EffectiveSan’s
bounds enforcement is precise and offers more comprehen-
sive error detection than BaggyBounds, LowFat and Address-
Sanitizer. Finally, by binding deallocated objects to a special
type, dynamic typing can also detect some (re)use-after-free
errors. Although use-after-free detection is partial, it incurs
no additional costs while still detecting many common cases.

3 Dynamic Types for C/C++

In this section, we present a dynamic type system for C/C++.
This is essentially equivalent to the standard (static) type
system, but also includes extensions for handling unallocated
memory, and methods for calculating sub-object types and
bounds at runtime.

The dynamic type of an object is a qualifier-free! version
of the effective type ([16] §6.5.0 96) or object type ([17] §3.9.0
918) as defined by the C/C++ standards. The dynamic type can

1Qualifiers do not affect memory layout or access ([16] §6.5.0 7).

EffectiveSan: Type and Memory Error Detection using Dynamically...

L :Type X Z + P(Type X Z)

a) L(T,0) >(T,0)

b) | L(T,sizeof (T)) > (T,sizeof(T))

c) L(TIN]1,k) 2 L(T,k mod sizeof(T))

) L(TIN1,k) >(TIN1,k)if k mod sizeof (T) = 0

e) | L(struct S,k) 2 L(Tpemp, k — offsetof (S, memb)))
)
)
)

o

f) L(class C,k) 2 L(Tmemps k — offsetof(C, memb)))
g) | L(union U,k) 2 L(Tpemp k)
h) L(FREE, k) = {(FREE, 0)}

Py

Figure 2. The layout function (£). Rules (c)-(h) implicitly
assume that k is within the bounds of the object, that is,
0<k<sizeof (T) for rule matching L(T, k). Rules (e)-(g) ap-
ply to all members (memb) of the corresponding structure/-
class/union. Here (sizeof) and (offsetof) are the standard
ANSI C operators.

be any C/C++ type, including fundamental types (e.g., int,
float, etc.), pointers, function pointers, arrays, structures,
classes and unions. Dynamic types are always complete, i.e.,
the type’s size is known. We assume w.l.o.g. that type aliases
(e.g., typedef) are fully expanded and C++ templates and
namespaces are fully instantiated. Structures, classes and
unions are considered equivalent based on tag (i.e., the name),
or in the case of anonymous types, based on layout. We
denote the set of all types as (Type). For brevity, we use the
C++ convention of referring to types by their tag, e.g., (S) is
short for (struct S).

During a new allocation (e.g., stack allocation or heap
allocation via malloc, new, new[]) the dynamic type will
be bound to the object. For stack allocations and C++’s
new/new [] operators, the dynamic type is the same as the
declared type of the object as defined by the program. For
malloc the dynamic type is deemed equivalent to the first
lvalue usage type. The latter is determined by a simple pro-
gram analysis.

Example 1 (Dynamic Types). Consider the type definitions
and allocations:

struct S {int al[3]; char *s;};

struct T {float f; struct S t;7};

S x[8]; q =new T; r = (T *)malloc(sizeof(T));
s = (T *)malloc(100*sizeof (T));

Pointer x will be bound to type (S[8]), q and r bound to
type (T [1]), and s bound to type (T [100]). Notice that all dy-
namic types are complete, where the type’s size is determined
by the allocation size. O

Deriving Sub-object Types. The dynamic type represents
the type of the top-level allocated object. In C/C++, it is com-
mon for pointers to point to sub-objects contained within
larger objects—so called interior pointers. Interior pointers
can point to array elements, or to a member contained within
a structure, class or union. Another example is C++ classes

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

with inheritance, where base class(es) are typically imple-
mented as sub-objects of the derived class.

EffectiveSan explicitly tracks the dynamic type of top-level
allocated objects. Sub-object types are derived dynamically
from the containing allocated object’s type (or containing
type for short) and an offset, i.e., the pointer difference (in
bytes) between the interior pointer and the base pointer of
the containing object. For the ease of presentation, we shall
assume all pointer arithmetic uses byte offsets regardless
of the underlying pointer type. To derive sub-object types,
we assume a runtime system that can map interior pointers
to containing types and offsets (see Section 5). Next the
containing type and offset is mapped to the set of possible
sub-object types using a memory layout function, denoted
(L), that is formalized as the relation defined inductively
over rules (a)-(h) from Figure 2. Essentially, given a pointer
p to the base of an allocated object of dynamic type T and
an offset k (in bytes), the function £(T, k) returns the set of
type/integer pairs (U,) that represent all valid sub-objects
pointed to by pointer (p+k). Here, the type (U) represents
the sub-object’s type, and integer § represents the distance
from the pointer (p+k) to the sub-object’s base. The integer
d is used later for sub-object bounds calculation. For example,
the layout for int assuming sizeof (int)=4 is

L(int, 0) = {{(int, 0)} L(int, 4) = {{int, 4)}
L(int, k) =0 (otherwise)

Thus, if p points to int, then both (p+0) and (p+4) also point
to int by rules Figure 2(a)-(b) respectively. Rule (b) accounts
for the one-past-the-last-element required by the C standard
([16] §6.5.6 7.8). The layouts for other fundamental types,
pointers, functions and enumerations are defined similarly.
For compound types (arrays, structures and unions) we build
more complicated layouts. Rules (e)-(g) state that the layout
of a struct/class/union member (memb) of type (Tyemp) in-
cludes the layout of (T;;emp) offset within the containing type
(the offset is zero for unions). Similarly rule (c) for arrays.
For classes with inheritance, we consider any base class to
be an implicit embedded member. Finally, special rule (d)
states that interior pointers to array elements can also be
considered pointers to the containing array itself. This is
necessary because a common idiom is to scan arrays using
pointers rather than element indices.

Example 2 (Structure Layout). Consider a pointer p to type
(T) defined in Example 1. Then all (sub-)objects for p are
described by the following table:

Sub-obj.‘Offset‘ Type Sub-obj. ‘Offset‘ Type
p p+0 T p->t.al0]| p+4 | int
p—>f p+0 | float p—>t.all]| p+8 | int
P>t pt+4 S p—>t.al2] | p+12| int
p->t.a | p+4 |int[3] p—>t.s p+16 |char *
Consider (p+4), which points to the base of sub-objects
(p—>t), (p—>t.a) and (p—>t.a[0]) respectively, as well as

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

pointing to the end of sub-object (p->f). Using the rules
from Figure 2, we derive:

L(T,4) = {(S,0), (int [3],0), (int, 0), (float, 4)}

Pointers to array elements can also be treated as pointers to
the array itself (rule Figure 2(c)). Thus for (p+12):

L(T,12) = {(int [3],8), (int,0), (int, 4)}

corresponding to the array sub-object (p->t . a) via rule (c),
the array element (p->t.a[2]) and the end of the previous
array element (p—>t.a[1]), respectively. O

The layout for compound objects is a flattened representation,
meaning that (£) returns types for even nested objects, e.g.,
(p—>t.a[2]) is three levels deep.

Finally, we remark that unions (U) are treated no differ-
ently to structs or classes, except that the member offset
is defined to be zero, i.e., (offsetof (U, memb) = 0). This means
that members always overlap. However, even structs may
have overlapping sub-objects, as demonstrated by Example 2.

A Special Type for Deallocated Memory. Deallocated ob-
jects are bound to a special type (FREE) that is defined to
be distinct from all other C/C++ types. This reduces use-
after-free and double-free errors to type errors without any
other special treatment. The (FREE) type has a special layout
defined by rule Figure 2(h). Essentially, if p points to deallo-
cated memory, then so does (p+k) for all k. Reuse-after-free
is already handled for the case where the reallocated object
has a different type to that of the dangling pointer.

Calculating Sub-object Bounds. C/C++ types also encode
bounds information. For example, the type (int [100]) is an
array object of length 100, and accessing an element outside
the range 0..99 is an object bounds error. Hence, full dynamic
type checking necessitates the enforcement of object bounds
at runtime. To support this, we calculate (sub-)object bounds
using dynamic type information. The basic idea is as follows:
let p point to an object of type T and g=(p+k), then each
pair (U,8) € L(T,k) corresponds to a sub-object of type
U pointed to by g. The integer § represents the distance
from g to the start of the sub-object, and is not necessarily
zero (e.g., interior pointers to arrays). The sub-object bounds,
represented as an address range, can be calculated using the
following helper function:

type_bounds(q, (U, §)) = q—0 .. g—d+sizeof (U)
For example, let us consider the pointer g=(p+12) into the
sub-object (p—>t . a) corresponding to the pair (int [3], 8) €
L(T, 12) from Example 2. The sub-object bounds for (p—>t . a)
is (p+4)..(p+16), i.e., spanning offsets 4..16 bytes.

4 Dynamic Type Check Instrumentation

The aim of dynamic type checking is to verify that pointer use
(ak.a., pointer dereference) is consistent with the dynamic
type of the underlying object. The basic idea is as follows:

Gregory J. Duck and Roland H. C. Yap

suppose pointer p with static type (T *) is dereferenced, then
dynamic type checking verifies the following properties:

- Type Correctness: pointer p must point to the i*? element
of an object with dynamic type (T [N]) for some i, N; and

- Bounds Correctness: index i must be within the bounds of
the object, ie.,i € 0.N-1.

These properties ensure that the dereference is consistent

with the complete dynamic type (T [N])—including both the

incomplete type (T []) and bound (N)—effectively transform-
ing C/C++ into a dynamically typed programming language.

EffectiveSan implements dynamic type checking in the
form of dynamic type check instrumentation which ensures
that all pointer use is guarded by an explicit type/bounds
check. For performance reasons, EffectiveSan’s instrumenta-
tion also aims to minimize the number of type checks. One

key observation is that the dynamic type is invariant w.r.t.

pointer arithmetic, e.g., for g=p+k, then pointers p and g

reference the same underlying object, and hence the same

type. Thus, only p need be type checked provided the derived
pointer g remains within the bounds of the object. Similarly,
we can avoid type checking field access g=&p->m. Effective-

San’s dynamic type check instrumentation schema is shown

in Figure 3, and is summarized as follows:

- Figure 3(a)-(d): Type checking input pointers. All input point-
ers (i.e., function parameters 3(a), call returns 3(b), pointers
read from memory 3(c) and pointers created by casts 3(d)?)
are type checked against the incomplete® static type de-
clared by the programmer. The check also calculates the
(sub-)object bounds based on the dynamic type, represent-
ing the address range for which the static type is correct.

- Figure 3(e)-(f): Propagating/narrowing bounds to derived
pointers. Rule 3(e) covers pointer arithmetic and 3(f) field
access; and

- Figure 3(g): Bounds checking all pointer use/escapes.

Rule (d) also extends to other kinds of casts such as integer-to-
pointer, C++’s static_casts, etc. The type check is imple-
mented as a call to a special (type_check) function supplied
by the EffectiveSan runtime system (to be defined later in
Section 5). The (type_check) function will log an error mes-
sage if the pointer does not point to an object, or sub-object
of a larger object, of the complete type (type [N]) for some
N. For example:

int *p = new int[100];
BOUNDS bl = type_check(p, int[]);
BOUNDS b2 = type_check(p, float[]);

The first type check passes but the second fails since (int)
and (float) are distinct types. Assuming there is no error,
the (type_check) function will also return the bounds of

2 For our purposes, we consider pointers created by casts to be inputs.

3 As a simplification, we assume that all static types are incomplete. A
complete static type check can be decomposed into an incomplete type
check followed by a bounds narrowing operation.

EffectiveSan: Type and Memory Error Detection using Dynamically...

f(type *p) {
(a) BOUNDS b = type_check(p, typell);
-}

(b)type *p = £(-);
BOUNDS b = type_check(p, typell);

()type *p = *xq;
BOUNDS b = type_check(p, typell);

@)type *p = (type *)gq;
BOUNDS b = type_check(p, typell);

type *p = &q->field;
BOUNDS b = bounds_narrow(bq, gq->field);

(@)

) type *p = q + k;
BOUNDS b = bgq;

bounds_check (p, b);
val = #*p; or *p = val; or p escapes [6]

(e

Figure 3. The dynamic type check instrumentation schema.
Here b represents the bounds for p, and bq for q.

the matching (sub-)object. Bounds are represented by a pair
of pointers, e.g., b1={p..p + 100 = sizeof (int)}.

The next step is to ensure that all (derived) pointer use
is within the calculated bounds. For this, rule Figure 3(g)
inserts a bounds check, as represented by a call to a special
(bounds_check) function, before each pointer use. A call
bounds_check(p,b) will report an error if:

{p..p + sizeof (*p)} N b # {p..p + sizeof (*p)}

Rule Figure 3(e) represents bounds narrowing to any sub-
object selected by field access. The (bounds_narrow) opera-
tion between bounds (b) and field (p->field) is defined as
interval intersection:

b N {(&p—->field)..(&p->field + sizeof (p->field))}

Narrowing is similar to that of MPX [14]. Note that ordinary
pointer arithmetic (e.g., array access) is not narrowed, see
rule 3(f), since the resulting pointer may still refer to the
containing array. Finally, we note that EffectiveSan will limit
instrumentation to used pointers only (either directly or in-
directly via a derived pointer). For example, a function that
merely casts and returns a pointer will not attract instrumen-
tation, unlike CAVER, TypeSan, HexType and libcrunch. For
EffectiveSan, it is the responsibility of the eventual user of
the pointer to check the type.

EffectiveSan’s instrumentation schema does not change
the Application Binary Interface (ABI) nor does it rely on dis-
joint mutable meta data to pass information between func-
tions. Instead, type/bounds information is always (re)calcul-
ated “on demand”. This helps maximize compatibility/thread-
safety, which is essential when instrumenting large code

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

bases such as Firefox [10]. However, this also assumes that
input pointers are within the bounds of the underlying ob-
ject. To help enforce this, rule 3(g) also checks the bounds of
pointer escapes (e.g., passing a pointer as a parameter, writing
a pointer to memory, etc.). This is the same rationale used
by low-fat pointers, see [6] for more information.

Example 3 (Dynamic Type Check Instrumentation). Con-
sider two functions: (length) calculates the length of a
linked-list and (sum) calculates the sum of an array. The
instrumented versions of these functions (using the Fig-
ure 3 schema) is shown in Figure 4. The instrumentation
in lines {2,7, 8,10, 16, 20} is highlighted, and the original
functions can be obtained by deleting these lines and elimi-
nating temporary variables. For the (length) function, the
input pointer(s) (xs) on lines {2, 10} are type checked against
the static type (node [1) declared by the programmer. This
means that (xs) must point to an object (or sub-object of a
larger object) compatible with type (node). The (type_check)
function does not guarantee (xs) points to the base of a com-
plete (node) object (e.g., rule Figure 2(b) allows (xs) to point
to the end of an object), so derived pointer (tmp) may be an
overflow. To prevent this, the derived pointer (tmp) is bounds
checked on line 8. Similarly, for the (sum) function, the input
pointer (a) is type checked against the static type (int [1),
and the derived pointer (tmp) is bounds checked before ac-
cess. Note how all pointer use (lines {9, 21}) is preceded by a
type/bounds check. Figure 4 also illustrates how the number
of type checks depends on the program itself. For example,
(1ength) requires O(N) type checks (one for each node in
the list) whereas (sum) only requires a single type check on
function entry. O

The (sum) function also highlights how the instrumentation
schema minimizes the number of type checks. Here the input
pointer (a) is type checked exactly once outside of the loop,
whereas the subsequent derived pointers (a+1i) are merely
bounds checked.

Finally, we remark that the Figure 3 schema is not designed
to be complete with respect to use-after-free errors. For com-
pleteness, the combined type/bounds check and memory
operation must be atomic, else a call to (free), e.g., by an-
other thread, may mutate the type. In practice, this means
that some use-after-free errors may not be detected. That
said, complete use-after-free detection is not a design goal of
EffectiveSan, and even partial detection can be useful. For ex-
ample, EffectiveSan detects known SPEC2006 use-after-free
bugs (see Section 6).

5 Dynamic Type Check Runtime
EffectiveSan’s runtime system is based on low-fat pointers.
Low-fat Pointers. Low-fat pointers [6, 8] are a method for
encoding bounds meta data (i.e., size and base of an alloca-

tion) within the native machine pointer representation itself.
Low-fat pointers require sufficient pointer bit-width, and are

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

1|int length(node *xs) {

2 BOUNDS b = type_check(xs, node[]);
3 int len = O0;

4 while (xs != NULL) A{

5 len++;

6 node **xtmp = &xs->next;

7 b = bounds_narrow(b, xs->next);
8 bounds_check (tmp, b);

9 XS = *tmp;

10 b = type_check(xs, nodel]);

11 }

12 return 1len;

13}

14

15| int sum(int *a, int len) {

16 BOUNDS b = type_check(a, int[]);
17 int sum = 0;

18 for (int i = 0; i < len; i++) {
19 int *tmp = a + ij;

20 bounds_check (tmp, b);

21 sum += xtmp;

22 }

23 return sum;

24| }

Figure 4. Instrumented length and sum functions.

feasible for 64-bit systems (e.g., the x86_64). To use low-fat
pointers, objects must be allocated using a special low-fat
memory allocator that ensures the returned pointers are suit-
ably encoded. The low-fat heap allocator [6] provides replace-
ment functions (lowfat_malloc, lowfat_free, etc.) to all
the std1lib memory allocation functions. The replacement
functions have the same interface (i.e., function prototype)
as the originals. We also implement low-fat pointers for both
stack [8] and global [7] objects.

Several low-fat pointer encodings have been proposed. For
this paper, we use the low-fat pointer encoding from [6, 8].
This encoding provides the following abstract operations:
given a low-fat pointer p to (possibly the interior of) a low-fat
allocated object O, then:

size(p) = sizeof (O) base(p) = &O

That is, given a low-fat pointer p, we can use the size and
base operations to quickly determine the bounds meta data
of the allocated object. E.g., if

str = lowfat_malloc(sizeof (char [32]))

then size(str+10)=32 and base(str+10)=str, etc. Not all
pointers will be low-fat pointers, and such pointers are re-
ferred to as legacy. For legacy pointer g, size(q) = SIZE_MAX
and base(q) = NULL. Support for legacy pointers is essential
to handle non-instrumented code, e.g., libraries, and also
some pointers from Custom Memory Allocators (CMAs).

Gregory J. Duck and Roland H. C. Yap

META f

Tbase(p) T P

Figure 5. Object and object meta data layout.

The low-fat pointer encoding of [6, 8] works by (1) ar-
ranging objects into different memory regions based on al-
location size, and (2) ensuring that all objects are allocation
size-aligned. Thus, given a pointer p, we can quickly derive
the allocation size (i.e., size(p)) based on which memory re-
gion p points into. Next the base(p) operation is implemented
by rounding p down to the nearest size(p)-aligned address.
Both the size(p) and base(p) operations are fast and constant
time O(1). For more on low-fat pointers, see [6, 8].

Using Low-fat Pointers for Meta Data. Low-fat pointers
were originally designed for allocation bounds checking using
the meta data encoded in the pointer. That is, given pointer
p, any access outside the range base(p)..base(p)+size(p) is a
bounds error that will abort the program. For EffectiveSan,
we repurpose low-fat pointers as a general method for bind-
ing meta data (in our case, type information) to objects. The
basic idea is to store the meta data at the base of the object,
and this meta data can be retrieved from any interior pointer
by using the base(p) operation. We refer to this as object
meta data, since it is associated with every allocated object.
In the case of EffectiveSan, the object meta data contains a
representation of the dynamic type of the allocated object.

Example 4 (Object Meta Data). An example of the com-
bined object and meta data layout is shown in Figure 5. Here
we assume the object is of type (T) from Example 1, and
the layout of each sub-object (e.g., £, t, t.a[0], etc.) from
Example 2 is also illustrated. The memory is divided into two
main parts: space for the object meta data (META) and space
for the allocated object itself. Given a pointer p to the object
or sub-object (e.g., p=&t .a[2] in Figure 5), the pointer to
the object meta data can be retrieved by base(p). O

It is important to note that the meta data (META) is bound to
the outermost object only, not each sub-object, and occupies
memory immediately before the start of the object (g). Thus,
(META) is analogous to a “malloc header” that is invisible to
the program, and the layout of C/C++ objects is otherwise
unchanged. Under our scheme, the (META) header is a type-
integer pair storing (1) the (top-level) allocation type of the
object, and (2) the object’s allocation size (e.g., the parameter
to (malloc)). For sub-objects, the type can be retrieved using
the layout function (£) discussed below.

EffectiveSan: Type and Memory Error Detection using Dynamically...

1|void *type_malloc(size_t size,TYPE t){
2 META *meta = lowfat_malloc(

3 sizeof (META)+size);

4 meta—type = t;

5 meta—size = size;

6 return (void *)(meta + 1);

7
8
9

}

BOUNDS type_check(void *ptr, TYPE s) {
10 META #*meta = base(ptr);

11 if (meta == NULL) /*legacy pointerx*/
12 return (0..UINTPTR_MAX);

13 TYPE t = meta—type;

14 void *bptr = (void *)(meta + 1);

15 BOUNDS b = (bptr..bptr+meta—size);
16 ssize_t k = ptr-bptr;

17 for (auto o : L(t,k))

18 if (o.type == s) {

19 BOUNDS ¢ = type_bounds (ptr, o);
20 return bounds_narrow(b, c);

21 }

22 type_error (); /*report error*/
23 return (0..UINTPTR_MAX);

24|}

Figure 6. Simplified definitions for the type_malloc and
type_check functions.

To implement the object layout of Figure 5, we replace
standard (malloc) with the version shown in Figure 6 lines
1-7. Here, (type_malloc) is a thin wrapper around the un-
derlying low-fat memory allocator (lowfat_malloc). The
wrapper function takes a type (t) as an argument (similar to
C++’s new operator). Here we treat types as first class objects
of type (TYPE). In lines 2-3, the wrapper allocates space for
both the object (of sizeof(t)) and the object meta data (of
sizeof (META)) using the underlying low-fat allocator. Lines
4-5 store the allocated object’s meta data at the base address.
Line 6 returns the pointer to the start of the allocated object
excluding the meta data. The (type_malloc) function essen-
tially binds the allocation type (t) to the memory returned
for the allocated object. We similarly wrap low-fat stack [8]
and global [7] objects with meta data.

Memory deallocation is handled by a (type_free) replace-
ment for stdlib (free). The replacement function overwrites
the object meta data with the special type (FREE) defined in
Section 3 before returning the memory to the underlying
low-fat allocator. The low-fat allocator has also been mod-
ified to ensure that the meta data will be preserved until
the memory is reallocated. The (type_free) function also
detects double free errors.

Type Checking with Meta Data. By replacing the stan-

dard allocators, all objects are bound to the allocation type
which can be retrieved using the base operation. Combined

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

with the layout function (L), the (type_check) function can
be implemented as shown in Figure 6 lines 9-24. Here the
(type_check) function has three basic steps:

1. Get the allocation type (t), bounds (b) and object base
pointer (bptr) (lines 10-15);

2. Calculate the sub-object offset (k) (line 16);

3. Scan all sub-objects at offset (k) as returned by the
layout function (£) (lines 17-21). Return the bounds
of the sub-object that matches the declared static type
(s) narrowed to the allocation bounds, else raise a type
error (line 22) if no match exists.

For legacy pointers, the (type_check) function always suc-
ceeds and returns “wide bounds” (lines 11-12) for compat-
ibility reasons. Likewise, wide bounds are returned after a
type error has been logged.

Example 5 (Type Check). Let p point to an allocated object
of type (T) from Example 2. Assuming that sizeof (META)=16,
the type will be stored as object meta data at address base(p) =
(p—sizeof (META)) = (p—16). Consider the interior pointer
(g=p+12). Then type_check(q, int [1) computes:

1. t = ((META *)base(q))->type = T

2. k = q—base(q)+sizeof (META) = 12

3. £(T,12) = {(int [3], 8), (int, 0), (int, 4)}
Type (int [1) matches the first sub-object (int [3], 8), and
the bounds p+4..p+16 are returned. On the other hand, the
type_check(q, double []) will fail since there is no match-
ing sub-object for type (double[]). O

As illustrated in Example 5, it is sometimes possible to have
multiple matching sub-objects, i.e., (int [3], 8), (int, 0), and
(int, 4) all match type (int [1). In such cases, the following
tie-breaking rules are used:

1. sub-objects with wider bounds are preferred; and
2. pointers-to-the-end-of-sub-objects (see Figure 2(b)) are
matched last.

Thus, the sub-object bounds for (int [3]) is returned. Note
that our approach for deriving (sub-)object bounds differs
from that of other systems such as SoftBound [28] and MPX
[14]. These systems track (sub-)object bounds by passing
meta data whereas EffectiveSan always (re)calculates bounds
using the dynamic type. Explicit tracking may allow for nar-
rower bounds for some cases of type ambiguity, e.g., when
the bounds for (int) is intended. In order to pass narrowed
pointer arguments, SoftBound necessitates changing the
Application Binary Interface (ABI). EffectiveSan’s approach
achieves very good binary compatibility since the underlying
ABI is not changed. Furthermore, SoftBound/MPX require
meta data updates when a pointer is written to memory,
which creates a data race for multi-threaded applications [31].
Our approach requires no such updates, allowing for better
multi-threading support.

Layout and Type Meta Data Implementation. The ob-
ject meta data is a representation of the dynamic type of the

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

corresponding object. EffectiveSan represents incomplete
types (i.e., T[]) as pointers to a type meta data structure
containing useful information, such as the type’s size (i.e.,
sizeof(T')), name (for reflection) and layout information. The
type meta data structure is defined once per type.

To reduce overheads, EffectiveSan uses a layout hash table
representation. The basic idea is as follows: for all possible
type (T), sub-object type (S) and sub-object offset (k) combi-
nations:

(S,0) € L(T,k)
the layout hash table will contain a corresponding entry:

TXSxk —§..sizeof (S)-5

0 < k < sizeof (T)

The entry maps a (TXSxk) triple to the corresponding sub-
object bounds relative to offset k. In order to keep the hash ta-
ble finite, only entries corresponding to offsets 0<k <sizeof (T)
are stored. Otherwise, for entries outside this range, the offset
is first normalized (k:=k mod sizeof (T)). If multiple match-
ing sub-objects exist for the same (S) the above tie-breaking
rules apply. Using this implementation, the sub-object match-
ing of Figure 6 lines 17-21 can be efficiently implemented as
an O(1) hash table lookup.

Example 6 (Layout Hash Table). The layout hash table for
(T[]) from Example 2 includes the following entries:

(T,T,0) > —co0..0c0 (T,float,0) 0..4 (T,S,4)+ 0..20
(T,int,4) — 0..12 (T, int,8) — —4..8
(T,int,12) — —8..4 (T,char *,16) 0..8

Note that, since type (T []) is incomplete, the corresponding
top-level entry is unbounded.* Consider the type check of
pointer (g=p+12) against (int [1) from Example 5. The cor-
responding hash table entry (T, int, 12) maps to the bounds
(—8..4). Thus, the type check succeeds with the final bounds
p+12-8..p+12+4 = p+4..p+16. Furthermore, the type check
of g against (double []) fails since there is no corresponding
layout hash table entry for (T, double, 12). O

Our basic approach has also been extended to handle other
standard C/C++ language features, including:

1. Structure types with flexible array members; and
2. Automatic coercions between types allowable under
the C, “sloppy” [20] or “de facto” [26] standards.

Structures with Flexible Array Members (FAMs) have defini-
tions of the form (struct T {---; U member[];}), where
(member) of type (U[]) is the FAM. Other forms are also pos-
sible. The size of the FAM is determined by the object’s alloca-
tion size. Structures with a FAM are treated as equivalent to
(struct T {---; U member[1];}), and EffectiveSan uses
an alternative offset normalization for k>sizeof(T):

k := ((k — sizeof (T)) mod sizeof (U)) + sizeof(T)

4 The final bounds returned by (type_check) is narrowed to the actual
allocation size (Figure 6 line 20) stored in the object meta data.

Gregory J. Duck and Roland H. C. Yap

The final feature is automatic coercion between different
types, such as automatically coercing (char[]) to other
types. To implement this, EffectiveSan uses two layout hash
table lookups instead of one: if the first lookup (T, S, k) fails,
next (T, char, k) is tried, representing the coercion from
(char[]) to (S[1). This idea can be generalized to other
kinds of useful coercions, such as (void *)to (S *).

Type meta data, including the layout hash table, is auto-
matically generated using a compiler pass, once per compiled
module. Each type meta data object is declared as a weak
symbol, meaning that only one copy will be included in the
final executable. The type meta data is constant (read-only)
and thus cannot be modified at runtime.

6 Experiments

We have implemented a prototype version of EffectiveSan
using the LLVM compiler infrastructure [24] version 4.0.0
for the x86_64 architecture. EffectiveSan’s instrumentation
is a two step process. In the first step, a modified clang
front-end generates a type annotated LLVM [24] Interme-
diate Representation (IR) of the C/C++ program. Here, type
annotations are associated with each LLVM IR instruction/-
global/function using the standard DWARF [4] debug format
(similar to that generated by the (-g) command-line option).
In the second step, the type annotated IR is instrumented
using the schema from (Figure 3). This step also replaces all
heap/stack/global allocations with the typed variants and
generates the runtime type meta data described in Section 5.
Our implementation supports all types described in Section 3,
including fundamental types, pointers, structures, classes,
unions, etc., as well as standard C/C++ features such as inher-
itance, virtual inheritance, templates, multi-threading, basic
coercions between (T) to/from (char []) and (T *) to/from
(void *), and objects with flexible array members. In ad-
dition to the Figure 3 schema, our EffectiveSan prototype
supports basic optimizations such as: removing dynamic
type checks that can never fail (e.g., C++ upcasts), removing
subsumed bounds checks, and removing redundant bounds
narrowing operations. For speed, all instrumentation except
(type_check) is inlined.

By default, EffectiveSan logs all errors without stopping
the program. EffectiveSan may also be configured to merely
count errors (without detailed log messages), and/or to abort
after N errors for some N>1. For our experiments, logging
mode is used to find errors, and counting mode is used for
measuring performance.

Limitations. The EffectiveSan prototype may not detect all
possible type and memory errors. For example, Effective-
San can only partially protect legacy pointers in the form
of bounds narrowing. For non-legacy pointers, EffectiveSan
must correctly bind the allocation type with each allocated
object. For global/stack objects as well as objects allocated
using C++’s new, the allocation type is simply the declared

EffectiveSan: Type and Memory Error Detection using Dynamically...

type and is unambiguous. However, for heap objects allo-
cated by (malloc) we use a simple program analysis (see
Example 1). Some Custom Memory Allocators (CMAs) use
internal data structures to track memory, resulting in type
errors when cast. For our experiments, we use a version of
SPEC2006 with some CMAs removed, see Appendix A. Eff-
ectiveSan will also not detect errors that are optimized away
by LLVM before the instrumentation pass.

For practical reasons, the current prototype implements
some simplifications, including: treating enums as (int), C++
references as pointers, and virtual function tables as arrays
of generic functions. Some simplifications are inherited from
the clang frontend. The current prototype also does not
aim to implement a strict interpretation of the C/C++ stan-
dards. For example, there is no tracking of pointer prove-
nance [12]. Furthermore, the prototype implements some
common “sloppy” [20] and “de facto” [26] extensions, such
as (T *) to/from (void *) coercions. The final limitation re-
lates to sub-object matching. By default, EffectiveSan heuris-
tically chooses the sub-object with the widest bounds (see
the tie-breaking rules), which may differ from the intended
bounds. For example, given:

union { float a[10]; float b[20]; };

A type check against (float []) will always return b’s bounds.

6.1 Effectiveness

To test the effectiveness of EffectiveSan, we use the SPEC2006
[13] benchmarks and the Firefox web browser version 52
(ESR). The SPEC2006 benchmarks (~1.1million sLOC) com-
prise several integer and floating point C/C++ programs.
For SPEC2006 we use the standard workloads. For Firefox
(~7.9million sLOC) we use standard web benchmarks (see
Figure 10).

The results for SPEC2006 are summarized in Figure 7.
Here (kilo-sLOC) represents the source lines of code (in thou-
sands), (#Type) the number of type checks, (#Bounds) the
number of bounds checks, (#Issues-found) the number of
issues logged by EffectiveSan. We bucket issues by type and
offset to prevent the same issue from being reported at multi-
ple different program points. Of the ~2.2 trillion type checks
in Figure 7, only ~1.1% were performed on legacy pointers,
meaning that EffectiveSan achieves high coverage.

For SPEC2006 our EffectiveSan prototype detects several
issues (see Figure 7), including:

e A use-after-free bug in perlbench (reported in [32]).°

e A bounds overflow error in h264ref (reported in [32]).

e Three sub-object bounds overflow errors in gcc, h264ref
and soplex.’

e Multiple type errors (discussed below).

> Only applicable to the SPEC2006 test workload.
% Some are also found by MPX, see [31].

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

SPEC2006
kilo- | checks (billions) | #Issues-

Bench. sLOC | #Type #Bound | found
perlbench 126.4| 177.9 297.7| 35
bzip2 57| 70.1 644.3 1
gce 235.8 | 105.2 204.1 41
mcf 1.5 349 98.7 0
gobmk 157.6 | 90.9 421.3 0
hmmer 20.7| 220 13934 0
sjeng 105| 273 478.0 0
libquantum 26| 276.4 561.1 0
h264ref 36.1| 3925 891.5 3
omnetpp** 20.0| 86.5 194.7 0
astar** 43| 725 216.8 0
xalancbmk** || 267.4| 267.8 390.6 | 15
milc 9.6 294 347.1 1
namd** 39| 16.1 362.6 1
dealII** 94.4| 266.1 7013 | 13
soplex** 28.3| 80.8 219.8 1
povray** 78.7| 832 176.0 10
1bm 0.9 4.0 333.3 1
sphinx3 13.1| 894 903.9 2
Totals (all) 1117.5[2193.0 8836.3| 124
Totals (C++) 497.0| 873.1 2261.7| 40

Figure 7. Summary of the SPEC2006 benchmarks. C++
benchmarks are marked with a (++), and the rest are C. We

bucket issues by type and offset. Benchmarks with issues are
highlighted.

As far as we are aware, all previously known bounds, type
confusion, and use-after-free errors are detected. Effective-
San also detects new type errors that have not been previ-
ously reported (see below).

Interestingly, EffectiveSan reports zero issues (on executed
paths) for the mcf, gobmk, hmmer, sjeng, 1ibquantum, om-
netpp, and astar benchmarks. Similarly, the benchmarks
bzip2, h264ref, milc, namd, soplex, 1bm and sphinx3 re-
port one or two minor issues. This shows that it is feasible for
well disciplined C/C++ code to have zero type and memory
errors. Of the remaining benchmarks, perlbench, gcc, and
povray had the most issues, as is discussed below.

Type Errors. EffectiveSan detects multiple type errors in
the SPEC2006 benchmarks, including:

- Bad C++ downcasts (type confusion) in xalancbmk;

- Multiple instances of casting to container types, i.e.: (T)
cast to (struct S {T t; ... }) for some T, S. Several
instances relating to std1ib++ are similar to those previ-
ously reported by CAVER [23].

- Multiple instances of casting between classes/structures
with the same layout (e.g., phantom classes [23]).

- gce/sphinx3 casts objects to (int []) to calculate hash
values or checksums.

- gcc with incompatible definitions for the same type (e.g.,
different struct definitions using the same tag).

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Gregory J. Duck and Roland H. C. Yap

3500s
3000s
2500s -
2000s
1500s
1000s
500s

[] Uninstrumented

[EffectiveSan (full)
[] EffectiveSan-bounds [] EffectiveSan-type

Figure 8. EffectiveSan SPEC2006 timings in seconds. We test three EffectiveSan variants: EffectiveSan (full instrumentation),
EffectiveSan-bounds (object bounds checking only), and EffectiveSan-type (type cast checking only).

- bzip2/1bm confuses fundamental types (1bm case also re-
ported in [15]).

- perlbench reusing memory (as a different type) rather
than explicitly freeing it.

- perlbench frequently confuses (T *) with (T **).

- perlbench/povray’s ad hoc implementation of C++-style
inheritance by defining structures with a common shared
prefix, and casting to and fro.

Two type errors from the xalancbmk benchmark relate to
bad C++ downcasting, similar to the class of errors detectable
by CAVER, TypeSan and HexType. The first arises from:

SchemaGrammar& sGrammar =
(SchemaGrammarg) grammarEnum.nextElement();

This operation represents a downcast from the base class
(Grammar) (returned by nextElement) to the derived class
(SchemaGrammar). However, at runtime, nextElement may
also return a (DTDGrammar), which is neither a base nor de-
rived class of (SchemaGrammar), and thus the downcast is
invalid. A second case arises from an invalid downcast from a
(DOMDocumentImpl) to a (DOMElementImpl). In both cases,
the result of the bad cast is only used to access virtual meth-
ods from a shared base class. The code relies on undefined
behavior, namely, that the virtual function tables of the de-
rived classes are compatible.

Some type errors relate to type abuse, i.e., likely deliberate
type errors introduced by the programmer. For example,
perlbench and povray use an idiom that confuses structs
with shared common prefixes as an ad hoc implementation
of C++-style inheritance, e.g.

struct Base { int x; float y; };
struct Derived { int x; float y; char z; };

The (Base) and (Derived) structure types are incompatible
([16] §6.2.7), thus accessing an object of one type through the
other is undefined behavior ([16] §6.5.0 §7). Such idioms may
break the compiler’s Type-Based Alias Analysis (TBAA) [5] as-
sumptions and cause programs to be mis-compiled—a known
problem for perlbench [13]. The code can be re-factored as
follows to avoid type errors:

struct Derived { struct Base base; char z; 7};

Alternatively unions or standard C++ classes with inheri-
tance can be used.

Memory Errors. In addition to previously reported [32]
memory errors in perlbench and h264ref, EffectiveSan
detects the following sub-object bounds overflows:

- gcc overflows the (mode) field of type (rtx_const) to
access structure padding inserted by the compiler.

- h264ref overflows the (blc_size) field of an object of
type (InputParameters).

- soplex underflows the (themem1l) field of an object of
type (UnitVector).

The soplex underflow appears to be intentional (it is doc-
umented in the source code comments), and relies on the
compiler not inserting padding between fields.

Interestingly, the gcc error is not reported by MPX [31].
This is possibly because MPX assumes the static type (int [])
is correct and does not narrow. In contrast, EffectiveSan
matches the static type against the first field of dynamic
type (rtx_const), implying much narrower bounds. Fur-
thermore, EffectiveSan does not report false positives that af-
fect other tools. For example, xalancbmk performs container-
style subtraction from the base of a structure, which is re-
ported as a sub-object bounds overflow by MPX [31]. How-
ever, this is not considered a sub-object overflow by Effective-
San, since the operation involves a cast to (char *), resetting
the bounds to the containing object.

Discussion. As noted above, some issues found by Effect-
iveSan correspond to intentional type/memory abuse intro-
duced by the programmer, and not unintentional bugs. Even
memory errors, such as the soplex sub-object bounds un-
derflow (detailed above), may be intentional. EffectiveSan
does not currently distinguish between intentional abuse
and unintentional bugs, as such a distinction relies on appli-
cation rather than language semantics, and is therefore best
left to the programmer.

That said, even exposing intentional type/memory abuse
can be useful, such as for code quality or standards compli-
ance reasons. Removing abuse may also help isolate more

EffectiveSan: Type and Memory Error Detection using Dynamically...

serious issues. For example, perlbench is rife with type er-
ror abuse—resulting in a large error log—which makes find-
ing “real” bugs more difficult. Type errors may also identify
opportunities for code refactoring. For example, Effective-
San detects multiple type errors in the povray benchmark
relating to an idiosyncratic implementation of C++-style in-
heritance using C-style structs with overlapping layouts.
This was surprising, given that povray itself is implemented
in C++, and is possibly an artifact of a previous C to C++
transition. Such idioms also affect code quality, since the ob-
ject hierarchy is represented in a non-standard way, affecting
code readability. The povray type errors can be resolved by
switching to standard C++ classes and inheritance. Indeed,
modern versions of povray’ have done so. Finally, some
type errors may help identify Custom Memory Allocators
(CMAs) used by the program. Such CMAs can be replaced
with standard allocators to help improve the accuracy of Eff-
ectiveSan and related tools, as was done with the SPEC2006
benchmarks.

6.2 Performance

Timings. To evaluate performance, we test the EffectiveSan
prototype against the SPEC2006 benchmark suite [13]. All
experiments are run on a Xeon E5-2630v4 processor (clocked
at 2.20GHz) with 32GB of RAM. The results are shown in
Figure 8. Here we evaluate three different variants:

e EffectiveSan (full): full EffectiveSan instrumentation;
o EffectiveSan-bounds: protects object bounds only;
o EffectiveSan-type: protects bad C/C++ casts only.

EffectiveSan-bounds protects object bounds only by replac-
ing type check instrumentation (rules Figure 3(a)-(d)) with
a simpler (bounds_get) function that returns the allocated
object bounds without checking whether the type is cor-
rect. The object bounds are calculated from the object’s dy-
namic type T, i.e., by sizeof (T). EffectiveSan-type restricts
type checking to C/C++-style cast operations only (rule Fig-
ure 3(d)) and all other instrumentation is removed. Unlike
EffectiveSan (full), rule 3(d) is applied regardless of whether
the resulting pointer is used. The main motivation for the
variants is to enable a meaningful comparison with related
tools such as AddressSanitizer and HexType. We also com-
pare against the uninstrumented baseline at (-02).

The additional performance overheads of EffectiveSan,
EffectiveSan-bounds and EffectiveSan-type are 288%, 115%
and 49% respectively (Figure 8).® Unsurprisingly, Effective-
San with full comprehensive instrumentation enabled has
the highest overhead, at 288% overall. However, this mode
makes no assumptions about the type and bounds of objects,
so is the most likely to find errors in the program. Reducing

7 http://www.povray.org

8 The protection and overhead of each EffectiveSan variant shown in Fig-
ure 8 is not meant to be additive. For example, only full EffectiveSan can
detect non-cast type errors and sub-object bounds overflow errors.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

2000MB

[Uninstrumented
[l EffectiveSan (full)

1500MB

1000MB
500MB

Figure 9. EffectiveSan (full) memory usage in MB.

the instrumentation trades error coverage for performance,
as demonstrated by the (EffectiveSan-bounds) and (Effect-
iveSan-type) variants, with runtime overheads of 115% and
49% respectively.

Tool Comparison. To understand the cost of bounds checks,
EffectiveSan-bounds can be compared to more specialized
sanitizers that protect object or allocation bounds only, such
as AddressSanitizer (73% [32], or 92% reported in [8]), Soft-
Bound (67% [28] for partial SPEC2000/SPEC2006; between 60-
249% for 4/19 SPEC2006 [21]; ~100% for 6/19 SPEC2006 [31]),
MPX (~200% for SPEC2006 [31]), BaggyBounds (60% [1]
for SPEC2000), and LowFat (54% [8] for SPEC2006). The
overhead of EffectiveSan-bounds is higher than most tools,
but is not meant to replace specialized solutions. Effective-
San’s meta data representation is primarily designed for type
checking, meaning that object bounds must be calculated
indirectly from dynamic type information.

EffectiveSan-type’s instrumentation is comparable to ex-
isting type confusion sanitizers such as CAVER [23], Type-
San [11] and HexType [18]. CAVER reports a 20.0-29.6% over-
head for 2/19 SPEC2006 benchmarks, TypeSan a 12.1% over-
head for 7/19 benchmarks, and HexType a 3.3% overhead
for 7/19 benchmarks. EffectiveSan-type has higher overhead,
at 49% for all of SPEC2006. However, these existing sanitiz-
ers are specialized for casts between C++ classes, which
results in far less checking. For example, TypeSan does a
total of 5.9 billion type checks for all SPEC2006 C++ bench-
marks [11], whereas EffectiveSan (full) does 873.1 billion
(Figure 7, excluding bounds checks) and EffectiveSan-type
does 361.1 billion, with 264.2 billion from perlbench, gcc,
and dealIT alone. These existing sanitizers do not handle
C programs (perlbench and gcc) nor C-style casts from
deallIl, which account for most of the additional checks.
Our results also show that the overhead-per-check ratio
strongly favors EffectiveSan. HexType [18] also uses opti-
mizations such as avoiding tracking for objects that are never
cast. In principle, such optimizations could also be adapted to
EffectiveSan-type, however EffectiveSan-type is not meant
to replace specialized tools. Finally, we note that EffectiveSan
is also significantly faster than previous runtime type check-
ing systems for C, such as [25] with a 35X-133% slowdown
for SPEC95.

http://www.povray.org

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

1300% 1 [EffectiveSan (full)

900% |-

500% |-

@ N INg

e
&

| — . .
& X0 5%
& o 5 @ K 9 v &°
Y) R ' 5“0 A2
& > O @
O R 9 &
& o
%o? &

Figure 10. EffectiveSan relative performance for Firefox and
various standard browser benchmarks.

Memory. The memory overheads (peak resident set size)
for EffectiveSan are shown in Figure 9. Overall we see that
EffectiveSan introduces a ~12% memory overhead, which
is comparable to the ~3% overhead introduced by the un-
derlying low-fat pointer implementation [8]. This also sug-
gests that the memory overheads introduced by object and
type meta data are modest. Many existing sanitizers that
use shadow memory report higher memory overheads, e.g.,
AddressSanitizer [32] at 237% overhead.

6.3 Web Browser Evaluation

We evaluate EffectiveSan against Firefox [10] in order to
test complex and multi-threaded software. Firefox is built
using EffectiveSan after: (1) disabling jemalloc’ (2) replac-
ing components written directly in assembly (EffectiveSan
assumes C/C++ source code), and (3) applying a one-line
patch that removed stack object ordering assumptions that
are incompatible with the low-fat stack allocator [8]. Aside
from jemalloc, we instrument Firefox “as is” without re-
placing other Custom Memory Allocators (CMAs), the same
approach used by [11]. Finally, we note that, as far as we
are aware, EffectiveSan is the first full type and sub-object
bounds checker used to build a web browser, demonstrating
the compatibility of our approach. Other sub-object bounds
checkers, such as MPX and SoftBound, do not support multi-
threaded code [31] required for browsers.

The results for standard browser benchmarks are shown
in Figure 10. Overall we see that EffectiveSan (full) intro-
duces a 422% overhead compared to the uninstrumented
baseline, which is (1.5%) the additional overhead compared
to the SPEC2006 results. Although the overhead for Firefox
is higher, our result is consistent with CAVER (2.6x for 2/19
SPEC2006) [23], TypeSan (2.8% for 7/19 SPEC2006) [11], and
HexType (55X for 7/19 SPEC2006) [18] which similarly report
higher overheads for Firefox relative to the SPEC2006 bench-
marks. In [11] it is noted that Firefox creates large numbers
of temporary objects which leads to increased overheads for
tools implementing type checking.

9 Disabling jemalloc is also standard practice for compiling Firefox with
AddressSanitizer.

Gregory J. Duck and Roland H. C. Yap

EffectiveSan detects multiple issues for Firefox summa-
rized below. Most issues relate to type abuse (similar to our
SPEC2006 results) or CMAs, including:

- Multiple instances of casts between types that are equiva-
lent modulo template parameters. For example, an object
of type (T<Ux*>) being cast to (T<void#*>) and vice versa,
such as (nsTArray_Impl<void*>) being confused with
(nsTArray_Impl<PVRLayerParent*>), etc.

- Multiple instances of type abuse similar to our SPEC2006
results, including: casting to container types and casting
structures to fundamental types (e.g., int []).

- Multiple errors relating to the use of CMAs. For example,
function (XPT_ArenaCalloc) is one such CMA that re-
turns objects typed with an internal allocator structure
(BLK_HDR). This results in type errors, e.g., (BLK_HDR) ver-
sus (XPTMethodDescriptor), etc.

The latter demonstrates how type errors can sometimes iden-
tify CMAs. Such CMAs can be replaced with standard alloca-
tors to better assist dynamic analysis tools such as Effective-
San. However, due to the size and complexity of the Firefox
code-base, such an exercise is left as future work.

7 Conclusion

In this paper, we have proposed dynamic typing as a general
method for comprehensive type and memory error detec-
tion in C/C++ programs. We also presented EffectiveSan, a
practical implementation of dynamic typing using a combi-
nation of low-fat pointers, meta data, and type/bounds check
intrumentation. We have evaluated EffectiveSan against the
SPEC2006 benchmark suite and Firefox, finding several new
errors. We also show that EffectiveSan is effective at detect-
ing sub-object bounds errors, one of only a few tools that
can do so, while being compatible with multi-threaded envi-
ronments and preserving the Application Binary Interface.
The scope for future work is broad. EffectiveSan’s method
for tracking dynamic type information can likely be gen-
eralized to other useful properties, enabling new classes of
C/C++ sanitizers. The performance of our prototype can also
likely be improved as new optimizations are implemented.

A SPEC2006 Modifications

For our SPEC2006 experiments, the following CMAs/wrap-
pers were replaced with the standard (malloc) equivalent:
Perl_malloc, safemalloc, Perl_safesysmalloc,
BZALLOC, xmalloc, pov_malloc, MallocOrDie,
MemoryManager: :allocate, XMemory: :operator new,
__ckd_malloc__, __mymalloc__

The analogous CMAs/wrappers for (realloc), (calloc)and
(free) were also replaced.

EffectiveSan: Type and Memory Error Detection using Dynamically... PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

References

[1] P. Akritidis, M. Costa, M. Castro, and S. Hand. 2009. Baggy Bounds
Checking: An Efficient and Backwards-Compatible Defense Against
Out-of-Bounds Errors. In USENIX Security Symposium. USENIX.

[2] T. Austin, S. Breach, and G. Sohi. 1994. Efficient Detection of All
Pointer and Array Access Errors. In Programming Language Design
and Implementation. ACM.

[3] H.Boehm and M. Weiser. 1988. Garbage Collection in an Uncoopera-
tive Environment. Software Practical Experience 18, 9 (1988).

[4] Debugging Information Format Committee. 2010. DWARF Debugging
Information Format V4.

[5] A.Diwan, K. McKinley, and J. Moss. 1998. Type-based Alias Analysis.
In Programming Language Design and Implementation. ACM.

[6] G. Duck and R. Yap. 2016. Heap Bounds Protection with Low Fat
Pointers. In Compiler Construction. ACM.

[7] G.Duck and R. Yap. 2018. An Extended Low Fat Allocator API and
Applications. CoRR abs/1804.04812 (2018).

[8] G. Duck, R. Yap, and L. Cavallaro. 2017. Stack Bounds Protection
with Low Fat Pointers. In Network and Distributed System Security
Symposium. The Internet Society.

[9] F. Eigler. 2003. Mudflap: Pointer Use Checking for C/C++. In GCC
Developer’s Summit.

[10] Firefox 2018. Firefox Web Browser. https://www.mozilla.org/.

[11] I Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der
Kouwe. 2016. TypeSan: Practical Type Confusion Detection. In Com-
puter and Communications Security. ACM.

[12] C.Hathhorn, C. Ellison, and G. Rosu. 2015. Defining the Undefinedness
of C. In Programming Language Design and Implementation. ACM.

[13] J. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. Computer
Architecture News 34, 4 (2006).

[14] Intel Corporation. 2018. Intel 64 and IA-32 Architectures Software
Developer’s Manual.

[15] L Ireland. 2013. SafeType: Detecting Type Violations for Type-Based
Alias Analysis of C. Master’s thesis. University of Alberta.

[16] ISO. 2011. Programming Languages — C. ISO/IEC 9899:2011.

[17] ISO. 2017. Programming Languages — C++. ISO/IEC 14882:2017.

[18] Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer. 2017. HexType:
Efficient Detection of Type Confusion Errors for C++. In Computer
and Communications Security. ACM.

[19] T.Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
2002. Cyclone: A Safe Dialect of C. In USENIX Annual Technical Con-
ference. USENIX.

[20] S.Kell. 2016. Dynamically Diagnosing Type Errors in Unsafe Code. In
Object-Oriented Programming, Systems, Languages, and Applications.

—

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

ACM.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song.
2014. Code-pointer Integrity. In USENIX Symposium on Operating
Systems Design and Implementation. USENIX.

A.Kwon, U. Dhawan, J. Smith, T. Knight, and A. DeHon. 2013. Low-fat
Pointers: Compact Encoding and Efficient Gate-level Implementation
of Fat Pointers for Spatial Safety and Capability-based Security. In
Computer and Communications Security. ACM.

B. Lee, C. Song, T. Kim, and W. Lee. 2015. Type Casting Verification:
Stopping an Emerging Attack Vector. In USENIX Security Symposium.
USENIX.

LLVM. 2018. http://11lvm.org.

A. Loginov, S. Yong, S. Horwitz, and T. Reps. 2001. Debugging via
Run-Time Type Checking. In Fundamental Approaches to Software
Engineering. Springer.

K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R.
Watson, and P. Sewell. 2016. Into the Depths of C: Elaborating the De
Facto Standards. In Programming Language Design and Implementation.

ACM.
Microsoft. 2013. Microsoft Security Intelligence Report: Featured Intelli-

gence. Volume 16.

S. Nagarakatte, Z. Santosh, M. Jianzhou, M. Martin, and S. Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In Programming Language Design and Implementation.
ACM.

S. Nagarakatte, J. Zhao, M. Martin, and S. Zdancewic. 2010. CETS:
Compiler Enforced Temporal Safety for C. In International Symposium
on Memory Management. ACM.

G. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. 2005.
CCured: Type-safe Retrofitting of Legacy Software. Transactions on
Programming Languages and Systems (2005).

0. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer. 2017.
Intel MPX Explained: An Empirical Study of Intel MPX and Software-
based Bounds Checking Approaches. CoRR abs/1702.00719 (2017).

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. 2012. Ad-
dressSanitizer: A Fast Address Sanity Checker. In USENIX Annual
Technical Conference. USENIX.

UBSan 2018. Undefined Behavior Sanitizer. https://clang.llvm.org/
docs/UndefinedBehaviorSanitizer.html.

Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and W.
Joosen. 2010. PAriCheck: An Efficient Pointer Arithmetic Checker for
C Programs. In Information, Computer and Communications Security.
ACM.

https://www.mozilla.org/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

	Abstract
	1 Introduction
	2 Background
	2.1 Sanitizers
	2.2 Our Approach

	3 Dynamic Types for C/C++
	4 Dynamic Type Check Instrumentation
	5 Dynamic Type Check Runtime
	6 Experiments
	6.1 Effectiveness
	6.2 Performance
	6.3 Web Browser Evaluation

	7 Conclusion
	A SPEC2006 Modifications
	References

